chützenberger's Aperiodic Monoid Characterization of Star-Free Languages

Schützenberger's Aperiodic Monoid Characterization of Star-Free Languages

Nov 2019

- A star-free language is one that can be described by a regular expression constructed from the letters of the alphabet, the empty set symbol, all boolean operators, but no Kleene star.
- They can also be characterized logically as languages definable in *FO*[<].
- and as languages definable in linear temporal logic
- Marcel-Paul Schützenberger characterized star-free languages as those with aperiodic syntactic monoids

Definition : A 'monoid' is a set $M \neq \emptyset$ equipped with a binary operation $\cdot : M \times M \rightarrow M$ such that

- $a \cdot (b \cdot c) = (a \cdot b) \cdot c$ for all $a, b, c \in M$
- $\exists \mathbb{1} \in M$ such that $a \cdot \mathbb{1} = a = \mathbb{1} \cdot a$ for all $a \in M$

Here, $\mathbb{1}$ is called the 'identity' element of *M*. Also, the identity must be unique.

We denote the monoid and it's operation along with it's identity by a triplet $(M, \cdot, 1)$

- $(\mathbb{Z}, +, 0)$ i.e the set of integers with integer addition, and 0 as the additive identity.
- (N, ·, 1) i.e the set of positive integers with integer multiplication, and 1 as the multiplicative identity.
- For any n ∈ N, (Z_n, +, 0) is a finite monoid, where Z_n is the set of residue classes of integers modulo n, + is addition integers modulo n, and 0 is the residue class of zero.
- (A*, ·, ε), where A is any alphabet, · is the concatenation of strings, and ε is the empty string, is a monoid.

Idempotent element

An element *m* in a monoid *M*, is called an 'idempotent element' if $m^2 := m \cdot m = m$.

Proposition 1. :

Every element in a finite monoid has an idempotent power.

proof: Let $m \in M$ be arbitrary. Then $m^n \in M$, for all $n \in \mathbb{N}$, and since $|M| < \infty$, we know $\exists i, p \in \mathbb{N}$ such that, $m^{i+p} = m^i$. In fact, $m^{i+rp} = m^i$, $\forall r \in \mathbb{N}$. Thus taking k = rp such that $k \ge i$, we get $(m^k)^2 = m^{2k} = m^{k+rp} = m^{k-i} \cdot m^{i+rp} = m^{k-i} \cdot m^i = m^k$. \Box

Corollary : $\exists \ \omega \in \mathbb{N}$ such that m^{ω} is idempotent $\forall m \in M$. **proof** : $\forall \ m \in M \ \exists \ k_m$ such that m^{k_m} is idempotent, and take $\omega = LCM\{k_m : m \in M\}$.

We call smallest such ω is called the 'exponent' of M

・ロト・西ト・西ト・西ト・日・ シック

Green's relations

Let M be a monoid. We define four relations on M as:

i)
$$s \leq_R t$$
 iff $s = tu$ for some $u \in M$

ii)
$$s \leq_L t$$
 iff $s = ut$ for some $u \in M$

iii)
$$s \leqslant_J t$$
 iff $s = utv$ for some $u \in M$

iv)
$$s \leq_H t$$
 iff $s \leq_R t$ and $s \leq_L t$

Equivalently,

i)
$$s \leq_R t$$
 iff $sM \subseteq tM$

ii)
$$s \leq_L t$$
 iff $Ms \subseteq Mt$

- iii) $s \leq t$ iff $MsM \subseteq MtM$
- iv) $s \leq_H t$ iff $s \leq_R t$ and $s \leq_L t$

We define the equivalence relations :

- i) $s\mathcal{R}t$ iff sM = tM
- ii) $s\mathcal{L}t$ iff Ms = Mt
- iii) $s\mathcal{J}t$ iff MsM = MtM
- iv) sHt iff sRM and sLt
- v) $s\mathcal{D}t$ iff $\exists u \in M$ such that $s\mathcal{R}u$ and $u\mathcal{L}t$ iff $\exists u \in M$ such that $s\mathcal{L}v$ and $v\mathcal{R}t$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ○□ のQ@

Theorem 1. :

In a finite monoid, the *Green's* relations ${\cal J}$ and ${\cal D}$ are equal. Furthermore,

