Automata Theory and Computability ## Assignment 2 (Due on Thu 4th Oct 2018) - 1. Show that the language L over the alphabet $\{a,b\}$ comprising strings with an even number of a's and an odd number of b's, is recognizable by a finite monoid. - 2. Show that the class of languages over an alphabet A that are recognizable by finite monoids, are closed under intersection. More precisely, show how, given finite monoids M_1 and M_2 that accept languages L_1 and L_2 via morphisms and state-set pairs φ_1, X_1 and φ_2, X_2 respectively, to directly construct a monoid recognizing $L_1 \cap L_2$. - 3. Consider the language L given by the regular expression $(a+b)^*ab(a+b)^*$. - (a) Describe the equivalence classes of the canonical Myhill-Nerode relation for this language. - (b) Describe the canonical DFA for this language. - (c) Describe the syntactic monoid M(L) for this language. - (d) Show that L is recognizable by a finite monoid. - (e) Describe the equivalence classes of the syntactic congruence for this language. - 4. Give a language L over the alphabet $\{a,b,c\}$ for which the syntactic congruence \cong_L is exponentially more refined than the canonical MN relation \equiv_L . - 5. For every $k \geq 0$, let $L_k \subseteq \{a,b\}^*$ be the language of strings in which the difference between the number of a's and b's is at most k. Define a family of CFGs G_k such that $\forall k, L(G_k) = L_k$. Sketch a proof that argues why your grammars are correct. - 6. Prove that the language $\{a^mb^na^{m+n} \mid m,n \geq 0\}$ is context-free.