

Inductive definitions and Induction

- \mathbb{N} = natural numbers
= $\{0, 1, 2, \dots\}$
- Inductive definition:
 - $0 \in \mathbb{N}$
 - $\forall n \in \mathbb{N}, n+1 \in \mathbb{N}$
- To prove: $\forall n \in \mathbb{N}, P(n)$
- Base case: Prove $P(0)$
- (Weak) Inductive Hypothesis
 - Assume $P(n)$
- Ind. step: Prove $P(n+1)$ using IH

- A^* = strings over a non-empty finite set A
alphabet
- Inductive definition:
 - $\varepsilon \in A^*$
 - $\forall x \in A^*, \forall a \in A, x.a \in A^*$
- To prove: $\forall x \in A^*, P(x)$
- Base case: Prove $P(\varepsilon)$
- (Weak) Inductive Hypothesis
 - Assume $P(x)$
- Ind. step: Prove $\forall a \in A, P(x.a)$ using IH

Example 1

- For any alphabet A , prove that $\forall a \in A, \forall x \in A^*, a.x \in A^*$
- Proof (induction on x):
 - Base case ($x = \varepsilon$): $a.\varepsilon = a = \varepsilon.a$ [property of ε]
 $\in A^*$
 - Inductive step ($x = y.b$ for some $y \in A^*, b \in A$):
 $a.(y.b) = (a.y).b$ [property of $.$]
By IH, $a.y \in A^*$
Hence, $(a.y).b \in A^*$ [by definition of A^*]

Example 2

- Let $A = \{0, 1\}$ and inductively define $f: A^* \rightarrow \mathbb{N}$ as:
 - $f(\varepsilon) = 0$
 - $\forall x \in A^*, f(x.0) = 2f(x) + 1$
 - $\forall x \in A^*, f(x.1) = 2f(x) + 2$
- Prove that $\forall n \in \mathbb{N}, f(0^n) = 2^n - 1$
- Prove that $\forall n \in \mathbb{N}, \exists x \in A^*, f(x) = n$

Try yourself: Prove that f is injective.
(Hence, $\{0, 1\}^*$ is countably infinite)

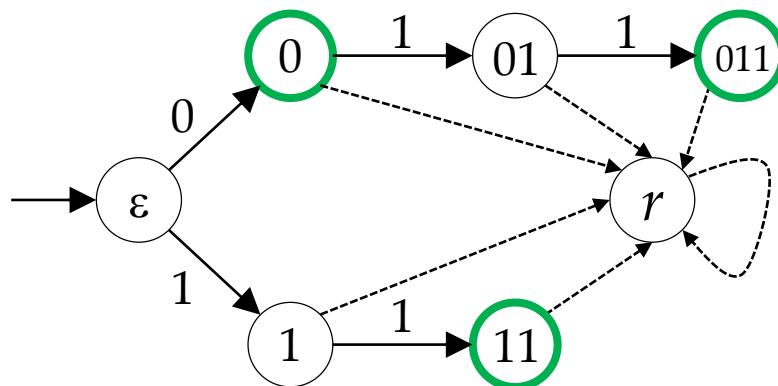
Languages

- A **language** L over the alphabet A is a subset of A^*
 - $\emptyset \subseteq L \subseteq A^*$
- **Claim:** The number of languages over A is uncountably infinite
- **Proof:** Suppose not. Then we can enumerate all languages L_0, L_1, L_2, \dots
Also, we can enumerate all strings x_0, x_1, x_2, \dots
- Define $L_d = \{x_i \mid x_i \notin L_i\}$
- Then, $\forall i \in \mathbb{N}, L_d \neq L_i$, a contradiction

Diagonalization argument

Deterministic Finite Automata (DFA)

- *Example:* Let $A = \{0, 1\}$ and let $L = \{0, 11, 011\}$
- **Question:** Is there a DFA with fewer states that accepts L ?



