
Inductive definitions and Induction
 N = natural numbers                          

= {0, 1, 2, …}

 Inductive definition:
i. 0  N

ii. n  N,  n+1  N

 To prove: n  N,  P(n)

 Base case: Prove P(0)

 (Weak) Inductive Hypothesis
 Assume P(n)

 Ind. step: Prove P(n+1) using IH

 A* = strings over a non-empty finite 
set A

 Inductive definition:
i.   A*

ii. x  A*, a  A,  x.a  A*

 To prove: x  A*,  P(x)

 Base case: Prove P()

 (Weak) Inductive Hypothesis
 Assume P(x)

 Ind. step: Prove a  A, P(x.a) using 
IH

alphabet



Example 1
 For any alphabet A, prove that a  A, x  A*,  a.x  A*

 Proof (induction on x):

 Base case (x = ):  a. = a = .a [property of ]

 A*

 Inductive step (x = y.b for some y  A*, b  A):

a.(y.b) = (a.y).b [property of .]

By IH, a.y  A*

Hence, (a.y).b  A* [by definition of A*]



Example 2
 Let A = {0, 1} and inductively define f : A* → N as:

i. f() = 0

ii. x  A*,  f(x.0) = 2f(x) + 1

iii. x  A*,  f(x.1) = 2f(x) + 2

 Prove that n  N,  f(0n) = 2n – 1

 Prove that n  N, x  A*,  f(x) = n
Try yourself: Prove that f is injective.
(Hence, {0, 1}* is countably infinite)



Languages
 A language L over the alphabet A is a subset of A*

   L  A*

 Claim: The number of languages over A is uncountably infinite

 Proof: Suppose not. Then we can enumerate all languages L0, L1, L2, … 
Also, we can enumerate all strings x0, x1, x2, …

 Define 𝐿𝑑 = 𝑥𝑖 𝑥𝑖 ∉ 𝐿𝑖
 Then, ∀𝑖 ∈ ℕ, 𝐿𝑑 ≠ 𝐿𝑖, a contradiction

Diagonalization argument



Deterministic Finite Automata (DFA)
 Example: Let A = {0, 1} and let L = {0, 11, 011}

 Question: Is there a DFA with fewer states that accepts L?


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A Deterministic Finite Automaton (DFA) over 
alphabet A is a tuple M = (Q, s, , F) where:
• Q   is a finite set of states, s  Q, F  Q
•  : Q × A → Q
Question: Define መ𝛿: 𝑄 × 𝐴∗ → 𝑄 inductively

Definition: 𝐿 𝑀 = 𝑥 ∈ 𝐴∗ መ𝛿(𝑠, 𝑥) ∈ 𝐹

Definition: L is regular if DFA M s.t. L = L(M)
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All finite languages are regular
 Idea: Generalize the construction in the example. Define

𝑝𝑟𝑒 𝐿 = 𝑥 ∈ 𝐴∗ ∃𝑦 ∈ 𝐴∗, 𝑥. 𝑦 ∈ 𝐿

 Claim: If L is finite then pre(L) is finite. Short proof?

 Let Q = pre(L)  {r}, let F = L and a  A, let
𝛿 𝑟, 𝑎 = 𝑟

∀𝑥 ∈ 𝑝𝑟𝑒 𝐿 , 𝛿 𝑥, 𝑎 = ൜
𝑥. 𝑎
𝑟

 What about s?

 Main claim: ∀𝑥 ∈ 𝐴∗, 𝑥 ∈ 𝐿 ⇔ መ𝛿(𝑠, 𝑥) ∈ 𝐹

Observation 1:
L  pre(L)
Observation 2:
L =  pre(L) = 

if 𝑥. 𝑎 ∈ 𝑝𝑟𝑒(𝐿)
otherwise

Even if L is not finite, this 
defines a deterministic 
automaton (DA), called 
the “free DA” for L



Lemma
∀𝑥 ∈ 𝐴∗, መ𝛿 𝑠, 𝑥 = ൜

𝑥
𝑟

 Base case (x = ): True by definition of መ𝛿 and s

 Inductive step (x = y.a for some y  A* and some a  A)

 Case 1 (y  pre(L)). By IH, መ𝛿 𝑠, 𝑦 = 𝑦. Now apply definition of .

 Case 2 (y  pre(L)). By IH, መ𝛿 𝑠, 𝑦 = 𝑟. Now apply definition of .

