Minimizing DFA

• We had constructed the following DFA for the language $L = \{0, 11, 011\}$

• We want an efficient algorithm to minimize DFAs

Recap of Myhill-Nerode Theorem

- For any language $L \subseteq A^*$, define the following relation over A^* $x \equiv_L y$ iff $\forall z \in A^*$, $x.z \in L \Leftrightarrow y.z \in L$
- **Theorem** (*Myhill-Nerode*): *L* is regular iff \equiv_L has finite index
- **Key Lemma** (Claim 3 in earlier lecture): If $\exists M = (Q, s, \delta, F)$ such that L(M) = L then \equiv_M refines \equiv_L , where $x \equiv_M y$ iff $\hat{\delta}(s, x) = \hat{\delta}(s, y)$
- Prove that if $x \equiv_M y$ then $\forall z \in A^*$, $\hat{\delta}(s, x, z) = \hat{\delta}(s, y, z)$
 - Proof by induction on z

Inductive proof

- If $x \equiv_M y$ then $\forall z \in A^*$, $\hat{\delta}(s, x, z) = \hat{\delta}(s, y, z)$
- Base case $(z = \varepsilon)$: By definition, if $x \equiv_M y$ then $\hat{\delta}(s, x, \varepsilon) = \hat{\delta}(s, y, \varepsilon)$
- Inductive step $(z = w.a \text{ for some } w \in A^*, a \in A)$: Suppose $x \equiv_M y$.
- Now, $\hat{\delta}(s, x.z) = \hat{\delta}(s, x.(w.a)) = \delta(\hat{\delta}(s, x.w), a)$ and $\hat{\delta}(s, y.z) = \hat{\delta}(s, y.(w.a)) = \delta(\hat{\delta}(s, y.w), a)$
- By the IH, $\hat{\delta}(s, x, w) = \hat{\delta}(s, y, w)$
- Since δ is well-defined, the result holds.

Induced equivalences on DA states

- Let $M = (Q, s, \delta, F)$ be a DA for $L \subseteq A^*$ with no unreachable states
 - $\forall q \in Q, \exists x_q \in A^*$ such that $\hat{\delta}(s, x_q) = q$ "Two states are L-equivalent iff their
- Define this equivalence over *Q*:

 $p \approx_L q$ iff $\forall x, y \in A^*$ such that $\hat{\delta}(s, x) = p$ and $\hat{\delta}(s, y) = q$, $x \equiv_L y$

- Claim 1: The mapping $f([x]_{\equiv_L}) = [\hat{\delta}(s,x)]_{\approx_I}$ is a bijection
- Proof:
 - Well-defined
 - Injective
 - Surjective

Corollary 1: *L* is regular iff \approx_L has finite index

access strings are L-equivalent"

Corollary 2: This is a canonical DA for *L*:

$$Q^* = \{ [q]_{\approx_L} | q \in Q \}; F^* = \{ [q]_{\approx_L} | q \in F \}$$

$$s^* = [s]_{\approx_I}; \forall a \in A, \, \delta^* ([q]_{\approx_I}, a) = [\delta(q, a)]_{\approx_I}$$

A family of equivalences

- *Example*: Let $L \subseteq \{a, b\}^*$ be strings with an equal number of a's and b's
 - Not regular
- DA for L:

A family of equivalences

- *Example*: Let $L \subseteq \{a, b\}^*$ be strings with an equal number of a's and b's
 - Not regular
- DA for *L*:

A family of equivalences

- $\forall n \in \mathbb{N}$, define these equivalences over Q:
 - $p \approx_n q$ iff $\forall x, y, z \in A^*$ such that $\hat{\delta}(s, x) = p$, $\hat{\delta}(s, y) = q$ and $|z| \le n$, $\hat{\delta}(s, x, z) \in F \Leftrightarrow \hat{\delta}(s, y, z) \in F$
- Claim 2: $\forall n \in \mathbb{N}, \approx_{n+1} \text{ refines } \approx_n$
- Claim 3: $\forall n \in \mathbb{N}, \approx_L \text{ refines } \approx_n$
- Claim 4: $\forall n \in \mathbb{N}, \approx_n \text{ has finite index}$
- Claim 5: If \approx_{n+1} is the same as \approx_n for some $n \in \mathbb{N}$, then \approx_L and \approx_n are identical (and hence L is regular)

