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Prelude

A star-free language is one that can be described by a
regular expression constructed from the letters of the
alphabet, the empty set symbol, all boolean operators,
but no Kleene star.

e They can also be characterized logically as languages
definable in FO[<].

e and as languages definable in linear temporal logic

e Marcel-Paul Schiitzenberger characterized star-free
languages as those with aperiodic syntactic monoids



Monoids

Definition : A ‘monoid’ is a set M # () equipped with a
binary operation - : M x M — M such that

e a(b-c)=(a-b)-cforall a,b,ce M

e Jl e Msuchthata-1=a=1-aforallae M

Here, 1 is called the ‘identity’ element of M. Also, the
identity must be unique.

We denote the monoid and it's operation along with it's
identity by a triplet (M, -, 1)



Monoids : Examples

(Z,+,0) i.e the set of integers with integer addition,
and 0 as the additive identity.

(N, -, 1) i.e the set of positive integers with integer
multiplication, and 1 as the multiplicative identity.

For any n € N, (Zp, +,0) is a finite monoid, where Z,
is the set of residue classes of integers modulo n, + is
addition integers modulo n, and 0 is the residue class of
zero.

(A*,-,€), where A is any alphabet, - is the concatenation
of strings, and ¢ is the empty string, is a monoid.



ldempotent element

An element m in a monoid M, is called an ‘idempotent
element’ if m®> :=m-m=m.

Proposition 1. :
Every element in a finite monoid has an idempotent power.

proof : Let m € M be arbitrary. Then m" € M, for all

n €N, and since | M | < oo, we know 3i, p € N such that,
mtP = m. In fact, mtP = m', Vr € N.

Thus taking k = rp such that kK >/, we get

(mk)2 — m2k — mk+rp — mkfi . mi+rp — mkfi X mi — mk_ ]

Corollary : 3 w € N such that m“ is idempotent Vm € M.

proof : ¥ m € M 3 k,, such that m*» is idempotent, and
take w = LCM{kp, : m € M}. O

We call smallest such w is called the ‘exponent’ of M



Green's relations

Let M be a monoid. We define four relations on M as:
i) s <g tiff s = tu for some u e M
i) s <, tiff s= ut for some u e M

)
i) s <y tiff s = utv for some u e M
)

iv) s<ytiffs<gtands <, t

Equivalently,
i) s <g tiff sM C tM
i) s <, tiff Ms C Mt
i) s <y tiff MsM C MtM
iv) s<pytiffs<gtands <t



Green's relation’s

We define the equivalence relations :
i) sRt iff sM = tM
ii) sCt iff Ms = Mt
i) sJt iff MsM = MtM
iv) sHt iff SRM and sCt

v) sDt iff 3u € M such that sRu and ult
iff 3u € M such that sCv and vRt



Green's relations

Theorem 1. :
In a finite monoid, the Green'’s relations 7 and D are equal.
Furthermore,
i) s <ysm = sR(sm)
i) s<yms = sL(ms)
i) s/t N\s<gpt — sRt
iv) sTt ANs<  t = sLt
v) Ju,v € M (s = usv) = (us)HsH(sv)



Green's Lemma

Theorem. :

Let s,t € M such that sRt. Let s = tp and t = sq then, the
maps, x — xp and x — xq are bijections from L(t) onto
L(s), and from L(s) onto L(t), resp.

Moreover, these bijections preserve H-classes and are inverse
to one another.



Ordered monoids

Definition :

An ordered monoid (M, <) is a monoid M with an order
relation <, such that x < y implies uxv < uyv, V u,v € M.

Definition :

An upper set in an ordered monoid (M, <) is a subset
P C M such that v € P and u < v implies v € P.

Definition :

Given an upper set P in an ordered monoid (M, <), the
‘syntactic order’ relation on M is defined as,
u<Lpviftxuye P = xvy € Pforall x,y e M



Ordered monoids : Examples

e Any monoid (M, -, 1) can be equipped with the equality
order relation (=) to get ordered monoid (M, =).

e The natural order on positive integers is compatible
with addition. Thus (N, +,0, <) is an ordered monoid.



Homomorphisms

Definitions :

Given two monoids (M, -, idp) and (N, X, idy),

a monoid homomorphism (also called ‘morphism’) is a map
¢ : M — N such that p(m1 - mp) = @(m1) X p(m2),

for all my, my € M.

Note :
o (o(M), x,p(idy)) is a monoid.
o o(idy) = idy



Recognisable sets

Definition :

Given a monoid M a subset L C M is said to be
‘recognisable’ if 3 a finite monoid, N, a morphism

@ : M= N, and a set X C N such that, L = ¢71(X). We
say that the pair (¢, X) recognises L.

Definition(Recognisable language):

Given an alphabet A, a language L C A* is called a
‘recognisable language’ if it is a recognisable set in the
monoid (A*, -, €).



