% - e
|
Pumping Lemma for CFLs

* Recall: If L is a regular language, then all sufficiently long strings in L
can be pumped to create new strings in L

e Key idea: Finite states + Pigeonhole Principle = repeated state in sequence
of visited states

o If L is a context-free language, then all sufficiently long strings in L can
be pumped to create new strings in L

e Key idea: Finite set of non-terminals + finitely many terminals in each rule +
Pigeonhole Principle = repeated non-terminal in derivation of long strings

—
|
More formally...

* Traditional version: For any CFG G = (N, A, S, P) there is an integer n
such that all strings w € L(G) with [w| = n have such a derivation:

S=>%uXov=>"ux.Xyov="uxzyv=w (where |x.y| > 0and |x.z.y| < n)

* Proof sketch: There are finitely many rules, and each produces finitely
many terminals. Hence, G can generate very long strings only with very
deep parse trees, which must have some repeated non-terminal X on
the deepest root-to-leaf path (by the Pigeonhole Principle)

o Stronger version: For any CFG G = (N, A, S, P) there is an integer n such
that Vk > 1, all strings w € L(G) with |w| = n* have such a derivation:

S =" uXv =" ux Xy.0 =% ux; x5 XY y.0 =7 0= where each |x;.y;| > 0 and
UXP Koo oo X XYoo Y Y120 = UXXge oo o X Z Yo Yo Y1 O =W X X 2. Y Y1 | S 0

——
|
Parikh's Theorem

* Theorem [1961/1966]: If concatenation (*.” operation) is commutative, then all
context-free languages are regular.

e The languages {a™.b"|n = 0} and {(ab)"|n = 0} are “letter equivalent”
* Corollary: If L ¢ A* and A is a singleton, then L is regular iff L is context-free

* Original proof involves a complicated rearrangement of parse trees

e [J. ACM 1966 eds] “...among the most fundamental yet subtly ditficult to prove in
the theory [of context-free languages]”

e [Lindqvist] “...it is remarkable that Parikh came up with the idea of the proof,
since the exact conditions controlling the structures of the trees [...] are non-
trivial, in the sense that it is not obvious that those conditions must hold.”

% : H—
|
Simplified proof [Goldstine, 19/7]

° [=L(G) where G= (N, A, S, P). Let n be the number from the strong PL.

* For every U < N such that S € U, let L; be the subset of L that can be
derived from S using exactly the non-terminals in U

® Clearly L = Uycy Ly
* Define:
C={welLy|lwl <n!l}and
D = {x.y | 0 < |x.y| <nlYland X =* x.X.y forsome X € U}
* Note that both C and D are finite (and hence regular)
* We will show that L;; is letter equivalent to C.D*

——
|
Proof (part 1, easy)

o Letwe CD"Itwe Cthenw € L

® Otherwise, w =w,.s where w, € C.D*ands € D (s #¢)

* Hence s = x.y where X = x.X.y for some X € U

* Since w, is shorter than w, by IH w, is letter-equivalent to some w’ € L;;

* Hence S = w’ by a derivation that includes every non-terminal in U,
including X i.e., S =" u.Xv=>%uzovo=u’

* Hence S =% u.X.v =" u.x.X.y.v which is letter-equivalent to w’.x.y,
which in turn is letter-equivalent to w,.s = w

——
|
Proof (part 2, tricky)

e Letwe L, If |lw]| < nlVl then w e C c C.D*
* Else by the strong PL: S =, u.X.0 =5 u.x. X.y;.0 =g, u.X1.%0.XYo.Y1.0 ...

X
Sy UX1Xpeeeee X XYy YoYp.0 S dyen W

where X € U and each x,.y; € D

® Crucial observation: At least one of the sub-derivations d,, d,, ..., d,
does not introduce any new non-terminals into the derivation

* Drop this sub-derivation d; to generate a shorter string in L;; that is
letter-equivalent to w” € C.D* (IH)

* Now w and w'’.x,.y; are letter-equivalent and the latter is in C.D*

—
|
Non-CFLs

e The language {a?"|n > 0} is not a CFL

* The language L4, = 1x-x | x € {a, b}"} is not a CFL

* Proof: Suppose it is. Let n be the number from the (weak) PL and
consider the string w = 0".1".0".1" € L;,pe

°* Then § =" u.Xv =>* ux.Xyvo=>"uxzyv=w
(where |x.y| > 0 and |x.z.y| < n)

* Argue based on whether x and y belong entirely within the same
“block”, entirely within adjacent “blocks”, or if they span “blocks”

e Repeat or eliminate a sub-derivation to generate a string ¢ L, e

. B
|
CFL closure under complemente

e Show that Lyouple = {1y €{a, b} | Vx € {a,b}*,y # x.x}is a CFL

* Observation 1: Strings in Lgoyunie €ither have odd length or look like:

U a v X b Y

(or a and b swapped) where |u| = [x| and |v]| = |y|
* Observation 2: The above strings also look like:

U a X v b Y

