
CFL closure under complement?
 Show that 𝐿double = 𝑦 ∈ 𝑎, 𝑏 ∗ ∀𝑥 ∈ 𝑎, 𝑏 ∗, 𝑦 ≠ 𝑥. 𝑥 is a CFL

 Note: 𝐿double = Lodd-length  L’ where L’ is generated by this CFG:

S→ AB  BA

A→ aAa  aAb  bAa  bAb  a

B→ aBa  aBb  bBa  bBb  b



CFL closure under intersection?
 Claim 1: 𝐿1 = 𝑎𝑛. 𝑏𝑛. 𝑎𝑚 𝑚, 𝑛 ≥ 0 is a CFL

 Claim 2: 𝐿2 = 𝑎𝑚. 𝑏𝑛. 𝑎𝑛 𝑚, 𝑛 ≥ 0 is a CFL

 Claim 3: 𝐿1⋂𝐿2 = 𝑎𝑛. 𝑏𝑛. 𝑎𝑛 𝑛 ≥ 0 is NOT a CFL

 Proof using Pumping Lemma

 Claim 4: If L1 is a CFL and L2 is regular, then L1  L2 is a CFL

 Proof sketch: Let G = (N, A, S, P) be a CFG in Chomsky Normal Form  
for L1 and let M = (Q, s, , F) be a DFA for L2

 Let G’ = (N×Q×Q  {S0}, A, S0, P’) ; P’ = 𝑆0 → (𝑆, 𝑠, 𝑞) 𝑞 ∈ 𝐹 ∪
(𝑋, 𝑞, 𝑞′) → (𝑌, 𝑞, 𝑝)(𝑍, 𝑝, 𝑞′) 𝑋 → 𝑌𝑍 ∈ 𝑃, 𝑝, 𝑞, 𝑞′ ∈ 𝑄

∪ (𝑋, 𝑞, 𝑞′) → 𝑎 𝑋 → 𝑎 ∈ 𝑃, 𝛿 𝑞, 𝑎 = 𝑞′Handle  separately



Automata for CFLs?
 Automata model control flow in programs naturally, so it is useful to 

have automata models for CFLs

 Recursive Automata (RA)

 NFAs which can call each other (potentially recursively, implicit call stack)

 RA  CFG conversion is trivial

 Pushdown Automata (PDA)

 Classical model, explicit stack

 Visibly Pushdown Automata (VPA)

 Restricted PDA + nice properties (e.g., DVPL = VPL  DCFL)

Deterministic versions 
are strictly less powerful

DCFL  CFL



Recursive Automata
 Models programs with finite memory + unlimited recursion

 A recursive automaton over an alphabet A is a non-empty set of NFA 
𝑁𝑖 = 𝑄𝑖 , 𝑠𝑖 , 𝛿𝑖 , 𝐹𝑖 𝑖 = 0,… , 𝑘 and each 𝛿𝑖 ⊆ 𝑄𝑖 × መ𝐴 × 𝑄𝑖 where

መ𝐴 = 𝐴 ∪ 𝜀 ∪ {0,1, … , 𝑘}

 The RA starts from the initial state of NFA 𝑁0 (the main NFA)

 Example: 
s0 q



a

a
b

b
0

This RA accepts the language
𝑎𝑛. 𝑏𝑛 𝑛 ≥ 0



Formal definition of acceptance
 A stack t  Q* lists the return states for incomplete recursive calls 

(where 𝑄 = 𝑖=0ڂ
𝑘 𝑄𝑖)

 A configuration c is a pair (q, t)  Q × Q*
 Initial configuration is c0 = (s0, )

 We say that configuration c can go to c’ on reading 𝑒 ∈ 𝐴 ∪ 𝜀 (𝑐 →
𝑒
𝑐′) if:

 Internal: 𝑐 = 𝑞, 𝑡 ; 𝑐′ = 𝑞′, 𝑡 ; 𝑞, 𝑞′ ∈ 𝑄𝑖 ; 𝑞, 𝑒, 𝑞′ ∈ 𝛿𝑖

 Call: 𝑒 = 𝜀 ; 𝑐 = 𝑞, 𝑡 ; 𝑐′ = 𝑞𝑗 , 𝑡. 𝑞′ ; 𝑞, 𝑞′ ∈ 𝑄𝑖 ; 𝑞, 𝑗, 𝑞′ ∈ 𝛿𝑖
 Return: 𝑒 = 𝜀 ; 𝑐 = 𝑞, 𝑡. 𝑞′ ; 𝑐′ = 𝑞′, 𝑡 ; 𝑞 ∈ 𝐹𝑖

 The RA accepts the language 𝑤 ∈ 𝐴∗ 𝑐0→
𝑤

𝑞, 𝜀 for some 𝑞 ∈ 𝐹0

Extend →
𝑒

to strings



RA  CFG equivalence (sketch)
 Let G = (N, A, X0, P) be a CFG where 𝑁 = 𝑋𝑖 𝑖 = 0,… , 𝑘

 The equivalent RA is the set of NFAs 𝑁𝑖 𝑖 = 0,… , 𝑘 where each 𝑁𝑖

accepts the regular language 𝐿𝑖 = ො𝛼 ∈ መ𝐴∗ 𝑋𝑖 → 𝛼 ∈ 𝑃 where ො𝛼 is 
obtained from 𝛼 by replacing each 𝑋𝑖 with 𝑖

 Given an RA 𝑅 = 𝑁𝑖 𝑖 = 0,… , 𝑘 where 𝑄 =  𝑖𝑄𝑖, the equivalent CFGڂ
is 𝐺 = 𝑋𝑞 𝑞 ∈ 𝑄 , 𝐴, 𝑋𝑞0, P where P is generated as follows:

Internal: if (𝑝, 𝑒, 𝑞) ∈ 𝛿𝑖 then 𝑋𝑝 → 𝑒. 𝑋𝑞 ∈ 𝑃

Call: if (𝑝, 𝑗, 𝑞) ∈ 𝛿𝑖 then 𝑋𝑝 → 𝑋𝑞𝑗 . 𝑋𝑞 ∈ 𝑃

Return: if 𝑝 ∈ 𝐹𝑖 then 𝑋𝑝 → 𝜀 ∈ 𝑃



Example
 Construct an RA for the CFG with these rules:

S→ AB  BA

A→ aAa  aAb  bAa  bAb  a

B→ aBa  aBb  bBa  bBb  b


