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Prelude

• A star-free language is one that can be described by a
regular expression constructed from the letters of the
alphabet, the empty set symbol, all boolean operators,
but no Kleene star.

• They can also be characterized logically as languages
definable in FO[<].

• and as languages definable in linear temporal logic

• Marcel-Paul Schützenberger characterized star-free
languages as those with aperiodic syntactic monoids
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Monoids

Definition : A ‘monoid’ is a set M 6= ∅ equipped with a
binary operation · : M ×M → M such that

• a· (b · c) = (a · b) · c for all a, b, c ∈ M

• ∃1 ∈ M such that a · 1 = a = 1 · a for all a ∈ M

Here, 1 is called the ‘identity’ element of M. Also, the
identity must be unique.
We denote the monoid and it’s operation along with it’s
identity by a triplet (M, ·,1)
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Monoids : Examples

• (Z,+, 0) i.e the set of integers with integer addition,
and 0 as the additive identity.

• (N, ·, 1) i.e the set of positive integers with integer
multiplication, and 1 as the multiplicative identity.

• For any n ∈ N, (Zn,+, 0̄) is a finite monoid, where Zn

is the set of residue classes of integers modulo n, + is
addition integers modulo n, and 0̄ is the residue class of
zero.

• (A∗, ·, ε), where A is any alphabet, · is the concatenation
of strings, and ε is the empty string, is a monoid.
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Idempotent element

An element m in a monoid M, is called an ‘idempotent
element’ if m2 := m ·m = m.

Proposition 1. :

Every element in a finite monoid has an idempotent power.

proof : Let m ∈ M be arbitrary. Then mn ∈ M, for all
n ∈ N, and since | M | <∞, we know ∃i , p ∈ N such that,
mi+p = mi . In fact, mi+rp = mi , ∀r ∈ N.
Thus taking k = rp such that k ≥ i , we get
(mk)2 = m2k = mk+rp = mk−i ·mi+rp = mk−i ·mi = mk . �

Corollary : ∃ ω ∈ N such that mω is idempotent ∀m ∈ M.

proof : ∀ m ∈ M ∃ km such that mkm is idempotent, and
take ω = LCM{km : m ∈ M}. �

We call smallest such ω is called the ‘exponent’ of M
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Green’s relations

Let M be a monoid. We define four relations on M as:

i) s 6R t iff s = tu for some u ∈ M

ii) s 6L t iff s = ut for some u ∈ M

iii) s 6J t iff s = utv for some u ∈ M

iv) s 6H t iff s 6R t and s 6L t

Equivalently,

i) s 6R t iff sM ⊆ tM

ii) s 6L t iff Ms ⊆ Mt

iii) s 6J t iff MsM ⊆ MtM

iv) s 6H t iff s 6R t and s 6L t
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Green’s relation’s

We define the equivalence relations :

i) sRt iff sM = tM

ii) sLt iff Ms = Mt

iii) sJ t iff MsM = MtM

iv) sHt iff sRM and sLt
v) sDt iff ∃u ∈ M such that sRu and uLt

iff ∃u ∈ M such that sLv and vRt
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Green’s relations

Theorem 1. :

In a finite monoid, the Green’s relations J and D are equal.
Furthermore,

i) s 6J sm =⇒ sR(sm)

ii) s 6J ms =⇒ sL(ms)

iii) sJ t ∧ s 6R t =⇒ sRt
iv) sJ t ∧ s 6L t =⇒ sLt
v) ∃u, v ∈ M (s = usv) =⇒ (us)HsH(sv)
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Green’s Lemma

Theorem. :

Let s, t ∈ M such that sRt. Let s = tp and t = sq then, the
maps, x 7→ xp and x 7→ xq are bijections from L(t) onto
L(s), and from L(s) onto L(t), resp.
Moreover, these bijections preserve H-classes and are inverse
to one another.
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Ordered monoids

Definition :

An ordered monoid (M,6) is a monoid M with an order
relation 6, such that x 6 y implies uxv 6 uyv , ∀ u, v ∈ M.

Definition :

An upper set in an ordered monoid (M,6) is a subset
P ⊆ M such that u ∈ P and u 6 v implies v ∈ P.

Definition :

Given an upper set P in an ordered monoid (M,6), the
‘syntactic order’ relation on M is defined as,
u 6P v iff xuy ∈ P =⇒ xvy ∈ P for all x , y ∈ M
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Ordered monoids : Examples

• Any monoid (M, ·,1) can be equipped with the equality
order relation (=) to get ordered monoid (M,=).

