Automata Theory and Computability

Assignment 2

(Due on Thu 4th Oct 2018)

- 1. Show that the language L over the alphabet $\{a,b\}$ comprising strings with an even number of a's and an odd number of b's, is recognizable by a finite monoid.
- 2. Show that the class of languages over an alphabet A that are recognizable by finite monoids, are closed under intersection. More precisely, show how, given finite monoids M_1 and M_2 that accept languages L_1 and L_2 via morphisms and state-set pairs φ_1, X_1 and φ_2, X_2 respectively, to directly construct a monoid recognizing $L_1 \cap L_2$.
- 3. Consider the language L given by the regular expression $(a+b)^*ab(a+b)^*$.
 - (a) Describe the equivalence classes of the canonical Myhill-Nerode relation for this language.
 - (b) Describe the canonical DFA for this language.
 - (c) Describe the syntactic monoid M(L) for this language.
 - (d) Show that L is recognizable by a finite monoid.
 - (e) Describe the equivalence classes of the syntactic congruence for this language.
- 4. Give a language L over the alphabet $\{a,b,c\}$ for which the syntactic congruence \cong_L is exponentially more refined than the canonical MN relation \equiv_L .
- 5. For every $k \geq 0$, let $L_k \subseteq \{a,b\}^*$ be the language of strings in which the difference between the number of a's and b's is at most k. Define a family of CFGs G_k such that $\forall k, L(G_k) = L_k$. Sketch a proof that argues why your grammars are correct.
- 6. Prove that the language $\{a^mb^na^{m+n} \mid m,n \geq 0\}$ is context-free.