Automata Theory and Computability

Assignment 1

(Due on Tue 4th Sep 2018)

- 1. Give a DFA that accepts the language of all *even* length strings over the alphabet $\{a, b\}$ in which every b is immediately preceded by an a.
- 2. Show that the set of strings in $\{0,1,2\}^*$ which are base 3 representations of even numbers, is regular.
- 3. Consider an alphabet A, and define $u:(A\times A)^*\to A^*\times A^*$ inductively as follows:
 - (a) $u(\varepsilon) = (\varepsilon, \varepsilon)$
 - (b) $\forall x \in (A \times A)^*, \forall (a,b) \in A \times A, \text{ if } u(x) = (y,z) \text{ then } u(x.(a,b)) = (y.a,z.b)$

If $L \subseteq A^*$ is regular, prove that the following language is regular:

$$\{x \in (A \times A)^* \mid u(x) \in L \times L\}.$$

- 4. Consider the languages L and M below over the alphabet $\{a,b\}$. One of the languages is regular while the other is not. Which is which? Justify your answer by giving an automaton for one and a proof of non-regularity for the other.
 - L is the language of all strings in which the difference between the number of a's and b's in the string is at most 2.
 - *M* is the language of all strings which satisfy the property that in *every* prefix the difference between the number of *a*'s and *b*'s is at most 2. Thus, *aabab* is in the language, while *abaaab* is not.
- 5. Let $M=(Q,s,\delta,F)$ be a smallest DFA for the regular language $L(M)\subseteq A^*$. For each $q\in Q$, let $M_q=(Q,q,\delta,F)$. Prove that $\forall p,q\in Q,\, L(M_p)=L(M_q)\implies p=q$.
- 6. For a language L define

$$first$$
-halves $(L) = \{x \mid \exists y : |x| = |y| \text{ and } xy \in L\}$

Here, |y| denotes the length of string y. Prove that if L is regular, then first-halves(L) is regular. Argue for yourself that your construction is correct, but don't write the proof of correctness.

7. Consider the language L over the alphabet $\{a,b\}$ defined by the following MSO sentence:

$$\forall x \forall y (((Q_a(x) \land Q_b(y)) \implies x < y) \land (Q_a(x) \implies \exists z Q_b(z))).$$

Give a regular expression describing the language L.

- 8. Give Monadic Second Order (MSO) logic sentences over the alphabet $\{a,b\}$ which define the following languages:
 - (a) $(bab)^*$.
 - (b) All strings over $\{a, b\}$ satisfying the condition that "between any two consecutive a's there are an odd number of b's."
- 9. Construct an automaton that accepts all the satisfying assignments of the Presburger logic formula $\exists y(x=4y+1)$, using the inductive procedure described in class. Show the automaton after each inductive step. What should be the output of the final automaton on the strings "00000" and "10001" respectively?
- 10. A (straight-line) Presburger program is a sequence of if-statements, and uses two variables x and y. The guard of each if-statement is a Presburger logic formula with free variables in $\{x,y\}$, and the body is an assignment statement of the form x := e where e is a term (over the variables x and y) in Presburger logic. More precisely, such a program can be modelled as sequence of control locations l_1, \ldots, l_{n+1} ($n \ge 1$), and transitions t_i from l_i to l_{i+1} being labelled with a Presburger guard $g(t_i)$ and an update statement $u(t_i)$. The program executes in the expected manner, beginning in the initial location l_1 , in an initial state s where s and s take arbitrary values in s, checking whether the state satisfies the guard of transition s, and if so, applying the update s and going to location s. A similar step is then performed from s, and so on. If the guard of a transition is not satisfied by the current state, or if the update assigns a negative value to a variable, the program gets "stuck."

For example the figure below shows a Presburger program. When started in a state $(x \mapsto 2, y \mapsto 5)$, it goes to l_2 in the state $(x \mapsto 3, y \mapsto 5)$, and finally to l_3 in the state $(x \mapsto 3, y \mapsto 4)$.

Given a precondition pre on the initial states, and a post-condition post on the final states, we say a Presburger program P satisfies the conditions (pre, post) iff every execution of P that begins in a state satisfying pre either never reaches l_{n+1} , or reaches there in a state satisfying post. For example, because of the given execution, the program above does not satisfy the pre/post-condition (x < y, x > y).

Give a procedure to check whether a given Presburger program P, with Presburger conditions pre and post, satisfies the pair (pre, post).