Deterministic PDA's

Deepak D'Souza

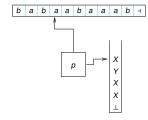
Department of Computer Science and Automation Indian Institute of Science, Bangalore.

06 Nov 2018

Outline

- Deterministic PDA's
- Closure properties of DCFL's
- 3 Complementing DPDA's

Deterministic PDA's



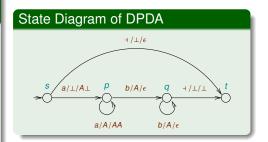
A PDA with restrictions that:

- At most one move possible in any configuration.
 - For any state p, $a \in A$, and $X \in \Gamma$: at most one move of the form $(p, a, X) \rightarrow (q, \gamma)$ or $(p, \epsilon, X) \rightarrow (q, \gamma)$.
 - Effectively, a DPDA must see the current state, and top of stack, and decide whether to make an ϵ -move or read input and move.
- Accepts by final state.
- We need a right-end marker "¬" for the input.

Example DPDA

Example DPDA for $\{a^nb^n \mid n \geq 0\}$

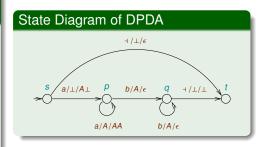
$$\begin{array}{cccc} (s,a,\bot) & \rightarrow & (p,A\bot) \\ (p,a,A) & \rightarrow & (p,AA) \\ (p,b,A) & \rightarrow & (q,\epsilon) \\ (q,b,A) & \rightarrow & (q,\epsilon) \\ (q, \downarrow, \bot) & \rightarrow & (t, \bot) \\ (s, \downarrow, \bot) & \rightarrow & (t, \bot). \end{array}$$



Example DPDA

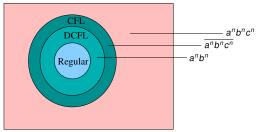
Example DPDA for $\{a^nb^n \mid n \ge 0\}$

$$\begin{array}{cccc} (s,a,\bot) & \rightarrow & (p,A\bot) \\ (p,a,A) & \rightarrow & (p,AA) \\ (p,b,A) & \rightarrow & (q,\epsilon) \\ (q,b,A) & \rightarrow & (q,\epsilon) \\ (q, \dashv, \bot) & \rightarrow & (t, \bot) \\ (s, \dashv, \bot) & \rightarrow & (t, \bot). \end{array}$$



Class of languages accepted by DPDA's are called DCFL's.

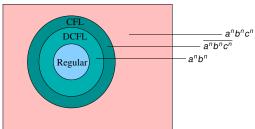
All languages over A



Closed?

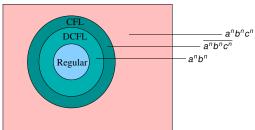
Complementation

All languages over A



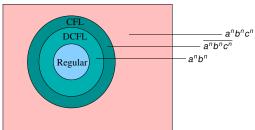
	Closed?
Complementation Union	√

All languages over A



	Closed?
Complementation Union Intersection	√ X

All languages over A



	Closed?
Complementation Union	√ X
Intersection	X

DCFL's are closed under complementation

Theorem (Closure under complementation)

The class of languages definable by Deterministic Pushdown Automata (i.e. DCFL's) is closed under complementation.

Problem with complementing a DPDA

Try flipping final and non-final states. Problems?

Loops denote an infinite sequence of ϵ -moves.

Desirable form of DPDA

Goal is to convert the DPDA into the form:

That is, always reads its input and reaches a final/reject sink state.

Then we can make r' the unique accepting state, to accept the complement of M.

Construction - Step 1

Let $M = (Q, A, \Gamma, s, \delta, \bot, F)$ be given DPDA. First construct DPDA M' which

- Does not get stuck due to no transition or stack empty.
- Has only "sink" final states.

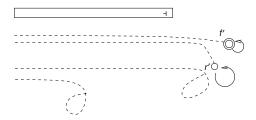
Construction - Step 1

Define $M' = (Q \cup Q' \cup \{s_1, r, r'\}, A, \Gamma \cup \{\bot\}, s_1, \delta', \bot, F')$ where

- $Q' = \{q' \mid q \in Q\} \text{ and } F' = \{f' \mid f \in F\}.$
- δ' is obtained from δ as follows:
 - Assume M is "complete" (does not get stuck due to no transition). (If not, add a dead state and add transitions to it.)
 - Make sure M' never empties its stack, keep track of whether we have seen end of input (primed states) or not (unprimed states):

After Step 1

DPDA M' only has the following kinds of behaviours now:



Loops denote an infinite sequence of ϵ -moves.

Construction - Step 2

A spurious transition in M' is a transition of the form $(p, \epsilon, X) \rightarrow (q, \gamma)$ such that

$$(p, \epsilon, X) \stackrel{*}{\Rightarrow} (p, \epsilon, X\alpha)$$

for some stack contents α .

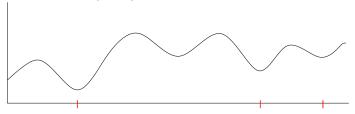
Identify spurious transitions in M' and remove them: If $(p, \epsilon, X) \to (q, \gamma)$ is a spurious transition, replace it with

$$(p, \epsilon, X) \rightarrow (r, X)$$
 If $p \in Q$
 $(p, \epsilon, X) \rightarrow (r', X)$ If $p \in Q' - F'$.

Correctness

Argue that:

- Deleting a spurious transition (starting from a non-F'-final state) does not change the language of M'.
- All infinite loops use a spurious transition.
 - Look at graph of stack height along infinite loop, and argue that there are infinitely many future minimas.



- Further look at transitions applied at these points and observe that one must repeat.
- Thus replacing spurious transitions as described earlier will remove the remaining undesirable loops from M's behaviours.

Complementing

• Resulting M'' has the desired behaviour (every run either reaches a final sink state or the reject sink state r'.).

 Now make r' unique final state to complement the language of M.

Detecting spurious transitions

Question: How can we effectively detect spurious transitions?

Detecting spurious transitions

Question: How can we effectively detect spurious transitions? Use algorithm for pushdown reachablity.