A Deterministic Finite Automaton (DFA) over alphabet A is a tuple $M = (Q, s, \delta, F)$ where:

- $Q \neq \emptyset$ is a **finite** set of states, $s \in Q, F \subseteq Q$
- $\delta : Q \times A \rightarrow Q$

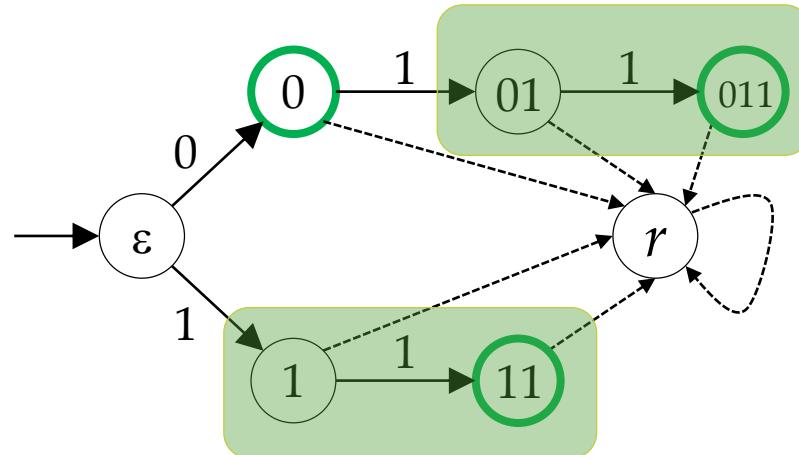
Question: Define $\hat{\delta} : Q \times A^* \rightarrow Q$ inductively

Definition: $L(M) = \{x \in A^* \mid \hat{\delta}(s, x) \in F\}$

Definition: L is regular if \exists DFA M s.t. $L = L(M)$

Deterministic Finite Automata (DFA)

- *Example:* Let $A = \{0, 1\}$ and let $L = \{0, 11, 011\}$
- **Question:** Is there a DFA with fewer states that accepts L ?



A Deterministic Finite Automaton (DFA) over alphabet A is a tuple $M = (Q, s, \delta, F)$ where:

- $Q \neq \emptyset$ is a **finite** set of states, $s \in Q, F \subseteq Q$
- $\delta : Q \times A \rightarrow Q$

Question: Define $\hat{\delta} : Q \times A^* \rightarrow Q$ inductively

Definition: $L(M) = \{x \in A^* \mid \hat{\delta}(s, x) \in F\}$

Definition: L is regular if \exists DFA M s.t. $L = L(M)$

All finite languages are regular

- **Idea:** Generalize the construction in the example. Define

$$pre(L) = \{x \in A^* \mid \exists y \in A^*, x.y \in L\}$$

Observation 1:

$$L \subseteq pre(L)$$

Observation 2:

$$L = \emptyset \Rightarrow pre(L) = \emptyset$$

- **Claim:** If L is finite then $pre(L)$ is finite. Short proof?

- Let $Q = pre(L) \cup \{r\}$, let $F = L$ and $\forall a \in A$, let

$$\delta(r, a) = r$$

$$\forall x \in pre(L), \quad \delta(x, a) = \begin{cases} x.a & \text{if } x.a \in pre(L) \\ r & \text{otherwise} \end{cases}$$

- What about s ?

- **Main claim:** $\forall x \in A^*, x \in L \Leftrightarrow \hat{\delta}(s, x) \in F$

Even if L is not finite, this defines a deterministic automaton (DA), called the “free DA” for L

Lemma

$$\forall x \in A^*, \quad \hat{\delta}(s, x) = \begin{cases} x & \text{if } x \in \text{pre}(L) \\ r & \text{otherwise} \end{cases}$$

