
Automata Theory and Computability

Assignment 1

(Due on Tue 4th Sep 2018)

1. Give a DFA that accepts the language of all even length strings over the
alphabet {a, b} in which every b is immediately preceded by an a.

2. Show that the set of strings in {0, 1, 2}∗ which are base 3 representations
of even numbers, is regular.

3. Consider an alphabet A, and define u : (A × A)∗ → A∗ × A∗ inductively
as follows:

(a) u(ε) = (ε, ε)

(b) ∀x ∈ (A × A)∗, ∀(a, b) ∈ A × A, if u(x) = (y, z) then u(x.(a, b)) =
(y.a, z.b)

If L ⊆ A∗ is regular, prove that the following language is regular:

{x ∈ (A×A)∗ | u(x) ∈ L× L}.

4. Consider the languages L and M below over the alphabet {a, b}. One of
the languages is regular while the other is not. Which is which? Justify
your answer by giving an automaton for one and a proof of non-regularity
for the other.

• L is the language of all strings in which the difference between the
number of a’s and b’s in the string is at most 2.

• M is the language of all strings which satisfy the property that in
every prefix the difference between the number of a’s and b’s is at
most 2. Thus, aabab is in the language, while abaaab is not.

5. Let M = (Q, s, δ, F) be a smallest DFA for the regular language L(M) ⊆
A∗. For each q ∈ Q, let Mq = (Q, q, δ, F). Prove that ∀p, q ∈ Q, L(Mp) =
L(Mq) =⇒ p = q.

6. For a language L define

first-halves(L) = {x | ∃y : |x| = |y| and xy ∈ L}

Here, |y| denotes the length of string y. Prove that if L is regular, then
first-halves(L) is regular. Argue for yourself that your construction is
correct, but don’t write the proof of correctness.

7. Consider the language L over the alphabet {a, b} defined by the following
MSO sentence:

∀x∀y(((Qa(x) ∧Qb(y)) =⇒ x < y) ∧ (Qa(x) =⇒ ∃zQb(z))).

Give a regular expression describing the language L.

8. Give Monadic Second Order (MSO) logic sentences over the alphabet
{a, b} which define the following languages:

(a) (bab)∗.

(b) All strings over {a, b} satisfying the condition that “between any two
consecutive a’s there are an odd number of b’s.”

9. Construct an automaton that accepts all the satisfying assignments of the
Presburger logic formula ∃y(x = 4y + 1), using the inductive procedure
described in class. Show the automaton after each inductive step. What
should be the output of the final automaton on the strings “00000” and
“10001” respectively?

10. A (straight-line) Presburger program is a sequence of if-statements, and
uses two variables x and y. The guard of each if-statement is a Presburger
logic formula with free variables in {x, y}, and the body is an assignment
statement of the form x := e where e is a term (over the variables x and
y) in Presburger logic. More precisely, such a program can be modelled
as sequence of control locations l1, . . . , ln+1 (n ≥ 1), and transitions ti
from li to li+1 being labelled with a Presburger guard g(ti) and an update
statement u(ti). The program executes in the expected manner, beginning
in the initial location l1, in an initial state s where x and y take arbitrary
values in N, checking whether the state satisfies the guard of transition t1,
and if so, applying the update u(t1) to s and going to location l2. A similar
step is then performed from l2, and so on. If the guard of a transition is
not satisfied by the current state, or if the update assigns a negative value
to a variable, the program gets “stuck.”

For example the figure below shows a Presburger program. When started
in a state (x 7→ 2, y 7→ 5), it goes to l2 in the state (x 7→ 3, y 7→ 5), and
finally to l3 in the state (x 7→ 3, y 7→ 4).

∃k(x = 2k), 2 ≤ x ≤ y,

x := x + 1 y := y − 1

l1 l2 l3

Given a precondition pre on the initial states, and a post-condition post
on the final states, we say a Presburger program P satisfies the conditions
(pre, post) iff every execution of P that begins in a state satisfying pre
either never reaches ln+1, or reaches there in a state satisfying post . For
example, because of the given execution, the program above does not
satisfy the pre/post-condition (x < y, x > y).

Give a procedure to check whether a given Presburger program P , with
Presburger conditions pre and post , satisfies the pair (pre, post).

2