 Back to main claim: ∀𝑥 ∈ 𝐴∗, 𝑥 ∈ 𝐿 ⇔ መ𝛿(𝑠, 𝑥) ∈ 𝐹

 If x  pre(L) then መ𝛿 𝑠, 𝑥 = 𝑥 and hence 𝑥 ∈ 𝐿 ⇔ መ𝛿(𝑠, 𝑥) ∈ 𝐹

 If x  pre(L) then መ𝛿 𝑠, 𝑥 = 𝑟 and both LHS and RHS are false

if 𝑥 ∈ 𝑝𝑟𝑒(𝐿)
otherwise



Not all regular languages are finite
 Examples: Strings over {a, b} that: contain an odd number of a’s, contain 

the substring abb, (at least one property/both/exactly one/neither), …

 For any language L  A*, define the following relation over A*
𝑥 ≡𝐿 𝑦 iff ∀𝑧 ∈ 𝐴∗, 𝑥. 𝑧 ∈ 𝐿 ⇔ 𝑦. 𝑧 ∈ 𝐿

 Claim: ≡𝐿 is an equivalence relation

 Theorem (Myhill-Nerode): L is regular iff ≡𝐿 has finite index

Example: For L = {0, 11, 011},
01 ≡𝐿 1, 011 ≡𝐿 11 and 0 ≢𝐿 11



Regular  finite index
 Suppose L is regular i.e., M = (Q, s, , F) such that L = L(M)

 Claim 1: This is an equivalence relation over A*

𝑥 ≡𝑀 𝑦 iff መ𝛿 𝑠, 𝑥 = መ𝛿 𝑠, 𝑦

 Claim 2: The index of ≡𝑀 is at most 𝑄

 Claim 3: ≡𝑀 refines ≡𝐿 (and hence the index of ≡𝐿 is at most 𝑄 )

 Need to show: If መ𝛿 𝑠, 𝑥 = መ𝛿 𝑠, 𝑦 then ∀𝑧 ∈ 𝐴∗, 𝑥. 𝑧 ∈ 𝐿 ⇔ 𝑦. 𝑧 ∈ 𝐿

 Instead, show: If መ𝛿 𝑠, 𝑥 = መ𝛿 𝑠, 𝑦 then ∀𝑧 ∈ 𝐴∗, መ𝛿 𝑠, 𝑥. 𝑧 = መ𝛿 𝑠, 𝑦. 𝑧



Finite index  regular
 Define the DFA M* = (Q, s, , F) where

Q = 𝑥 𝑥 ∈ 𝐴∗ , 𝑠 = 𝜀 , 𝐹 = 𝑥 𝑥 ∈ 𝐿

and ∀ 𝑥 ∈ 𝑄, ∀𝑎 ∈ 𝐴, 𝛿 𝑥 , 𝑎 = 𝑥. 𝑎

 Claim 4:  is well-defined i.e., x, y  A*,
𝑥 ≡𝐿 𝑦 ⇒ ∀𝑎 ∈ 𝐴, 𝑥. 𝑎 ≡𝐿 𝑦. 𝑎

 Claim 5: ∀𝑥 ∈ 𝐴∗, መ𝛿 𝑠, 𝑥 = 𝑥

 From this, it follows that L(M*) = L and hence L is regular

 Note: From Claim 3, it follows that M* is a smallest DFA for L

Note: 𝑥 denotes the 
equivalence class of 
x for the relation ≡𝐿



Applications of Myhill-Nerode Thm.
 Let L be any language over alphabet A and let S  A* such that

∀𝑥, 𝑦 ∈ 𝑆, 𝑥 ≡𝐿 𝑦 ⟹ 𝑥 = 𝑦

 Application 1: If L is regular, then any DFA for L has at least 𝑆 states

 Example: Let A = {a, b} and let Lk be the set of strings whose kth last letter is 
b. Then any DFA for Lk has at least 2k states.

 Application 2: If 𝑆 is infinite, then L is not regular

 Example: Let A = {a, b} and let L be the set of strings with an unequal 
number of a’s and b’s. Then L is not regular.



Cross-product construction
 Let M1 = (Q1, s1, 1, F1) and M2 = (Q2, s2, 2, F2) be two DFAs

 F  Q1 × Q2, define M1 × M2(F) = (Q1 × Q2, (s1, s2), 1 × 2, F) where

∀ 𝑞1, 𝑞2 ∈ 𝑄1 × 𝑄2, ∀𝑎 ∈ 𝐴, 𝛿1 × 𝛿2 𝑞1, 𝑞2 , 𝑎 = 𝛿1 𝑞1, 𝑎 , 𝛿2 𝑞2, 𝑎

 Claim: ∀𝑥 ∈ 𝐴∗, ෣𝛿1 × 𝛿2 𝑠1, 𝑠2 , 𝑥 = ෢𝛿1 𝑠1, 𝑥 ,෢𝛿2 𝑠2, 𝑥

 Consequence 1: L(M1 × M2(F1 × F2)) = L(M1)  L(M2), and hence regular 
languages are closed under intersection

 Claim: For 𝑀 = (𝑄, 𝑠, 𝛿, 𝐹) let ഥ𝑀 = (𝑄, 𝑠, 𝛿, 𝑄 − 𝐹). Then 𝐿 ഥ𝑀 = 𝐿(𝑀)
and hence regular languages are closed under complement

 Consequence 2: Regular languages are closed under union
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languages are closed under intersection