- **Base case** ($x = \varepsilon$): True by definition of $\hat{\delta}$ and s
- **Inductive step** ($x = y.a$ for some $y \in A^*$ and some $a \in A$)
 - *Case 1* ($y \in \text{pre}(L)$). By IH, $\hat{\delta}(s, y) = y$. Now apply definition of δ .
 - *Case 2* ($y \notin \text{pre}(L)$). By IH, $\hat{\delta}(s, y) = r$. Now apply definition of δ .
- Back to main claim: $\forall x \in A^*, x \in L \Leftrightarrow \hat{\delta}(s, x) \in F$
 - If $x \in \text{pre}(L)$ then $\hat{\delta}(s, x) = x$ and hence $x \in L \Leftrightarrow \hat{\delta}(s, x) \in F$
 - If $x \notin \text{pre}(L)$ then $\hat{\delta}(s, x) = r$ and both LHS and RHS are false

Not all regular languages are finite

- *Examples:* Strings over $\{a, b\}$ that: contain an odd number of a 's, contain the substring abb , (at least one property/both/exactly one/neither), ...
- For any language $L \subseteq A^*$, define the following **relation** over A^*
$$x \equiv_L y \quad \text{iff} \quad \forall z \in A^*, \quad x.z \in L \Leftrightarrow y.z \in L$$
- **Claim:** \equiv_L is an **equivalence relation**

Example: For $L = \{0, 11, 011\}$,
 $01 \equiv_L 1$, $011 \equiv_L 11$ and $0 \not\equiv_L 11$
- **Theorem (Myhill-Nerode):** L is regular iff \equiv_L has finite **index**

Regular \Rightarrow finite index

- Suppose L is regular i.e., $\exists M = (Q, s, \delta, F)$ such that $L = L(M)$
- **Claim 1:** This is an equivalence relation over A^*
$$x \equiv_M y \quad \text{iff} \quad \hat{\delta}(s, x) = \hat{\delta}(s, y)$$
- **Claim 2:** The index of \equiv_M is at most $|Q|$
- **Claim 3:** \equiv_M **refines** \equiv_L (and hence the index of \equiv_L is at most $|Q|$)
 - *Need to show:* If $\hat{\delta}(s, x) = \hat{\delta}(s, y)$ then $\forall z \in A^*, x.z \in L \Leftrightarrow y.z \in L$
 - *Instead, show:* If $\hat{\delta}(s, x) = \hat{\delta}(s, y)$ then $\forall z \in A^*, \hat{\delta}(s, x.z) = \hat{\delta}(s, y.z)$

Finite index \Rightarrow regular

- Define the DFA $M^* = (Q, s, \delta, F)$ where
 $Q = \{[x] \mid x \in A^*\}$, $s = [\varepsilon]$, $F = \{[x] \mid x \in L\}$
and $\forall [x] \in Q, \forall a \in A, \delta([x], a) = [x.a]$

Note: $[x]$ denotes the equivalence class of x for the relation \equiv_L

- **Claim 4:** δ is well-defined i.e., $\forall x, y \in A^*$,
 $x \equiv_L y \Rightarrow \forall a \in A, x.a \equiv_L y.a$
- **Claim 5:** $\forall x \in A^*, \hat{\delta}(s, x) = [x]$
 - From this, it follows that $L(M^*) = L$ and hence L is regular
- *Note:* From Claim 3, it follows that M^* is a smallest DFA for L

Applications of Myhill-Nerode Thm.

- Let L be any language over alphabet A and let $S \subseteq A^*$ such that

$$\forall x, y \in S, \quad x \equiv_L y \Rightarrow x = y$$

- Application 1:** If L is regular, then any DFA for L has at least $|S|$ states
 - Example:* Let $A = \{a, b\}$ and let L_k be the set of strings whose k^{th} last letter is b . Then any DFA for L_k has at least 2^k states.
- Application 2:** If $|S|$ is infinite, then L is not regular
 - Example:* Let $A = \{a, b\}$ and let L be the set of strings with an unequal number of a 's and b 's. Then L is not regular.