Transition monoid

e Given a DFA, A =(Q,A,0d,s, F), for each w € A*, we
define f, : Q — Q as q — 8(q, w). Then (Fy4,0,id) is
a finite monoid called the ‘transition monoid’ of A,
where F := {f, : w € A*}, o is the composition of
maps, and id is the identity map.

e The morphism-set pair (¢, p(-Z(A))) recognises -£(.A)
where ¢ is defined as w — f,,, V w € A*.

e Given a language L C A* recognised by a (finite)
monoid M by the pair (¢, X), A:= (M, A,d,id, X) is a
DFA, where 6(m, a) := m-¢(a), Vm e M,a € A, and
L=2(A).

Thus, given an alphabet A the set of regular languages over
A is precisely the set of recognisable languages over A.



Syntactic monoid

Definition :

Given a subset X C M where M is a monoid, the ‘syntactic
congruence’ of X is defined as the relation on M as :
uZxviff xuy € X < xvy € X forall x,y € M.

Note that =x is an equivalence relation on M.

Definition :

The syntactic monoid of X C M is defined as the monoid
M/ =x i.e the set of equivalence classes of the syntactic
congruence of X. The ‘ordered syntactic monoid’ of X is the
ordered monoid (M/ =x, <x)



Syntactic monoid of a language

Two monoids M and N are said to be ‘isomorphic’ if 3 an
‘isomorphism’ i.e a bijective morphism, ¢ : M — N.

Proposition 2. :

Given an alphabet A, the syntactic monoid of a recognisable
language is isomorphic to the transition monoid of it's
minimal DFA.



Aperiodic monoid

Definition :

A finite monoid M is said to be ‘aperiodic’, if V. me M
In € N such that m" = m"*+1,

Eg: Let M:={0,1,a, b} and define
e 0-m:=0=—m-0andl- m:=m=m-1Vme M,
e a2:=0=:p?
e a-b:=1=:b-a
Then (M, -,1) is an aperiodic monoid since m
me M.

2 = m3 for all



Aperiodic monoids

Proposition 3. :

Let M be a finite monoid. Then the following are equivalent,
1) M is aperiodic.
2) 3neNsuchthatV me M, m" = m™*1,

proof :

To see that 1) = 2), assume M is aperiodic. Then take

n = max{n, : m € M} such that Ym € M, m" = m"m+1,
so m" = m"™ . m"Mm = mimtl.mn=nm — mrtl oy me M
The converse, 2) = 1) is trivial O



Aperiodic monoids

Proposition 4. :

A finite ordered monoid (M, <) is aperiodic iff V¥ m € M, 3
n € N such that m"*1 < m".

proof :

If M is aperiodic, then Vm € M, 3 n € N such that
mtl=m" = m"l < mn

Conversely, suppose Ym € M, 3n € N such that m™! < m".
Then taking w as a multiple of the exponent of M such that
w>nweget, m=m*<m* < .<m*tt<m¥, so
that m** 1 =m¥ Vv me M. O



Aperiodic monoids

Lemma 1. :

Let L1, Ly C A* be recognisable languages and L := LiL5. If
My, My, and M are the ordered syntactic monoids
recognising Ly, Ly, and L respectively. Then,

My and My are aperiodic = M is aperiodic.

Lemma 2. :
A finite monoid M is aperiodic =— M is H-trivial.

Lemma 3. :

Let M be an aperiodic monoid and let m € M. Then {m} =
(mM N Mm)\ Jp, where Jp, :={s € M:m¢ .MsM}



Simplification lemma :

Lemma :

Let M be an aperiodic monoid and let p,q,r € M. Then
pqr=q = pq=q=qr.

proof :

Let n be the exponent of M. Since pgr = q, p"qr" = q.
And since M is aperiodic, p” = p™t! and hence
q=p"qr" = p"qr" = p(p"qr") = pq.

And similarly, gr = q



Star-Free language

Definition :
Given an alphabet A, the set of ‘star-free’ languages in A is
the smallest set % C 24" such that,

a) v e X, {et e, and {a} € #Z,V a€ A

b) S, TeEZX — A'\Se€Z SUTc#,andS- T X

Notation :
L; + Ly denote L3 U Lp, 0 denote &, 1 denote {e}, u denote
{u} for all u € A*, L denote A*\ L, and LjL; denote L; - L,

Thus, a star-free language is one that can be described by
the letters in AU {0, 1} and operations {+,° }



Star-Free languages : Examples

Any finite language L C A* is star-free, since
L=>", (Hjmz’l ajj), where L = {ay, ..., an} and
aj = aj1..-djm;, where aj € AYj<mji<n

For any alphabet A, A* is star-free, since A* = @€ = (°.
o VB C A, A*BA* is star-free.

Also, B* is star-free, since B* = (ZaeA\B A*aA*)C.

A = {a, b}, then (ab)* is star-free. Since

(ab)* = ((b0F + 0°a + 0°2a0° + 0°bb0°) ‘



Schiitzenberger's theorem

Theorem :

A language is star-free iff it's syntactic monoid is aperiodic.



Proof of Schiitzenberger's theorem

Let A be an alphabet and define 2/(A) as the set of
recognisable languages over A, whose syntactic monoids are
aperiodic. Thus,

o o {e},{a} €e #(A),VacA
e o/ (A) is closed under complementation.

e o/(A) is closed under finite intersection, and by
previous property, is closed under finite union.

o o/(A) is closed under finite product.