Proof of Claim 5

- Suppose \approx_{n+1} is the same as \approx_n for some $n \in \mathbb{N}$ and let $p \approx_n q$
- To show: $p \approx_L q$ i.e., $\forall x, y, z \in A^*$ such that $\hat{\delta}(s, x) = p$ and $\hat{\delta}(s, y) = q$ $x, z \in L$ iff $y, z \in L$
- **Lemma**: Suppose $\hat{\delta}(s, x) \approx_n \hat{\delta}(s, y)$ for some $x, y \in A^*$. Then $\forall z \in A^*$ $\hat{\delta}(s, x, z) \approx_n \hat{\delta}(s, y, z)$
- *Base case* ($z = \varepsilon$): Trivially true
- Inductive step (z = w.a): By the IH, $\hat{\delta}(s, x.w) \approx_n \hat{\delta}(s, y.w)$
- Suppose $\hat{\delta}(s,(x.w).a) \not\approx_n \hat{\delta}(s,(y.w).a)$
- So $\exists u \in A^*$ such that $|u| \le n$ and $\hat{\delta}(s, (x, w), a, u) \in F \text{ XOR } \hat{\delta}(s, (y, w), a, u) \in F$
- Since $|a.u| \le n+1$, it follows that $\hat{\delta}(s,x,w) \not\approx_{n+1} \hat{\delta}(s,y,w)$, a contradiction

DFA minimization algorithm

- Let $M = (Q, s, \delta, F)$ be a DFA for a regular language L
 - 1. Remove all unreachable states
 - 2. $\forall p, q \in Q$, initialize $W[p, q] := (p \in F \text{ XOR } q \in F)$
 - 3. Repeat from i := 0

Loop invariant: $\forall p, q \in Q$, W[p, q] iff $p \approx_i q$

- a) $\forall p, q \in Q$ such that W[p, q] is *false* but $W[\delta(p, a), \delta(q, a)]$ is *true* for some a
 - Set W[p, q] := true
- b) Increment *i*
- 4. Until *W*[] no longer changes
- 5. Merge all states p, q such that W[p, q] is false

Result: Canonical and minimized DFA

Polynomial run-time

Apply to this example

	0	1	01	11	011	r
3	V	1	V	V	V	V
0		V	V	1	1	V
1				V	V	1
01				V	V	1
11						V
011						V

• Hence state-1 \approx_L state-01 and state-11 \approx_L state-011

Recap: cross-product construction

- Let $M_1 = (Q_1, s_1, \delta_1, F_1)$ and $M_2 = (Q_2, s_2, \delta_2, F_2)$ be two DFAs
- $\forall F \subseteq Q_1 \times Q_2$, define $M_1 \times M_2(F) = (Q_1 \times Q_2, (s_1, s_2), \delta_1 \times \delta_2, F)$ where $\forall (q_1, q_2) \in Q_1 \times Q_2, \forall a \in A, \quad \delta_1 \times \delta_2((q_1, q_2), a) = (\delta_1(q_1, a), \delta_2(q_2, a))$
- Claim: $\forall x \in A^*, \widehat{\delta_1 \times \delta_2}((s_1, s_2), x) = (\widehat{\delta_1}(s_1, x), \widehat{\delta_2}(s_2, x))$
- *Applications*: There are efficient algorithms for these problems
 - 1. Given two DFAs M_1 and M_2 , determine whether $L(M_1) \subseteq L(M_2)$
 - 2. Given two DFAs M_1 and M_2 , determine whether $L(M_1) = L(M_2)$
 - 3. Given DFA M and NFA N, determine whether $L(N) \subseteq L(M)$