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Role of Automata Theory in other subjects

Automata and

Formal Languages

Automated Verification

Computability

Compilers

Logic

Complexity Theory
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Brief history of logic and computability

David Hilbert

Kurt Godel

Alonzo Church

Alan Turing Kleene, Rosser, Scot, Rabin, ...

1929: Completeness of FO logic

1931: Incompleteness of FO arithmetic

1928: Entscheidungsproblem (deciding validity of FO logic)

1936: Undecidability of Entscheidungsproblem using TMs

1930: Undecidability of Entscheidungsproblem

using Lambda−calculus
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How a Turing machine works

a a b a b a a a [ [

p

`

Finite control

Tape infinite to the right

Each step: In current state p, read current symbol under the
tape head, say a: Change state to q, replace current symbol
by b, and move head left or right.

(p, a)→ (q, b, L/R).



Turing Machines Formal definitions Computability

How a Turing machine works

Special designated accept state t and reject state r . These
states are assumed to be “sink” states.

TM accepts its input by entering state t.

TM rejects its input by entering state r .

TM never falls off the left end of the tape (i.e it always moves
right on seeing ‘`’).
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Example TM for anbncn
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Exercise: TM for adding numbers in unary

Design a TM that accepts {1m#1n#1n+m | m, n ≥ 0}.
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Turning machines more formally

A Turing machine is a structure of the form

M = (Q,A, Γ, s, δ,`, [, t, r)

where

Q is a finite set of states,

A is the input alphabet,

Γ is the tape alphabet which contains A,

s ∈ Q is the start state,

δ : Q × Γ→ Q × Γ× {L,R} is the (deterministic) transition
relation,

`∈ Γ is the left-end marker.

[ ∈ Γ is the blank tape symbol.

t ∈ Q is the accept state.

r ∈ Q is the reject state.
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Configurations, runs, etc. of a Turing machine

A configuration of M is of the form (p, y[ω, n) ∈ Q × Γω × N,
which says “M is in state p, with “non-blank” tape contents
y , and read head positioned at the n-th cell of the tape.

Initial configuration of M on input w is (s,` w[ω, 0).

1-step transition of M: If (p, a)→ (q, b, L) is a transition in δ,
and z(n) = a: then

(p, z , n)
1⇒ (q, snb (z), n − 1).

Similarly, if (p, a)→ (q, b,R) is a transition in δ, and
z(n) = a: then

(p, z , n)
1⇒ (q, snb (z), n + 1).

M accepts w if (s,` w[ω, 0)
∗⇒ (t, z , i), for some z and i .

M rejects w if (s,` w[ω, 0)
∗⇒ (r , z , i), for some z and i .
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Language accepted by a Turing machine

The Turing machine M is said to halt on an input if it
eventually gets into state t or r on the input.

Note that M may not get into either state t or r on a
particular input w . In that case we say M loops on w .

The language accepted by M is denoted L(M) and is the set
of strings accepted by M.

A language L ⊆ A∗ is called recursively enumerable if it is
accepted by some Turing machine M.

A language L ⊆ A∗ is called recursive if it is accepted by some
Turing machine M which halts on all inputs.
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Computability and languages

Notion of a function f : N→ N being “computable”
(informally if we can give a “finite recipe” or “algorithm” to
compute f (n) for a given n.)

We say f is computable if we have a TM M that given ` 0n

as input, outputs 0f (n) on its tape, and halts.

View f as a language

Lf = {(n, f (n)) | n ∈ N}.

Then f is computable iff Lf is recursive.
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