▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Visibly Pushdown Automata

Deepak D'Souza

Department of Computer Science and Automation Indian Institute of Science, Bangalore.

10 November 2016

◆ □ ▶ ◆ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○ ○

Visibly Pushdown Automata

- A sub-class of Pushdown Automata (PDA's) in which pushing/popping from the stack is dictated by input letters.
- Useful properties for verification
 - Closed under operations like union, intersection, complementation, concatentation, Kleene-*.
 - Decidable language inclusion and universality problems.

Example VPA

Example VPA for $\{a^nb^n \mid n \ge 0\}$

$$\Sigma_c = \{a\}$$
$$\Sigma_r = \{b\}$$
$$\Sigma_{int} = \emptyset$$

$$(s, a, p, \bot)$$

 (p, a, p, A)
 (p, b, A, q)
 (q, b, A, q)
 (q, b, \bot, t)

$$F = \{s, t\}.$$

State Diagram of VPA

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Definitions

A VPA over a partitioned alphabet $\widetilde{\Sigma} = (\Sigma_c, \Sigma_r, \Sigma_{int})$ is a structure $M = (Q, Q_0, \Gamma, \bot, \delta, F)$ where Q is a finite set of states, Q_0 is a set of initial states, Γ is a stack alphabet with $\bot \in \Gamma$, F is a set of final states, and δ is the transition relation of the form:

- (p, a, q, A) if $a \in \Sigma_c$ (push transition)
- (p, a, A, q) if $a \in \Sigma_r$ (pop transition)
- (p, a, q) if $a \in \Sigma_{int}$ (internal transition).

Restrictions:

- \perp is never pushed on the stack
- Pop transitions can read ⊥ from the stack but must leave it in place.
- No epsilon transitions

Run of *M* on a word $w = a_1 a_2 \dots a_n$.

Class of languages accepted by VPA's are called Visibly

Pushdown Languages (VPL).

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

◆ □ ▶ ◆ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○ ○

Determinizing VPA's

Let $M = (Q, Q_0, \Gamma, \delta, F)$ be a VPA over $\widetilde{\Sigma}$. We define a new VPA M' as follows:

- Control state is of the form (S, R) where $S \subseteq Q \times Q$ and $R \subseteq Q$.
- Stack symbols will be of the form (S, R, a) where S and R are as above, and a ∈ Σ_c is a call alphabet.

▲□▶ ▲圖▶ ▲匡▶ ★匡▶ = 臣 = のへで

Decision Procedures for VPLs

- Emptiness
- Language inclusion / equivalance
- Universality