▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Pumping Lemma for Context-Free Languages

Deepak D'Souza

Department of Computer Science and Automation Indian Institute of Science, Bangalore.

23 September 2019

Pumping Lemma for CFL's

Pumping Lemma

For every CFL L there is a constant $k \ge 0$ such that for any word z in L of length at least k, there are strings u, v, w, x, y such that

- z = uvwxy,
- $vx \neq \epsilon$,
- $|vwx| \leq k$, and
- for each $i \ge 0$, the string $uv^i wx^i y$ belongs to L.

$$u \quad v \quad w \quad x \quad y$$

Parse trees for CFG's

Derivations can be represented as parse trees:

Example derivation:

- $S \Rightarrow aSb$
 - \Rightarrow aaSbb
 - \Rightarrow aaaSbbb
 - \Rightarrow aaaaSbbbb
 - \Rightarrow aaaabbbb.

Cutting and pasting in parse trees

Subtrees hanging at same non-terminal can be replaced for eachother.

€ 990

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

A long string must have a deep parse tree, which in turn means a path with a repeated non-terminal.

Proof

- Let G be a CNF grammar for L.
- A complete binary tree with *i* levels has 2^{i-1} leaf nodes.
- A parse tree in G with *i* levels has a terminal string ("yield") of length at most 2^{i-2} .
- Hence a string of length 2^n or more, must have a parse tree of at least n + 2 levels.
- Take $k = 2^n$ where *n* is number of non-terminals in *G*.

Proof - II

- Consider parse tree in G of a string z of length at least k = 2ⁿ.
- Consider longest path from root to leaf.
- Choose the first repeated non-terminal X starting from bottom of path.
- Path from upper X down to leaf is at most n + 2 levels. Also it must be the longest path in the subtree rooted at X. Hence length of vwx is at most 2ⁿ.
- Also $vx \neq \epsilon$, as G is a CNF grammar.

Proof - II

- Consider parse tree in G of a string z of length at least k = 2ⁿ.
- Consider longest path from root to leaf.
- Choose the first repeated non-terminal X starting from bottom of path.
- Path from upper X down to leaf is at most n + 2 levels. Also it must be the longest path in the subtree rooted at X. Hence length of vwx is at most 2ⁿ.
- Also $vx \neq \epsilon$, as G is a CNF grammar.
- Each $uv^i wx^i y$ also belongs to L(G).

Applications

Argue that the following languages are not CFL's:

•
$$\{a^n b^n c^n \mid n \ge 0\}.$$

Applications

Argue that the following languages are not CFL's:

- $\{a^n b^n c^n \mid n \ge 0\}.$
- $\{ww \mid w \in \{a, b\}^*\}.$

Closure Properties of CFL's

	Closed?
Union	

Closure Properties of CFL's

	Closed?
Union	\checkmark
Intersection	

Closure Properties of CFL's

	Closed?
Union Intersection	√ X
Complementation	

Closure Properties of CFL's

	Closed?
Union	
Intersection	Х
Complementation	Х