
Pumping Lemma for CFLs
 Recall: If L is a regular language, then all sufficiently long strings in L

can be pumped to create new strings in L

 Key idea: Finite states + Pigeonhole Principle  repeated state in sequence 
of visited states

 If L is a context-free language, then all sufficiently long strings in L can 
be pumped to create new strings in L

 Key idea: Finite set of non-terminals + finitely many terminals in each rule + 
Pigeonhole Principle  repeated non-terminal in derivation of long strings



More formally…
 Traditional version: For any CFG G = (N, A, S, P) there is an integer n

such that all strings w  L(G) with 𝑤 ≥ 𝑛 have such a derivation:
S * u.X.v * u.x.X.y.v * u.x.z.y.v = w (where 𝑥. 𝑦 > 0 and 𝑥. 𝑧. 𝑦 ≤ 𝑛)

 Proof sketch: There are finitely many rules, and each produces finitely 
many terminals. Hence, G can generate very long strings only with very 
deep parse trees, which must have some repeated non-terminal X on 
the deepest root-to-leaf path (by the Pigeonhole Principle)

 Stronger version: For any CFG G = (N, A, S, P) there is an integer n such 
that k  1, all strings w  L(G) with 𝑤 ≥ 𝑛𝑘 have such a derivation:
S * u.X.v * u.x1.X.y1.v * u.x1.x2.X.y2.y1.v * … * 
u.x1.x2.….xk.X.yk…..y2.y1.v * u.x1.x2.….xk.z.yk…..y2.y1.v = w

where each 𝑥𝑖 . 𝑦𝑖 > 0 and 
𝑥1⋯𝑥𝑘 . 𝑧. 𝑦𝑘⋯𝑦1 ≤ 𝑛𝑘



Parikh’s Theorem
 Theorem [1961/1966]: If concatenation (‘.’ operation) is commutative, then all 

context-free languages are regular.

 The languages 𝑎𝑛. 𝑏𝑛 𝑛 ≥ 0 and (𝑎𝑏)𝑛 𝑛 ≥ 0 are “letter equivalent”

 Corollary: If L  A* and A is a singleton, then L is regular iff L is context-free

 Original proof involves a complicated rearrangement of parse trees

 [J. ACM 1966 eds] “…among the most fundamental yet subtly difficult to prove in 
the theory [of context-free languages]”

 [Lindqvist] “…it is remarkable that Parikh came up with the idea of the proof, 
since the exact conditions controlling the structures of the trees […] are non-
trivial, in the sense that it is not obvious that those conditions must hold.”



Simplified proof [Goldstine, 1977]
 L = L(G) where G = (N, A, S, P). Let n be the number from the strong PL.

 For every U  N such that S  U, let LU be the subset of L that can be 
derived from S using exactly the non-terminals in U

 Clearly 𝐿 = 𝑈⊆𝑁ڂ 𝐿𝑈
 Define:

𝐶 = 𝑤 ∈ 𝐿𝑈 𝑤 < 𝑛 𝑈 and

𝐷 = 𝑥. 𝑦 0 < 𝑥. 𝑦 ≤ 𝑛 𝑈 and 𝑋 ⇒∗ 𝑥. 𝑋. 𝑦 for some 𝑋 ∈ 𝑈

 Note that both C and D are finite (and hence regular)

 We will show that LU is letter equivalent to C.D*



Proof (part 1, easy)
 Let w  C.D*. If w  C then w  LU

 Otherwise, w = w0.s where w0  C.D* and s  D (s  )

 Hence s = x.y where X * x.X.y for some X  U

 Since w0 is shorter than w, by IH w0 is letter-equivalent to some w’  LU

 Hence S * w’ by a derivation that includes every non-terminal in U, 
including X i.e., S * u.X.v * u.z.v = w’

 Hence S * u.X.v * u.x.X.y.v which is letter-equivalent to w’.x.y, 
which in turn is letter-equivalent to w0.s = w



Proof (part 2, tricky)
 Let w  LU. If 𝑤 < 𝑛 𝑈 then w  C  C.D*

 Else by the strong PL: S ⇒𝑑0
∗ u.X.v ⇒𝑑1

∗ u.x1.X.y1.v ⇒𝑑2
∗ u.x1.x2.X.y2.y1.v … 

⇒𝑑 𝑈

∗ u.x1.x2.….x|U|.X.y|U|…..y2.y1.v ⇒𝑑 𝑈 +1

∗ w

where X  U and each xi.yi  D

 Crucial observation: At least one of the sub-derivations d1, d2, …, d|U|

does not introduce any new non-terminals into the derivation

 Drop this sub-derivation di to generate a shorter string in LU that is 
letter-equivalent to w’  C.D*  (IH)

 Now w and w’.xi.yi are letter-equivalent and the latter is in C.D*



Non-CFLs
 The language 𝑎2

𝑛
𝑛 ≥ 0 is not a CFL

 The language Ldouble = 𝑥. 𝑥 𝑥 ∈ {𝑎, 𝑏}∗ is not a CFL

 Proof: Suppose it is. Let n be the number from the (weak) PL and 
consider the string w = 0n.1n.0n.1n  Ldouble

 Then S * u.X.v * u.x.X.y.v * u.x.z.y.v = w

(where 𝑥. 𝑦 > 0 and 𝑥. 𝑧. 𝑦 ≤ 𝑛)

 Argue based on whether x and y belong entirely within the same 
“block”, entirely within adjacent “blocks”, or if they span “blocks”

 Repeat or eliminate a sub-derivation to generate a string  Ldouble



CFL closure under complement?
 Show that 𝐿double = 𝑦 ∈ 𝑎, 𝑏 ∗ ∀𝑥 ∈ 𝑎, 𝑏 ∗, 𝑦 ≠ 𝑥. 𝑥 is a CFL

 Observation 1: Strings in 𝐿double either have odd length or look like:

(or a and b swapped) where 𝑢 = 𝑥 and 𝑣 = 𝑦

 Observation 2: The above strings also look like:

u a v x b y

u a x v b y