• The natural order on positive integers is compatible
with addition. Thus (N,+, 0,6) is an ordered monoid.
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Homomorphisms

Definitions :

Given two monoids (M, ·, idM) and (N,×, idN),
a monoid homomorphism (also called ‘morphism’) is a map
ϕ : M → N such that ϕ(m1 ·m2) = ϕ(m1)× ϕ(m2),
for all m1,m2 ∈ M.

Note :

• (ϕ(M),×, ϕ(idM)) is a monoid.

• ϕ(idM) = idN
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Recognisable sets

Definition :

Given a monoid M a subset L ⊆ M is said to be
‘recognisable’ if ∃ a finite monoid, N, a morphism
ϕ : M → N, and a set X ⊆ N such that, L = ϕ−1(X ). We
say that the pair (ϕ,X ) recognises L.

Definition(Recognisable language):

Given an alphabet A, a language L ⊆ A∗ is called a
‘recognisable language’ if it is a recognisable set in the
monoid (A∗, ·, ε).
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Transition monoid

• Given a DFA, A ≡ (Q,A, δ, s,F ), for each w ∈ A∗, we
define fw : Q → Q as q 7→ δ̂(q,w). Then (FA, ◦, id) is
a finite monoid called the ‘transition monoid’ of A,
where FA := {fw : w ∈ A∗}, ◦ is the composition of
maps, and id is the identity map.

• The morphism-set pair (ϕ,ϕ(L (A))) recognises L (A)
where ϕ is defined as w 7→ fw , ∀ w ∈ A∗.

• Given a language L ⊆ A∗ recognised by a (finite)
monoid M by the pair (ϕ,X ), A := (M,A, δ, id ,X ) is a
DFA, where δ(m, a) := m · ϕ(a), ∀m ∈ M, a ∈ A, and
L = L (A).

Thus, given an alphabet A the set of regular languages over
A is precisely the set of recognisable languages over A.
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Syntactic monoid

Definition :

Given a subset X ⊆ M where M is a monoid, the ‘syntactic
congruence’ of X is defined as the relation on M as :
u ∼=X v iff xuy ∈ X ⇐⇒ xvy ∈ X for all x , y ∈ M.

Note that ∼=X is an equivalence relation on M.

Definition :

The syntactic monoid of X ⊆ M is defined as the monoid
M/ ∼=X i.e the set of equivalence classes of the syntactic
congruence of X . The ‘ordered syntactic monoid’ of X is the
ordered monoid (M/ ∼=X ,6X )
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Syntactic monoid of a language

Two monoids M and N are said to be ‘isomorphic’ if ∃ an
‘isomorphism’ i.e a bijective morphism, ϕ : M → N.

Proposition 2. :

Given an alphabet A, the syntactic monoid of a recognisable
language is isomorphic to the transition monoid of it’s
minimal DFA.
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Aperiodic monoid

Definition :

A finite monoid M is said to be ‘aperiodic’, if ∀ m ∈ M
∃n ∈ N such that mn = mn+1.

E.g : Let M := {0, 1, a, b} and define

• 0 ·m := 0 =: m · 0 and 1 ·m := m =: m · 1 ∀m ∈ M,

• a2 := 0 =: b2

• a · b := 1 =: b · a
Then (M, ·, 1) is an aperiodic monoid since m2 = m3 for all
m ∈ M.
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Aperiodic monoids

Proposition 3. :

Let M be a finite monoid. Then the following are equivalent,

1) M is aperiodic.

2) ∃ n ∈ N such that ∀ m ∈ M, mn = mn+1.

proof :

To see that 1) =⇒ 2), assume M is aperiodic. Then take
n = max{nm : m ∈ M} such that ∀m ∈ M, mnm = mnm+1,
so mn = mnm ·mn−nm = mnm+1 ·mn−nm = mn+1, ∀ m ∈ M
The converse, 2) =⇒ 1) is trivial �
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Aperiodic monoids

Proposition 4. :

A finite ordered monoid (M,6) is aperiodic iff ∀ m ∈ M, ∃
n ∈ N such that mn+1 6 mn.

proof :

If M is aperiodic, then ∀m ∈ M, ∃ n ∈ N such that
mn+1 = mn =⇒ mn+1 6 mn.
Conversely, suppose ∀m ∈ M, ∃n ∈ N such that mn+1 6 mn.
Then taking ω as a multiple of the exponent of M such that
ω ≥ n we get, mω = m2ω 6 m2ω−1 6...6 mω+1 6 mω, so
that mω+1 = mω ∀ m ∈ M. �
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Aperiodic monoids

Lemma 1. :

Let L1, L2 ⊆ A∗ be recognisable languages and L := L1L2. If
M1,M2, and M are the ordered syntactic monoids
recognising L1, L2, and L respectively. Then,
M1 and M2 are aperiodic =⇒ M is aperiodic.