◆□▶ ◆□▶ ◆□▶ ◆□▶ ○□ のQ@

i) $s \leq_J sm \implies s\mathcal{R}(sm)$ ii) $s \leq_J ms \implies s\mathcal{L}(ms)$ iii) $s\mathcal{J}t \wedge s \leq_R t \implies s\mathcal{R}t$ iv) $s\mathcal{J}t \wedge s \leq_L t \implies s\mathcal{L}t$ v) $\exists u, v \in M \ (s = usv) \implies (us)\mathcal{H}s\mathcal{H}(sv)$

Theorem. :

Let $s, t \in M$ such that $s\mathcal{R}t$. Let s = tp and t = sq then, the maps, $x \mapsto xp$ and $x \mapsto xq$ are bijections from $\mathcal{L}(t)$ onto $\mathcal{L}(s)$, and from $\mathcal{L}(s)$ onto $\mathcal{L}(t)$, resp. Moreover, these bijections preserve \mathcal{H} -classes and are inverse to one another.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ つ へ ()

Definition:

An ordered monoid (M, \leq) is a monoid M with an order relation \leq , such that $x \leq y$ implies $uxv \leq uyv$, $\forall u, v \in M$.

Definition:

An upper set in an ordered monoid (M, \leq) is a subset $P \subseteq M$ such that $u \in P$ and $u \leq v$ implies $v \in P$.

Definition:

Given an upper set P in an ordered monoid (M, \leq) , the 'syntactic order' relation on M is defined as, $u \leq_P v$ iff $xuy \in P \implies xvy \in P$ for all $x, y \in M$

- Any monoid (M, ·, 1) can be equipped with the equality order relation (=) to get ordered monoid (M, =).
- The natural order on positive integers is compatible with addition. Thus (N, +, 0, ≤) is an ordered monoid.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ つ へ ()

Definitions :

Given two monoids (M, \cdot, id_M) and (N, \times, id_N) , a monoid homomorphism (also called 'morphism') is a map $\varphi: M \to N$ such that $\varphi(m_1 \cdot m_2) = \varphi(m_1) \times \varphi(m_2)$, for all $m_1, m_2 \in M$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ○□ のQ@

Note :

- $(\varphi(M), \times, \varphi(id_M))$ is a monoid.
- $\varphi(id_M) = id_N$

Definition:

Given a monoid M a subset $L \subseteq M$ is said to be 'recognisable' if \exists a finite monoid, N, a morphism $\varphi: M \to N$, and a set $X \subseteq N$ such that, $L = \varphi^{-1}(X)$. We say that the pair (φ, X) recognises L.

Definition(Recognisable language):

Given an alphabet A, a language $L \subseteq A^*$ is called a 'recognisable language' if it is a recognisable set in the monoid (A^*, \cdot, ϵ) .

Transition monoid

- Given a DFA, A ≡ (Q, A, δ, s, F), for each w ∈ A*, we define f_w : Q → Q as q ↦ δ̂(q, w). Then (F_A, ∘, id) is a finite monoid called the 'transition monoid' of A, where F_A := {f_w : w ∈ A*}, ∘ is the composition of maps, and id is the identity map.
- The morphism-set pair (φ, φ(ℒ(A))) recognises ℒ(A) where φ is defined as w → f_w, ∀ w ∈ A*.
- Given a language L ⊆ A* recognised by a (finite) monoid M by the pair (φ, X), A := (M, A, δ, id, X) is a DFA, where δ(m, a) := m · φ(a), ∀m ∈ M, a ∈ A, and L = L(A).

Thus, given an alphabet A the set of regular languages over A is precisely the set of recognisable languages over A.

・ロト・西ト・ヨト・ヨー シック

Definition:

Given a subset $X \subseteq M$ where M is a monoid, the 'syntactic congruence' of X is defined as the relation on M as : $u \cong_X v$ iff $xuy \in X \iff xvy \in X$ for all $x, y \in M$.

Note that \cong_X is an equivalence relation on M.

Definition:

The syntactic monoid of $X \subseteq M$ is defined as the monoid M / \cong_X i.e the set of equivalence classes of the syntactic congruence of X. The 'ordered syntactic monoid' of X is the ordered monoid $(M / \cong_X, \leq_X)$

Two monoids M and N are said to be 'isomorphic' if \exists an 'isomorphism' i.e a bijective morphism, $\varphi : M \to N$.