Cross-product construction

- Let $M_1 = (Q_1, s_1, \delta_1, F_1)$ and $M_2 = (Q_2, s_2, \delta_2, F_2)$ be two DFAs
- $\forall F \subseteq Q_1 \times Q_2$, define $M_1 \times M_2(F) = (Q_1 \times Q_2, (s_1, s_2), \delta_1 \times \delta_2, F)$ where $\forall (q_1, q_2) \in Q_1 \times Q_2, \forall a \in A, \quad \delta_1 \times \delta_2((q_1, q_2), a) = (\delta_1(q_1, a), \delta_2(q_2, a))$
- **Claim:** $\forall x \in A^*, \widehat{\delta_1 \times \delta_2}((s_1, s_2), x) = (\widehat{\delta_1}(s_1, x), \widehat{\delta_2}(s_2, x))$
- **Consequence 1:** $L(M_1 \times M_2(F_1 \times F_2)) = L(M_1) \cap L(M_2)$, and hence regular languages are closed under intersection
- **Claim:** For $M = (Q, s, \delta, F)$ let $\bar{M} = (Q, s, \delta, Q - F)$. Then $L(\bar{M}) = \overline{L(M)}$ and hence regular languages are closed under complement
- **Consequence 2:** Regular languages are closed under union

Cross-product construction

- Let $M_1 = (Q_1, s_1, \delta_1, F_1)$ and $M_2 = (Q_2, s_2, \delta_2, F_2)$ be two DFAs
- $\forall F \subseteq Q_1 \times Q_2$, define $M_1 \times M_2(F) = (Q_1 \times Q_2, (s_1, s_2), \delta_1 \times \delta_2, F)$ where $\forall (q_1, q_2) \in Q_1 \times Q_2, \forall a \in A, \quad \delta_1 \times \delta_2((q_1, q_2), a) = (\delta_1(q_1, a), \delta_2(q_2, a))$
- **Claim:** $\forall x \in A^*, \widehat{\delta_1 \times \delta_2}((s_1, s_2), x) = (\widehat{\delta_1}(s_1, x), \widehat{\delta_2}(s_2, x))$
- **Consequence 1:** $L(M_1 \times M_2(F_1 \times F_2)) = L(M_1) \cap L(M_2)$, and hence regular languages are closed under intersection
- **Claim:** For $M = (Q, s, \delta, F)$ let $\bar{M} = (Q, s, \delta, Q - F)$. Then $L(\bar{M}) = \overline{L(M)}$ and hence regular languages are closed under complement
- **Consequence 2:** Regular languages are closed under Direct proof: Choose $F = F_1 \times Q_2 \cup Q_1 \times F_2$

Non-deterministic FA (NFA)

- Replace the transition function $\delta : Q \times A \rightarrow Q$ by either
 - i. A transition function $\Delta : Q \times (A \cup \{\varepsilon\}) \rightarrow 2^Q$ (power set of Q)
 - If $q \in \Delta(p, e)$ then the automaton can go from p to q on input e
 - ii. A transition relation $\Delta \subseteq Q \times (A \cup \{\varepsilon\}) \times Q$
 - If $(p, e, q) \in \Delta$ then the automaton can go from p to q on input e
- Inductive definition of \xrightarrow{x} (can go to on input x)
 - i. $\forall q \in Q, q \xrightarrow{\varepsilon} q$
 - ii. $\forall x \in A^*, \forall e \in A \cup \{\varepsilon\}$, if $p \xrightarrow{x} q$ and q can go to r on input e then $p \xrightarrow{x.e} r$

Non-deterministic FA (NFA)

- Replace the transition function $\delta : Q \times A \rightarrow Q$ by either
 - i. A transition function $\Delta : Q \times (A \cup \{\varepsilon\}) \rightarrow 2^Q$ (power set of Q)
 - If $q \in \Delta(p, e)$ then the automaton can go from p to q on input e
 - ii. A transition relation $\Delta \subseteq Q \times (A \cup \{\varepsilon\}) \times Q$
 - If $(p, e, q) \in \Delta$ then the automaton can go from p to q on input e
- Inductive definition of \xrightarrow{x} (can go to on input x)
 - i. $\forall q \in Q, q \xrightarrow{\varepsilon} q$
 - ii. $\forall x \in A^*, \forall e \in A \cup \{\varepsilon\}$, if $p \xrightarrow{x} q$ and q can go to r on input e then $p \xrightarrow{x} r$

