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Inductive definitfions and Induction

e N = natural numbers * A* = strings over a non-empty finite
=1{0,1,2, ...} set A alphabet
* Inductive definition: * Inductive definition:
i. 0eN i. eeA*
i. VnelN, ntl e N ii. VxeA*, Vae A, xae A¥
* To prove: Vn € N, P(n) * To prove: Vx € A*, P(x)
® Base case: Prove P(0) ® Base case: Prove P(g)
* (Weak) Inductive Hypothesis * (Weak) Inductive Hypothesis
e Assume P(n) e Assume P(x)
* Ind. step: Prove P(n+1) using 1H * Ind. step: Prove Va € A, P(x.a) using

IH
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Example 1

* For any alphabet A, prove that Va € A, Vx € A*, a.x € A*
* Proof (induction on x):

e Base case (x=¢): a.c=a=¢.a [property of €]
e A*
e Inductive step (x =y.b for some y € A¥, b € A):
a.(y.b) = (a.y).b [property of .]

By lH, a.y € A*
Hence, (a.y).b € A* [by definition of A*]
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Example 2

° Let A=1{0, 1} and inductively define f: A* - N as:
i. fle)=0
ii. VxeA* f(x.0)=2f(x)+1
iii. VxeA* f(x.1)=2f(x)+2

® Prove that Vn e N, f(0")=2"-1

. Try yourself: Prove that fis injective.
* Prove that Vn € N, dx € A*, f(x)=n (Hence, {0, 1}* is countably infinite)
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Languages

* Alanguage L over the alphabet A is a subset of A*
e JcLcA*

* Claim: The number of languages over A is uncountably infinite

* Proof: Suppose not. Then we can enumerate all languages L,, L;, L, ...
Also, we can enumerate all strings x,, x4, x5, ...

® Define L; = {x;|x; & L;} Diagonalization argument
® Then, Vi € N, L; # L;, a contradiction
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Deterministic Finite Automata (DFA)

o Example: Let A=1{0, 1} and let L = {0, 11, 011}
* Question: Is there a DFA with fewer states that accepts L?

A Deterministic Finite Automaton (DFA) over
alphabet A is a tuple M = (Q, s, 9, F) where:

« Q= isa finite set of states, s € Q, Fc O

c 0:0xA—>0Q

Question: Define §: Q x A* = Q inductively
Definition: L(M) = {x € A*|6(s,x) € F}
Definition: L is regular if IDFA M s.t. L = L(M)
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Deterministic Finite Automata (DFA)

o Example: Let A=1{0, 1} and let L = {0, 11, 011}
* Question: Is there a DFA with fewer states that accepts L?

A Deterministic Finite Automaton (DFA) over
alphabet A is a tuple M = (Q, s, 9, F) where:

« Q= isa finite set of states, s € Q, Fc O

c 0:0xA—>0Q

Question: Define §: Q x A* = Q inductively

1N .. s
@_1>@ Definition: L(M) = {x € A*|6(s,x) € F}

Definition: L is regular if IDFA M s.t. L = L(M)
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All finite languages are regular

* Idea: Generalize the construction in the example. Define
pre(L) ={x € A*|Fy € A", x.y € L} Observation 1:
* Claim: If L is finite then pre(L) is finite. Short proof? L cpre(L)

o Let Q=pre(L) v {r},let F=L and Va € A, let ?ES@H:EZI(IL?: o
6(r,a) =r

vx € pre(L), §(x, a) = {x. a ifx.a € pre(L)

r  otherwise

* What about s? s - .
. . R Even if L is not finite, this
® Main claim: Vx € A", x €L © 6(s,x) EF defines a deterministic

automaton (DA), called
the “free DA” for L
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Lemma
§ A x if x € pre(L
VX €A, 8(s,x) = {r otherv)\iise( )

* Base case (x = ¢): True by definition of § and s
* Inductive step (x =y.a for some y € A* and somea € A)

o Case 1 (y € pre(L)). By IH, 5(s,y) = y. Now apply definition of 3.

e Case 2 (y & pre(L)). By IH, 5(s,y) = r. Now apply definition of 8.
e Back to main claim: Vx € A", x € L & S(s, x) EF

o If x € pre(L) then 6(s,x) = x and hence x € L © §(s,x) EF

o If x ¢ pre(L) then 6(s,x) = r and both LHS and RHS are false
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Not all regular languages are finite

* Examples: Strings over {a, b} that: contain an odd number of a’s, contain
the substring abb, (at least one property/both/exactly one/neither), ...