Proposition 2. :

Given an alphabet A, the syntactic monoid of a recognisable language is isomorphic to the transition monoid of it's minimal DFA.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ つ へ ()

Definition:

A finite monoid M is said to be 'aperiodic', if $\forall m \in M$ $\exists n \in \mathbb{N}$ such that $m^n = m^{n+1}$.

E.g: Let $M := \{0, 1, a, b\}$ and define

- $0 \cdot m := 0 =: m \cdot 0$ and $1 \cdot m := m =: m \cdot 1 \ \forall m \in M$,
- $a^2 := 0 =: b^2$
- $a \cdot b := 1 =: b \cdot a$

Then $(M, \cdot, 1)$ is an aperiodic monoid since $m^2 = m^3$ for all $m \in M$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Proposition 3. :

Let M be a finite monoid. Then the following are equivalent,

1) M is aperiodic.

2) $\exists n \in \mathbb{N}$ such that $\forall m \in M, m^n = m^{n+1}$.

proof :

To see that 1) \Longrightarrow 2), assume *M* is aperiodic. Then take $n = max\{n_m : m \in M\}$ such that $\forall m \in M, m^{n_m} = m^{n_m+1}$, so $m^n = m^{n_m} \cdot m^{n-n_m} = m^{n_m+1} \cdot m^{n-n_m} = m^{n+1}$, $\forall m \in M$. The converse, 2) \Longrightarrow 1) is trivial

Proposition 4. :

A finite ordered monoid (M, \leq) is aperiodic iff $\forall m \in M, \exists n \in \mathbb{N}$ such that $m^{n+1} \leq m^n$.

proof :

If *M* is aperiodic, then $\forall m \in M, \exists n \in \mathbb{N}$ such that $m^{n+1} = m^n \implies m^{n+1} \leq m^n$. Conversely, suppose $\forall m \in M, \exists n \in \mathbb{N}$ such that $m^{n+1} \leq m^n$. Then taking ω as a multiple of the exponent of *M* such that $\omega \ge n$ we get, $m^{\omega} = m^{2\omega} \leq m^{2\omega-1} \leq ... \leq m^{\omega+1} \leq m^{\omega}$, so that $m^{\omega+1} = m^{\omega} \forall m \in M$.

Lemma 1. :

Let $L_1, L_2 \subseteq A^*$ be recognisable languages and $L := L_1L_2$. If M_1, M_2 , and M are the ordered syntactic monoids recognising L_1, L_2 , and L respectively. Then, M_1 and M_2 are aperiodic $\implies M$ is aperiodic.

Lemma 2. :

A finite monoid M is aperiodic $\implies M$ is \mathcal{H} -trivial.

Lemma 3. :

Let M be an aperiodic monoid and let $m \in M$. Then $\{m\} = (mM \cap Mm) \setminus J_m$, where $J_m := \{s \in M : m \notin .MsM\}$

Lemma :

Let *M* be an aperiodic monoid and let $p, q, r \in M$. Then $pqr = q \implies pq = q = qr$.

proof :

Let *n* be the exponent of *M*. Since pqr = q, $p^nqr^n = q$. And since *M* is aperiodic, $p^n = p^{n+1}$ and hence $q = p^nqr^n = p^{n+1}qr^n = p(p^nqr^n) = pq$. And similarly, qr = q

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Star-Free language

Definition:

Given an alphabet A, the set of 'star-free' languages in A is the smallest set $\mathscr{R} \subseteq 2^{A^*}$ such that,

- a) $\emptyset \in \mathscr{R}$, $\{\epsilon\} \in \mathscr{R}$, and $\{a\} \in \mathscr{R}$, $\forall a \in A$.
- b) $S, T \in \mathscr{R} \implies A^* \setminus S \in \mathscr{R}, S \cup T \in \mathscr{R}$, and $S \cdot T \in \mathscr{R}$

Notation :

 $L_1 + L_2$ denote $L_1 \cup L_2$, 0 denote \emptyset , 1 denote $\{\epsilon\}$, *u* denote $\{u\}$ for all $u \in A^*$, L^c denote $A^* \setminus L$, and L_1L_2 denote $L_1 \cdot L_2$

Thus, a star-free language is one that can be described by the letters in $A \cup \{0, 1\}$ and operations $\{+, c\}$