Lemma 2. :

A finite monoid M is aperiodic =⇒ M is H-trivial.

Lemma 3. :

Let M be an aperiodic monoid and let m ∈ M. Then {m} =
(mM ∩Mm) \ Jm, where Jm := {s ∈ M : m /∈ .MsM}
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Simplification lemma :

Lemma :

Let M be an aperiodic monoid and let p, q, r ∈ M. Then
pqr = q =⇒ pq = q = qr .

proof :

Let n be the exponent of M. Since pqr = q, pnqrn = q.
And since M is aperiodic, pn = pn+1 and hence
q = pnqrn = pn+1qrn = p(pnqrn) = pq.
And similarly, qr = q �
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Star-Free language

Definition :

Given an alphabet A, the set of ‘star-free’ languages in A is
the smallest set R ⊆ 2A

∗
such that,

a) ∅ ∈ R, {ε} ∈ R, and {a} ∈ R, ∀ a ∈ A.

b) S ,T ∈ R =⇒ A∗ \ S ∈ R, S ∪T ∈ R, and S ·T ∈ R

Notation :

L1 + L2 denote L1 ∪ L2, 0 denote ∅, 1 denote {ε}, u denote
{u} for all u ∈ A∗, Lc denote A∗ \L, and L1L2 denote L1 ·L2

Thus, a star-free language is one that can be described by
the letters in A ∪ {0, 1} and operations {+,c }
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Star-Free languages : Examples

• Any finite language L ⊆ A∗ is star-free, since
L =

∑n
i=1

(∏mi
j=1 aij

)
, where L = {a1, ..., an} and

ai = ai1...aimi
, where aij ∈ A ∀j ≤ mi , i ≤ n

• For any alphabet A, A∗ is star-free, since A∗ = ∅c = 0c .

• ∀B ⊆ A, A∗BA∗ is star-free.

• Also, B∗ is star-free, since B∗ =
(∑

a∈A\B A∗aA∗
)c

.

• A = {a, b}, then (ab)∗ is star-free. Since

(ab)∗ =
(
b0c + 0ca + 0caa0c + 0cbb0c

)c
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Schützenberger’s theorem

Theorem :

A language is star-free iff it’s syntactic monoid is aperiodic.
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Proof of Schützenberger’s theorem

Let A be an alphabet and define A (A) as the set of
recognisable languages over A, whose syntactic monoids are
aperiodic. Thus,

• ∅, {ε}, {a} ∈ A (A), ∀ a ∈ A.

• A (A) is closed under complementation.

• A (A) is closed under finite intersection, and by
previous property, is closed under finite union.

• A (A) is closed under finite product.

Therefore, A (A) contains all star-free languages over A.
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Proof of Schützenberger’s theorem

For the converse, let ϕ : A∗ → M be a monoid morphism
such that, M is an aperiodic monoid.
We now claim that ϕ−1(P) is star-free, ∀ P ⊆ M.
But since ϕ−1(P) =

∑
m∈P ϕ

−1(m) and P ⊆ M is finite,
we may assume P = {m} without loss of generality.
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Proof of Schützenberger’s theorem

Claim : ϕ−1(m) is star-free, for all m ∈ M

proof : We use induction on r(m) :=| M \MmM |

Base Case :

if r(m) = 0 then M = MmM. Therefore ∃ u, v ∈ M such
that umv = 1. Applying simplification lemma, (um)1(v) = 1
and (u)1(mv) = 1 =⇒ u = v = 1 and thus m = 1.
Now, let B := {a ∈ A : ϕ(a) = 1},
then u ∈ B∗ =⇒ u ∈ ϕ−1(1). Also if, u ∈ ϕ−1(1) then by
simplification lemma, ϕ(b) = 1 for each letter b of u.
Therefore ϕ−1(m) = B∗, which is star-free.
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Proof of Schützenberger’s theorem

Induction hypothesis :

Assume r(m) > 0 and ϕ−1(s) is star-free if r(s) < r(m).