* For any language L ¢ A*, define the following relation over A*
x=py iff VzeAr, X.ZELS y.z€L

. : , , Example: For L = {0, 11, 011},
* Claim: =; is an equivalence relation 01=, 1, 011 =, 11and 0 %, 11

* Theorem (Muyhill-Nerode): L is regular iff =; has finite index
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Regular = finite iIndex

® Suppose L is regular i.e., IM = (Q, s, 6, F) such that L = L(M)

* Claim 1: This is an equivalence relation over A*
x=yy iff 6(s,x) =086(s,y)
* Claim 2: The index of =, is at most |Q|
e Claim 3: =, refines =; (and hence the index of =; is at most |Q])
o Need to show: If §(s,x) = §(s,y) thenVz € A*, x.zEL & y.z€L
o Instead, show: If §(s,x) = 6(s,y) then Vz € 4%, §(s,x.2) = §(s,y.2)
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FiInite iIndex = regular

. * —
® Define the DFA M* = (Q, s, §, F) where Note: [x] denotes the

Q={lx]|xeA},s=le], F={lx] [ x €L} equivalence class of
and V[x] € Q,Va € 4, §([x],a) = [x.a] x for the relation =;

* Claim 4: d is well-defined i.e., Vx, y € A¥,
X =;y=>Vae€A, xX.a=py.a
e Claim 5: Vx € 4%, 6(s,x) = [x]
e From this, it follows that L(M*) = L and hence L is regular
e Note: From Claim 3, it follows that M* is a smallest DFA for L
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Applications of Myhill-Nerode Thm.

* Let L be any language over alphabet A and let S ¢ A* such that
Vx,y €S, X=EYy=>X=Y

* Application 1: If L is regular, then any DFA for L has at least |S| states

o Example: Let A = {a, b} and let L, be the set of strings whose k' last letter is
b. Then any DFA for L, has at least 2* states.

* Application 2: If |S] is infinite, then L is not regular

e Example: Let A = {a, b} and let L be the set of strings with an unequal
number of a’s and b’s. Then L is not regular.
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Cross-product construction

° Let M, =(Qy, 51, 0y, F1) and M, =(Q,, s,, 0,, F,) be two DFAs

o VF c Q; x Q,, define M; x M,(F) = (Q; x Q,, (51, 55), 01 X 0,, F) where
V(q1,92) € Q1 X Q2,Va € 4, 81 % 82((q1,q2), a) = (61(q1, @), 82(q2, @)
¢ Claim: Vx € A*,51/><\62((51,52),x) = (a(sl,x),@(sz,x))

* Consequence 1: L(M; x M,(F; x F,)) = L(M;) N L(M,), and hence regular

languages are closed under intersection

e Claim: For M = (Q,s,58,F) letM = (Q,s,5,Q — F). Then L(M) = L(M)
and hence regular languages are closed under complement

* Consequence 2: Regular languages are closed under union
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Cross-product construction

° Let M, =(Qy, 51, 0y, F1) and M, =(Q,, s,, 0,, F,) be two DFAs
o VF < Q x Q,, define M; x M,(F) = (Q x Q,, (51, S), 8; x ,, F) where
V(q1,q2) € Q1 X Q,Va € 4, 9; X 52(((11; q2), a) = (51(611; a), 6,(q>, a))

* Claim: Vx € A%, 6; X 52((51;52);X) = (8;(51;35);8;(52;35))