Star-Free languages : Examples

- Any finite language $L \subseteq A^*$ is star-free, since $L = \sum_{i=1}^{n} (\prod_{j=1}^{m_i} a_{ij})$, where $L = \{a_1, ..., an\}$ and $a_i = a_{i1}...a_{im_i}$, where $a_{ij} \in A \ \forall j \leq m_i, i \leq n$
- For any alphabet A, A^* is star-free, since $A^* = \emptyset^c = 0^c$.
- $\forall B \subseteq A$, A^*BA^* is star-free.
- Also, B^* is star-free, since $B^* = \left(\sum_{a \in A \setminus B} A^* a A^*\right)^{c}$.
- $A = \{a, b\}$, then $(ab)^*$ is star-free. Since $(ab)^* = (b0^c + 0^c a + 0^c aa0^c + 0^c bb0^c)^c$

Schützenberger's Aperiodic Monoid Characterization of Star-Free Languages

Theorem :

A language is star-free iff it's syntactic monoid is aperiodic.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへぐ

Let A be an alphabet and define $\mathscr{A}(A)$ as the set of recognisable languages over A, whose syntactic monoids are aperiodic. Thus,

- $\emptyset, \{\epsilon\}, \{a\} \in \mathscr{A}(A), \forall a \in A.$
- $\mathscr{A}(A)$ is closed under complementation.
- $\mathscr{A}(A)$ is closed under finite intersection, and by previous property, is closed under finite union.
- $\mathscr{A}(A)$ is closed under finite product.

Therefore, $\mathscr{A}(A)$ contains all star-free languages over A.

For the converse, let $\varphi : A^* \to M$ be a monoid morphism such that, M is an aperiodic monoid. We now claim that $\varphi^{-1}(P)$ is star-free, $\forall P \subseteq M$. But since $\varphi^{-1}(P) = \sum_{m \in P} \varphi^{-1}(m)$ and $P \subseteq M$ is finite,

we may assume $P = \{m\}$ without loss of generality.

Claim : $\varphi^{-1}(m)$ is star-free, for all $m \in M$

proof : We use induction on $r(m) := |M \setminus MmM|$

Base Case :

if r(m) = 0 then M = MmM. Therefore $\exists u, v \in M$ such that umv = 1. Applying simplification lemma, (um)1(v) = 1 and $(u)1(mv) = 1 \implies u = v = 1$ and thus m = 1. Now, let $B := \{a \in A : \varphi(a) = 1\}$, then $u \in B^* \implies u \in \varphi^{-1}(1)$. Also if, $u \in \varphi^{-1}(1)$ then by simplification lemma, $\varphi(b) = 1$ for each letter b of u. Therefore $\varphi^{-1}(m) = B^*$, which is star-free.

Induction hypothesis : Assume r(m) > 0 and $\varphi^{-1}(s)$ is star-free if r(s) < r(m). Induction step :

Claim :

$$\varphi^{-1}(m) = (UA^* \cap A^*V) \setminus (A^*CA^* \cup A^*WA^*)$$
(1)

$$U := \sum_{(n,a) \in E} \varphi^{-1}(n)a ; V := \sum_{(a,n) \in F} a\varphi^{-1}(n)$$

$$C := \{a \in A : m \notin M\varphi(a)M\} ; W := \sum_{(a,n,b) \in G} a\varphi^{-1}(n)b$$

$$E := \{(n,a) \in M \times A : n\varphi(a)\mathcal{R}m \wedge n \notin mM\}$$

$$F := \{(a,n) \in A \times M : \varphi(a)n\mathcal{L}m \wedge n \notin Mm\}$$

$$G := \{(a,n,b) \in A \times M \times A : m \in (M\varphi(a)nM \cap Mn\varphi(b)M) \setminus M\varphi(a)n\varphi(b)M\}$$

・ロト ・ 同ト ・ ヨト ・ ヨー・ つへぐ

Let
$$L := (UA^* \cap A^*V) \setminus (A^*CA^* \cup A^*WA^*)$$

proof :

Let $u \in \varphi^{-1}(m)$ and let p be the shortest prefix of u such that $\varphi(p)\mathcal{R}m$.

Then $p \neq \epsilon$, otherwise $m\mathcal{R}1$, whence m = 1 by simplification lemma.

Put p = ra, with $r \in A^*$ and $a \in A$ and $n = \varphi(r)$. By construction, $(n, a) \in E$ since

a)
$$n\varphi(a) = \varphi(r)\varphi(a) = \varphi(p) \mathcal{R}m.$$

b) since $m \leq_R \varphi(p) = n\varphi(a) \leq_R n, n \notin mM$ otherwise $n\mathcal{R}m$.