Therefore, <7 (A) contains all star-free languages over A.



Proof of Schiitzenberger's theorem

For the converse, let ¢ : A* — M be a monoid morphism
such that, M is an aperiodic monoid.

We now claim that ¢ ~1(P) is star-free, V P C M.

But since o~ }(P) =3 ,.cp ¢ }(m) and P C M is finite,
we may assume P = {m} without loss of generality.



Proof of Schiitzenberger's theorem

Claim : ~1(m) is star-free, for all m € M
proof : We use induction on r(m) :=| M\ MmM |

Base Case :

if r(m) =0 then M = MmM. Therefore 3 u, v € M such
that umv = 1. Applying simplification lemma, (um)1(v) =1
and (u)I(mv) =1 = u=v=1and thus m=1.

Now, let B :={ac A: p(a) =1},

then u € B* = u € ¢ 1(1). Also if, u € p~1(1) then by
simplification lemma, ¢(b) = 1 for each letter b of u.
Therefore ¢ ~1(m) = B*, which is star-free.



Proof of Schiitzenberger's theorem

Induction hypothesis :
Assume r(m) > 0 and ¢~ 1(s) is star-free if r(s) < r(m).
Induction step :
Claim :
o 1(m) = (UA* N A*V)\ (A*CA* UA*WA*) (1)
U:= Z(n,a)eE pH(na; V= z(a,n)EF ap~*(n)
Com{a€A:mg Mo(a)M} 3 W= 3, pyec aw (m)b
E:={(n,a)e M x A:np(a)RmAn¢ mM}

F:={(a,n) € Ax M: p(a)nLm A n¢ Mm}

G :={(a,n,b) c AxMxA:
m € (Mp(a)nM 0 Mnp(b)M) \ M (a)np(b)M}



Proof of Schiitzenberger's theorem

Let L:= (UA*NA*V)\ (A*CA* U A* WA*)
proof :

Let u € p~1(m) and let p be the shortest prefix of u such
that o(p)Rm.

Then p # ¢, otherwise mR1, whence m = 1 by simplification
lemma.

Put p = ra, with r € A* and a € A and n = ¢(r).
By construction, (n, a) € E since
a) np(a) = ¢(r)e(a) = ¢(p) Rm.
b) since m <g ¢(p) = np(a) <g n, n ¢ mM otherwise
nRm.



Proof of Schiitzenberger's theorem

It follows that p € ¢ ~!(n)a and u € UA*. A symmetric
argument shows u € A*V.

If ue A*CA*, Ja € C such that m = p(u) € Mp(a)M =<
aec C.

Similarly, if v € A*WA*, 3 (a, n, b) € G such that
m € Mp(a)np(b)M =<« (a,n, b) € G.

Therefore u € L.



Proof of Schiitzenberger's theorem

Conversely, assume u € L and s := ¢(u).

Since, u € UA* we have u € p~1(n)aA*, for some

(n,a) € E, and hence s = p(u) € np(a)M.

Now, since (n,a) € E, np(a)M = mM and thus s € mM.
A dual argument shows u € VA* implies s € mM.

By Lemma 3. to prove that s = m and hence u € ¢ ~1(m),
it suffices to prove that s ¢ J,, i.e m € MsM



Proof of Schiitzenberger's theorem

On the contrary, consider a factor f of u of minimal length
such that m ¢ Mp(f)M. Then f # e.

If f € Athen f € C and u € A*CA*, which is impossible.

Set f = agb where a, b € A. Set n = ¢(g).
Since f is of minimal length, we have m € My(a)nM and
m € Mnyp(b)M.

Consequently, (a,n, b) € G, and f € W, which is impossible.
Equation (1) is thus established.



Proof of Schiitzenberger's theorem

A*CA* is star-free.

Let (n,a) € E. Since np(a)M = mM, we have
MmM C MnM, and hence r(n) < r(m).

Moreover, as m <gr n, by Theorem 1.,
MmM = MnM —> nRm =< n ¢ mM.

Therefore r(n) < r(m) and thus U is star-free by Induction
hypothesis.

A similar argument works for V.



Proof of Schiitzenberger's theorem

Finally, let (a, n, b) € G.
One has r(n) < r(m) since, m € MnM.

Suppose that MmM = MnM. Then, n € MmM
also m € My(a)nM and m € Mnp(b)M,

it follows n € Mp(a)nM and n € Mny(b)M, whence
nLe(a)n and nRnp(b).

By Green's lemma,
no(b)Ly(a)ne(b) and hence mT p(a)np(b) =<
(a,n,b) € G.

Therefore r(n) < r(m) and hence W is star-free by
Induction hypothesis.



Examples

Let A= {a, b} and L = (aa)*. Then L is accepted by the
minimal DFA, A

a

startH a 1p
b



Examples

The syntactic monoid of L consists of three permutations
I=(012),a=(210)and 5= (00 0), defined by the
relations a®> = I, Boa = ao B = 3, where | is the identity.
This monoid is not aperiodic since V n € N, a" # a1 and
so L is not star-free.
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