 Claim: For 𝑀 = (𝑄, 𝑠, 𝛿, 𝐹) let ഥ𝑀 = (𝑄, 𝑠, 𝛿, 𝑄 − 𝐹). Then 𝐿 ഥ𝑀 = 𝐿(𝑀)
and hence regular languages are closed under complement

 Consequence 2: Regular languages are closed under union
Direct proof: Choose
𝐹 = 𝐹1 × 𝑄2 ∪ 𝑄1 × 𝐹2



Non-deterministic FA (NFA)
 Replace the transition function  : Q × A → Q by either

i. A transition function  : Q × (A  {}) → 2Q (power set of Q)

 If q  (p, e) then the automaton can go from p to q on input e

ii. A transition relation   Q × (A  {}) × Q

 If (p, e, q)   then the automaton can go from p to q on input e

 Inductive definition of →
𝑥

(can go to on input x)

i. ∀𝑞 ∈ 𝑄, 𝑞→
𝜀
𝑞

ii. ∀𝑥 ∈ 𝐴∗, ∀𝑒 ∈ 𝐴 ∪ 𝜀 , if 𝑝→
𝑥
𝑞 and q can go to r on input e then 𝑝

𝑥.𝑒
𝑟
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For an NFA 𝑁 = 𝑄, 𝑠, ∆, 𝐹

𝐿 𝑁 = 𝑥 ∈ 𝐴∗ ∃𝑞 ∈ 𝐹, 𝑠→
𝑥
𝑞



NFA-DFA equivalence
 Theorem: For any NFA N = (Q, s, , F) with n states, there is a DFA M

with at most 2n states such that L(M) = L(N)

 Trivial: For any DFA M there is an NFA N such that L(M) = L(N)

 Construction: Let 𝑄𝑀 = 2𝑄, 𝑆𝑀 = 𝑞 ∈ 𝑄 𝑠→
𝜀
𝑞

∀𝑃 ∈ 𝑄𝑀, ∀𝑎 ∈ 𝐴, 𝛿𝑀 𝑃, 𝑎 = 𝑞 ∈ 𝑄 ∃𝑝 ∈ 𝑃, 𝑝→
𝑎
𝑞

𝐹𝑀 = 𝑃 ∈ 𝑄𝑀 𝑃 ∩ 𝐹 ≠ ∅

 Claim: ∀𝑥 ∈ 𝐴∗, ෢𝛿𝑀 𝑆𝑀, 𝑥 = 𝑞 ∈ 𝑄 𝑠→
𝑥
𝑞

Recall: Lk defined over {a, b} as strings 
whose kth last letter is b.
Any DFA for Lk has at least 2k states, 
but there is a k+1 state NFA for Lk



Additional closure properties (1/2)
 For any two languages L1 and L2 over a common alphabet A, define 

𝐿1. 𝐿2 = 𝑥. 𝑦 𝑥 ∈ 𝐿1 and 𝑦 ∈ 𝐿2

 Claim: If L1 and L2 are regular then L1.L2 is regular

 Proof sketch: Suppose 𝐿1 = 𝐿 𝑁1 and 𝐿2 = 𝐿 𝑁2 where

𝑁1 = 𝑄1, 𝑠1, ∆1, 𝐹1 , 𝑁2 = 𝑄2, 𝑠2, ∆2, 𝐹2 and 𝑄1 ∩ 𝑄2 = ∅

 Define 𝑁 = 𝑄1 ∪ 𝑄2, 𝑠1, ∆, 𝐹2 where ∆= ∆1 ∪ ∆2 ∪ (𝑝, 𝜀, 𝑠2) 𝑝 ∈ 𝐹1



Additional closure properties (2/2)
 For any languages L over an alphabet A, define L* inductively as:

i.   L*

ii. x  L*, y  L,  x.y  L*

 Claim: If L is regular then L* is regular

 Proof sketch: Suppose 𝐿 = 𝐿 𝑁 where 𝑁 = 𝑄, 𝑠, ∆, 𝐹

 Define 𝑁′ = 𝑄 ∪ 𝑠0 , 𝑠0, ∆
′, 𝐹 ∪ 𝑠0 where

∆′= ∆ ∪ { 𝑠0, 𝜀, 𝑠 } ∪ (𝑝, 𝜀, 𝑠) 𝑝 ∈ 𝐹



Regular expressions
 Define the set RA of regular expressions over an alphabet A as:

i.   RA;   RA; a  A, a  RA

ii. r1, r2  RA,   r1 + r2  RA and  r1.r2  RA

iii. r  RA,   r*  RA

 Define language L(r) of regular expressions r as:

i. L() = ; L() = {}; a  A, L(a) = {a}

ii. r1, r2  RA,   L(r1 + r2) = L(r1)  L(r2)  and  L(r1.r2) = L(r1).L(r2)

iii. r  RA,   L(r*) = (L(r))*

 Claim: r  RA,  L(r) is regular
a
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