Pumping Lemma for CFLs

- **Recall**: If *L* is a regular language, then all **sufficiently long** strings in *L* can be **pumped** to create new strings in *L*
 - *Key idea*: Finite states + Pigeonhole Principle ⇒ repeated state in sequence of visited states
- If *L* is a context-free language, then all **sufficiently long** strings in *L* can be **pumped** to create new strings in *L*
 - *Key idea*: Finite set of non-terminals + finitely many terminals in each rule + Pigeonhole Principle ⇒ repeated non-terminal in derivation of long strings

More formally...

- *Traditional version*: For any CFG G = (N, A, S, P) there is an integer n such that all strings $w \in L(G)$ with $|w| \ge n$ have such a derivation: $S \Rightarrow^* u.X.v \Rightarrow^* u.x.X.y.v \Rightarrow^* u.x.z.y.v = w$ (where |x.y| > 0 and $|x.z.y| \le n$)
- **Proof sketch**: There are finitely many rules, and each produces finitely many terminals. Hence, *G* can generate very long strings only with very deep parse trees, which must have some repeated non-terminal *X* on the deepest root-to-leaf path (by the Pigeonhole Principle)
- *Stronger version*: For any CFG G = (N, A, S, P) there is an integer n such that $\forall k \geq 1$, all strings $w \in L(G)$ with $|w| \geq n^k$ have such a derivation:

$$S \Rightarrow^* u.X.v \Rightarrow^* u.x_1.X.y_1.v \Rightarrow^* u.x_1.x_2.X.y_2.y_1.v \Rightarrow^* \dots \Rightarrow^* \qquad \text{where each } |x_i.y_i| > 0 \text{ and } u.x_1.x_2.\dots.x_k.X.y_k.\dots.y_2.y_1.v \Rightarrow^* u.x_1.x_2.\dots.x_k.z.y_k.\dots.y_2.y_1.v = w \qquad |x_1 \cdots x_k.z.y_k \cdots y_1| \le n^k$$

Parikh's Theorem

- **Theorem [1961/1966]**: If concatenation ('.' operation) is commutative, then all context-free languages are regular.
 - The languages $\{a^n, b^n | n \ge 0\}$ and $\{(ab)^n | n \ge 0\}$ are "letter equivalent"
- Corollary: If $L \subseteq A^*$ and A is a singleton, then L is regular iff L is context-free
- Original proof involves a complicated rearrangement of parse trees
 - [J. ACM 1966 eds] "...among the most fundamental yet subtly difficult to prove in the theory [of context-free languages]"
 - [Lindqvist] "...it is remarkable that Parikh came up with the idea of the proof, since the exact conditions controlling the structures of the trees [...] are non-trivial, in the sense that it is not obvious that those conditions must hold."

Simplified proof [Goldstine, 1977]

- L = L(G) where G = (N, A, S, P). Let n be the number from the strong PL.
- For every $U \subseteq N$ such that $S \in U$, let L_U be the subset of L that can be derived from S using exactly the non-terminals in U
- Clearly $L = \bigcup_{U \subseteq N} L_U$
- Define:

$$C = \{ w \in L_U \mid |w| < n^{|U|} \}$$
 and $D = \{ x, y \mid 0 < |x, y| \le n^{|U|} \text{ and } X \Rightarrow^* x, X, y \text{ for some } X \in U \}$

- Note that both *C* and *D* are finite (and hence regular)
- We will show that L_U is letter equivalent to $C.D^*$

Proof (part 1, easy)

- Let $w \in C.D^*$. If $w \in C$ then $w \in L_U$
- Otherwise, $w = w_0.s$ where $w_0 \in C.D^*$ and $s \in D$ $(s \neq \varepsilon)$
- Hence s = x.y where $X \Rightarrow^* x.X.y$ for some $X \in U$
- Since w_0 is shorter than w, by IH w_0 is letter-equivalent to some $w' \in L_U$
- Hence $S \Rightarrow^* w'$ by a derivation that includes every non-terminal in U, including X i.e., $S \Rightarrow^* u.X.v \Rightarrow^* u.z.v = w'$
- Hence $S \Rightarrow^* u.X.v \Rightarrow^* u.x.X.y.v$ which is letter-equivalent to w'.x.y, which in turn is letter-equivalent to $w_0.s = w$

Proof (part 2, tricky)

- Let $w \in L_U$. If $|w| < n^{|U|}$ then $w \in C \subseteq C.D^*$
- Else by the strong PL: $S \Rightarrow_{d_0}^* u.X.v \Rightarrow_{d_1}^* u.x_1.X.y_1.v \Rightarrow_{d_2}^* u.x_1.x_2.X.y_2.y_1.v \dots$ $\Rightarrow_{d_{|U|}}^* u.x_1.x_2....x_{|U|}.X.y_{|U|}....y_2.y_1.v \Rightarrow_{d_{|U|+1}}^* w$
 - where $X \in U$ and each $x_i.y_i \in D$
- *Crucial observation*: At least one of the sub-derivations $d_1, d_2, ..., d_{|U|}$ does not introduce any new non-terminals into the derivation
- Drop this sub-derivation d_i to generate a shorter string in L_U that is letter-equivalent to $w' \in C.D^*$ (IH)
- Now w and $w'.x_i.y_i$ are letter-equivalent and the latter is in $C.D^*$

Non-CFLs

- The language $\{a^{2^n}|n \ge 0\}$ is not a CFL
- The language $L_{\text{double}} = \{x. x \mid x \in \{a, b\}^*\}$ is not a CFL
- **Proof**: Suppose it is. Let n be the number from the (weak) PL and consider the string $w = 0^n.1^n.0^n.1^n \in L_{\text{double}}$
- Then $S \Rightarrow^* u.X.v \Rightarrow^* u.x.X.y.v \Rightarrow^* u.x.z.y.v = w$ (where |x,y| > 0 and $|x,z,y| \le n$)
- Argue based on whether *x* and *y* belong entirely within the same "block", entirely within adjacent "blocks", or if they span "blocks"
 - Repeat or eliminate a sub-derivation to generate a string $\notin L_{\text{double}}$

CFL closure under complement?

• Show that $\overline{L_{\text{double}}} = \{y \in \{a, b\}^* \mid \forall x \in \{a, b\}^*, y \neq x, x\}$ is a CFL

• **Observation 1**: Strings in $\overline{L_{\text{double}}}$ either have odd length or look like:

(or a and b swapped) where |u| = |x| and |v| = |y|

• **Observation 2**: The above strings also look like:

	и	а	χ	v	b	y
--	---	---	--------	---	---	---