CFL closure under complement?

- Show that $\overline{L_{\text{double}}} = \{y \in \{a, b\}^* \mid \forall x \in \{a, b\}^*, y \neq x, x\}$ is a CFL
- Note: $\overline{L_{\text{double}}} = L_{\text{odd-length}} \cup L'$ where L' is generated by this CFG: $S \rightarrow AB \mid BA$ $A \rightarrow aAa \mid aAb \mid bAa \mid bAb \mid a$
 - $B \rightarrow aBa \mid aBb \mid bBa \mid bBb \mid b$

CFL closure under intersection?

- Claim 1: $L_1 = \{a^n, b^n, a^m \mid m, n \ge 0\}$ is a CFL
- Claim 2: $L_2 = \{a^m. b^n. a^n \mid m, n \ge 0\}$ is a CFL
- Claim 3: $L_1 \cap L_2 = \{a^n, b^n, a^n \mid n \ge 0\}$ is NOT a CFL
 - Proof using Pumping Lemma
- Claim 4: If L_1 is a CFL and L_2 is regular, then $L_1 \cap L_2$ is a CFL
- **Proof sketch**: Let G = (N, A, S, P) be a CFG in Chomsky Normal Form for L_1 and let $M = (Q, s, \delta, F)$ be a DFA for L_2
- Let $G' = (N \times Q \times Q \cup \{S_0\}, A, S_0, P')$; $P' = \{S_0 \to (S, s, q) | q \in F\} \cup \{(X, q, q') \to (Y, q, p)(Z, p, q') | X \to YZ \in P, p, q, q' \in Q\}$ Handle ε separately $\cup \{(X, q, q') \to a | X \to a \in P, \delta(q, a) = q'\}$

Automata for CFLs?

- Automata model control flow in programs naturally, so it is useful to have automata models for CFLs
- Recursive Automata (RA)
 - NFAs which can call each other (potentially recursively, implicit call stack)
 - RA ↔ CFG conversion is trivial
- Pushdown Automata (PDA)
 - Classical model, explicit stack
- Visibly Pushdown Automata (VPA)
 - Restricted PDA + nice properties (e.g., DVPL = VPL ⊂ DCFL)

Deterministic versions are strictly less powerful DCFL \subset CFL

Recursive Automata

- Models programs with finite memory + unlimited recursion
- A recursive automaton over an alphabet A is a non-empty set of NFA $\{N_i = (Q_i, s_i, \delta_i, F_i) \mid i = 0, ..., k\}$ and each $\delta_i \subseteq Q_i \times \hat{A} \times Q_i$ where $\hat{A} = A \cup \{\epsilon\} \cup \{0,1,...,k\}$
- The RA starts from the initial state of NFA N_0 (the main NFA)
- Example:

This RA accepts the language $\{a^n, b^n | n \ge 0\}$

Formal definition of acceptance

- A stack $t \in Q^*$ lists the return states for incomplete recursive calls (where $Q = \bigcup_{i=0}^k Q_i$)
- A configuration c is a pair $(q, t) \in Q \times Q^*$
 - Initial configuration is $c_0 = (s_0, \varepsilon)$
- We say that configuration c can go to c' on reading $e \in A \cup \{\varepsilon\}$ ($c \stackrel{e}{\rightarrow} c'$) if:

Extend $\stackrel{e}{\rightarrow}$

to strings

- Internal: c = (q, t); c' = (q', t); $q, q' \in Q_i$; $(q, e, q') \in \delta_i$
- Call: $e = \varepsilon$; c = (q, t); $c' = (q_j, t, q')$; $q, q' \in Q_i$; $(q, j, q') \in \delta_i$
- **Return**: $e = \varepsilon$; c = (q, t, q'); c' = (q', t); $q \in F_i$
- The RA accepts the language $\{w \in A^* | c_0 \stackrel{w}{\rightarrow} (q, \varepsilon) \text{ for some } q \in F_0\}$

RA \(\to\) CFG equivalence (sketch)

- Let $G = (N, A, X_0, P)$ be a CFG where $N = \{X_i | i = 0, ..., k\}$
- The equivalent RA is the set of NFAs $\{N_i|i=0,...,k\}$ where each N_i accepts the regular language $L_i = \{\hat{\alpha} \in \hat{A}^* | X_i \to \alpha \in P\}$ where $\hat{\alpha}$ is obtained from α by replacing each X_i with i
- Given an RA $R = \{N_i | i = 0, ..., k\}$ where $Q = \bigcup_i Q_i$, the equivalent CFG is $G = (\{X_q | q \in Q\}, A, X_{q_0}, P)$ where P is generated as follows:

Internal: if $(p, e, q) \in \delta_i$ then $X_p \to e$. $X_q \in P$

Call: if $(p, j, q) \in \delta_i$ then $X_p \to X_{q_j}$. $X_q \in P$

Return: if $p \in F_i$ then $X_p \to \varepsilon \in P$

Example

• Construct an RA for the CFG with these rules:

$$S \rightarrow AB \mid BA$$

 $A \rightarrow aAa \mid aAb \mid bAa \mid bAb \mid a$
 $B \rightarrow aBa \mid aBb \mid bBa \mid bBb \mid b$