* Consequence 1: L(M; x M,(F; x F,)) = L(M;) N L(M,), and hence regular
languages are closed under intersection
e Claim: For M = (Q,s,58,F) letM = (Q,s,5,Q — F). Then L(M) = L(M)

nd hence regular lan r et
and hence regular languages are closed under comp] Direct proof: Choose

* Consequence 2: Regular languages are closed under g =F, x 0, U Q; X F,
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Non-deterministic FA (NFA)

* Replace the transition function 8 : Q x A — Q by either

i. Atransition function A: Q x (A U {g}) > 2¢ (power set of Q)
e If g € A(p, e) then the automaton can go from p to g on inpute

ii. A transition relation Ac Q x (AU {g}) x Q
e If (p, e, q) € A then the automaton can go from p to g on input e

X
* Inductive definition of — (can go to on input x)

L VgEQ q—g
ii. VxEA*,VeEAU{s},ifpiqandqcangotoroninputethenpx—'ir
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Non-deterministic FA (NFA)

* Replace the transition function 8 : Q x A — Q by either

i. Atransition function A: Q x (A U {g}) > 2¢ (power set of Q)
e If g € A(p, e) then the automaton can go from p to g on inpute

ii. A transition relation Ac Q x (A U {eg}) x Q
e If (p, ¢, q) € A then the automaton can go from p to g on input e
X
* Inductive definition of — (can go to on input x)

&E
i. VgqeaQ, qg—-q For an NFA N = (Q, s, A F)
dg € F, Siq}

ii. Vx € A* Ve € AU {¢&}, ifpiq and g can go- L(N) ={xEA*
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NFA-DFA equivalence

* Theorem: For any NFA N = (Q, s, A, F) with n states, there is a DFA M
with at most 2" states such that L(M) = L(N)

e Trivial: For any DFA M there is an NFA N such that L(M) = L(N)
&
e Construction: Let Q,, = 29 Sy = {q = Q‘S N q}

VP EQu.YaEA,  Sy(P,a)={qeQlapeP.p>q}

Recall: L, defined over {a, b} as strings
whose kth last letter is b.

e Claim: Vx € A%, gl\\/l(SM, xX) = {q €0 ‘S ﬁ) q} Any DFA for L, has at least 2* states,
but there is a k+1 state NFA for L,
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Additional closure properties (1/2)

* For any two languages L, and L, over a common alphabet A, define
Li.L, ={x.y|lx € Lyand y € L,}

® Claim: If L, and L, are regular then L;.L, is regular

* Proof sketch: Suppose L; = L(N;) and L, = L(N,) where
Ny = (Q1,51,A1,F1), Ny = (Q2,82,4,, F;)and Q; N Q, = @

® Define N = (Q; U Q,,s{,A F,) where A=A, UA, U{(p,&,S,)|p € F;}
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Additional closure properties (2/2)

* For any languages L over an alphabet A, define L* inductively as:
i. eel”

ii. Vxel*,Vyel, xyel®
* Claim: If L is regular then L* is regular

* Proof sketch: Suppose L = L(N) where N = (Q,s,A, F)
® Define N' = (Q U {sy},So,A", F U {sy}) where
A'=AU{(sg,&5)}U{(p & s)|p €F}
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Reqgular expressions

* Define the set R, of regular expressions over an alphabet A as:
i. DeRyeeR,;VaeA aeR,
ii. Vr,r,eR, 1 tr,eR, and r.r, € Ry
iii. Vre R, 1r"eR,

* Define language L(r) of regular expressions r as: >Q .
i, L(D)=0;L(e)={e}; Va € A, L(a) = {a} - Q/
ii. Vry,r,e R, L(ry+r,)=L(ry) v L(r, and L(ry.r,)=L(ry).L(r,) |~

i VreR, L) =(L)* T 8 :
e Claim: Vr € R,, L(r) is regular ><K/Q p >Q/ %
O >0 >XO0*+0 ‘7O : ¢