For an NFA $N = (Q, s, \Delta, F)$

$$L(N) = \left\{ x \in A^* \mid \exists q \in F, s \xrightarrow{x} q \right\}$$

NFA-DFA equivalence

- **Theorem:** For any NFA $N = (Q, s, \Delta, F)$ with n states, there is a DFA M with at most 2^n states such that $L(M) = L(N)$
 - **Trivial:** For any DFA M there is an NFA N such that $L(M) = L(N)$

- **Construction:** Let $Q_M = 2^Q$, $S_M = \{q \in Q \mid s \xrightarrow{\varepsilon} q\}$

$$\forall P \in Q_M, \forall a \in A, \quad \delta_M(P, a) = \{q \in Q \mid \exists p \in P, p \xrightarrow{a} q\}$$

$$F_M = \{P \in Q_M \mid P \cap F \neq \emptyset\}$$

- **Claim:** $\forall x \in A^*, \widehat{\delta_M}(S_M, x) = \{q \in Q \mid s \xrightarrow{x} q\}$

Recall: L_k defined over $\{a, b\}$ as strings whose k^{th} last letter is b .

Any DFA for L_k has at least 2^k states, but there is a $k+1$ state NFA for L_k

Additional closure properties (1/2)

- For any two languages L_1 and L_2 over a common alphabet A , define
$$L_1 \cdot L_2 = \{x \cdot y \mid x \in L_1 \text{ and } y \in L_2\}$$
- **Claim:** If L_1 and L_2 are regular then $L_1 \cdot L_2$ is regular
- **Proof sketch:** Suppose $L_1 = L(N_1)$ and $L_2 = L(N_2)$ where
$$N_1 = (Q_1, s_1, \Delta_1, F_1), N_2 = (Q_2, s_2, \Delta_2, F_2) \text{ and } Q_1 \cap Q_2 = \emptyset$$
- Define $N = (Q_1 \cup Q_2, s_1, \Delta, F_2)$ where $\Delta = \Delta_1 \cup \Delta_2 \cup \{(p, \varepsilon, s_2) \mid p \in F_1\}$

Additional closure properties (2/2)

- For any languages L over an alphabet A , define L^* inductively as:
 - i. $\varepsilon \in L^*$
 - ii. $\forall x \in L^*, \forall y \in L, x.y \in L^*$
- **Claim:** If L is regular then L^* is regular
- **Proof sketch:** Suppose $L = L(N)$ where $N = (Q, s, \Delta, F)$
- Define $N' = (Q \cup \{s_0\}, s_0, \Delta', F \cup \{s_0\})$ where
$$\Delta' = \Delta \cup \{(s_0, \varepsilon, s)\} \cup \{(p, \varepsilon, s) | p \in F\}$$

Regular expressions

- Define the set R_A of regular expressions over an alphabet A as:
 - $\emptyset \in R_A; \varepsilon \in R_A; \forall a \in A, a \in R_A$
 - $\forall r_1, r_2 \in R_A, r_1 + r_2 \in R_A$ and $r_1.r_2 \in R_A$
 - $\forall r \in R_A, r^* \in R_A$
- Define language $L(r)$ of regular expressions r as:
 - $L(\emptyset) = \emptyset; L(\varepsilon) = \{\varepsilon\}; \forall a \in A, L(a) = \{a\}$
 - $\forall r_1, r_2 \in R_A, L(r_1 + r_2) = L(r_1) \cup L(r_2)$ and $L(r_1.r_2) = L(r_1).L(r_2)$
 - $\forall r \in R_A, L(r^*) = (L(r))^*$
- **Claim:** $\forall r \in R_A, L(r)$ is regular