Schützenberger's Aperiodic Monoid Characterization of Star-Free Languages

・ロト・西ト・西ト・西ト・日・

It follows that $p \in \varphi^{-1}(n)a$ and $u \in UA^*$. A symmetric argument shows $u \in A^*V$.

If $u \in A^*CA^*$, $\exists a \in C$ such that $m = \varphi(u) \in M\varphi(a)M \Rightarrow \Leftarrow a \in C$.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ つ へ ()

Similarly, if $u \in A^*WA^*$, $\exists (a, n, b) \in G$ such that $m \in M\varphi(a)n\varphi(b)M \Rightarrow \leftarrow (a, n, b) \in G$.

Therefore $u \in L$.

Conversely, assume $u \in L$ and $s := \varphi(u)$. Since, $u \in UA^*$ we have $u \in \varphi^{-1}(n)aA^*$, for some $(n, a) \in E$, and hence $s = \varphi(u) \in n\varphi(a)M$. Now, since $(n, a) \in E$, $n\varphi(a)M = mM$ and thus $s \in mM$. A dual argument shows $u \in VA^*$ implies $s \in mM$.

By Lemma 3. to prove that s = m and hence $u \in \varphi^{-1}(m)$, it suffices to prove that $s \notin J_m$ i.e $m \in MsM$

・ロト・日本・山田・山田・

On the contrary, consider a factor f of u of minimal length such that $m \notin M\varphi(f)M$. Then $f \neq \epsilon$.

If $f \in A$ then $f \in C$ and $u \in A^*CA^*$, which is impossible.

Set f = agb where $a, b \in A$. Set $n = \varphi(g)$. Since f is of minimal length, we have $m \in M\varphi(a)nM$ and $m \in Mn\varphi(b)M$.

Consequently, $(a, n, b) \in G$, and $f \in W$, which is impossible.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ つ へ ()

Equation (1) is thus established.

 A^*CA^* is star-free.

Let $(n, a) \in E$. Since $n\varphi(a)M = mM$, we have $MmM \subseteq MnM$, and hence $r(n) \leq r(m)$.

Moreover, as $m \leq_R n$, by Theorem 1., $MmM = MnM \implies n\mathcal{R}m \Rightarrow \leftarrow n \notin mM$.

Therefore r(n) < r(m) and thus U is star-free by Induction hypothesis.

A similar argument works for V.

Finally, let $(a, n, b) \in G$. One has $r(n) \leq r(m)$ since, $m \in MnM$.

Suppose that MmM = MnM. Then, $n \in MmM$ also $m \in M\varphi(a)nM$ and $m \in Mn\varphi(b)M$,

it follows $n \in M\varphi(a)nM$ and $n \in Mn\varphi(b)M$, whence $n\mathcal{L}\varphi(a)n$ and $n\mathcal{R}n\varphi(b)$.

By Green's lemma, $n\varphi(b)\mathcal{L}\varphi(a)n\varphi(b)$ and hence $m\mathcal{J}\varphi(a)n\varphi(b) \Rightarrow \Leftarrow$ $(a, n, b) \in G$.

Therefore r(n) < r(m) and hence W is star-free by *Induction hypothesis*.

Examples

Let $A = \{a, b\}$ and $L = (aa)^*$. Then L is accepted by the minimal DFA, A

The syntactic monoid of *L* consists of three permutations $I = (0 \ 1 \ 2)$, $\alpha = (2 \ 1 \ 0)$ and $\beta = (0 \ 0 \ 0)$, defined by the relations $\alpha^2 = I$, $\beta \circ \alpha = \alpha \circ \beta = \beta$, where *I* is the identity.

This monoid is not aperiodic since $\forall n \in \mathbb{N}, \alpha^n \neq \alpha^{n+1}$, and so L is not star-free.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ つ へ ()

References

- M.-P. Schützenberger, On finite monoids having only trivial sub-groups, Information and Control(1965), 190–194
- M. Perles, M. Rabin and E. Shamir, The theory of definite automata,IEEE Trans. Electron. Comput.(1963), 233–243
- Straubing, Howard (1994). Finite automata, formal logic, and circuit complexity. Progress in Theoretical Computer Science. Basel: Birkhäuser. p. 79.
- Kamp, Johan Antony Willem (1968). Tense Logic and the Theory of Linear Order. University of California at Los Angeles (UCLA).