Induction step :

Claim :

ϕ−1(m) = (UA∗ ∩ A∗V ) \ (A∗CA∗ ∪ A∗WA∗) (1)

U :=
∑

(n,a)∈E ϕ
−1(n)a ; V :=

∑
(a,n)∈F aϕ−1(n)

C := {a ∈ A : m /∈ Mϕ(a)M} ; W :=
∑

(a,n,b)∈G aϕ−1(n)b

E := {(n, a) ∈ M × A : nϕ(a)Rm ∧ n /∈ mM}

F := {(a, n) ∈ A×M : ϕ(a)nLm ∧ n /∈ Mm}

G := {(a, n, b) ∈ A×M × A :
m ∈ (Mϕ(a)nM ∩Mnϕ(b)M) \Mϕ(a)nϕ(b)M}
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Proof of Schützenberger’s theorem

Let L := (UA∗ ∩ A∗V ) \ (A∗CA∗ ∪ A∗WA∗)

proof :

Let u ∈ ϕ−1(m) and let p be the shortest prefix of u such
that ϕ(p)Rm.
Then p 6= ε, otherwise mR1, whence m = 1 by simplification
lemma.

Put p = ra, with r ∈ A∗ and a ∈ A and n = ϕ(r).
By construction, (n, a) ∈ E since

a) nϕ(a) = ϕ(r)ϕ(a) = ϕ(p) Rm.

b) since m 6R ϕ(p) = nϕ(a) 6R n, n /∈ mM otherwise
nRm.
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Proof of Schützenberger’s theorem

It follows that p ∈ ϕ−1(n)a and u ∈ UA∗. A symmetric
argument shows u ∈ A∗V .

If u ∈ A∗CA∗, ∃a ∈ C such that m = ϕ(u) ∈ Mϕ(a)M ⇒⇐
a ∈ C .

Similarly, if u ∈ A∗WA∗, ∃ (a, n, b) ∈ G such that
m ∈ Mϕ(a)nϕ(b)M ⇒⇐ (a, n, b) ∈ G .

Therefore u ∈ L.



Schützenberger’s
Aperiodic

Monoid Char-
acterization of

Star-Free
Languages

Proof of Schützenberger’s theorem

Conversely, assume u ∈ L and s := ϕ(u).
Since, u ∈ UA∗ we have u ∈ ϕ−1(n)aA∗, for some
(n, a) ∈ E , and hence s = ϕ(u) ∈ nϕ(a)M.
Now, since (n, a) ∈ E , nϕ(a)M = mM and thus s ∈ mM.
A dual argument shows u ∈ VA∗ implies s ∈ mM.

By Lemma 3. to prove that s = m and hence u ∈ ϕ−1(m),
it suffices to prove that s /∈ Jm i.e m ∈ MsM
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Proof of Schützenberger’s theorem

On the contrary, consider a factor f of u of minimal length
such that m /∈ Mϕ(f )M. Then f 6= ε.

If f ∈ A then f ∈ C and u ∈ A∗CA∗, which is impossible.

Set f = agb where a, b ∈ A. Set n = ϕ(g).
Since f is of minimal length, we have m ∈ Mϕ(a)nM and
m ∈ Mnϕ(b)M.

Consequently, (a, n, b) ∈ G , and f ∈W , which is impossible.

Equation (1) is thus established.
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Proof of Schützenberger’s theorem

A∗CA∗ is star-free.

Let (n, a) ∈ E . Since nϕ(a)M = mM, we have
MmM ⊆ MnM, and hence r(n) 6 r(m).

Moreover, as m 6R n, by Theorem 1.,
MmM = MnM =⇒ nRm ⇒⇐ n /∈ mM.

Therefore r(n) < r(m) and thus U is star-free by Induction
hypothesis.

A similar argument works for V .
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Proof of Schützenberger’s theorem

Finally, let (a, n, b) ∈ G .
One has r(n) 6 r(m) since, m ∈ MnM.

Suppose that MmM = MnM. Then, n ∈ MmM
also m ∈ Mϕ(a)nM and m ∈ Mnϕ(b)M,

it follows n ∈ Mϕ(a)nM and n ∈ Mnϕ(b)M, whence
nLϕ(a)n and nRnϕ(b).

By Green’s lemma,
nϕ(b)Lϕ(a)nϕ(b) and hence mJϕ(a)nϕ(b) ⇒⇐
(a, n, b) ∈ G .

Therefore r(n) < r(m) and hence W is star-free by
Induction hypothesis. �
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Examples

Let A = {a, b} and L = (aa)∗. Then L is accepted by the
minimal DFA, A

1start

2

0

a

a

b

b

a,b
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Examples

The syntactic monoid of L consists of three permutations
I = (0 1 2), α = (2 1 0) and β = (0 0 0), defined by the
relations α2 = I , β ◦ α = α ◦ β = β, where I is the identity.

This monoid is not aperiodic since ∀ n ∈ N, αn 6= αn+1, and
so L is not star-free.
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