

Nested Words and Automata

Indian Institute of Science

Alvin George
2019 Nov 29

Overview

- Motivation
- Nested Words
- Operations on Nested Words
- Nested Words Applications

Appeal of Regular Languages

- Well-understood expressiveness: multiple characterizations
 - ◆ Deterministic/nondeterministic/alternating finite automata
 - ◆ Regular expressions
 - ◆ Monadic second order logic of linear order
 - ◆ Syntactic congruences
- Regular languages are effectively closed under many operations
 - ◆ Union, intersection, complement, concatenation, Kleene-*, homomorphisms...
- Algorithms for decision problems
 - ◆ Membership
 - ◆ Determinization and minimization
 - ◆ Language emptiness (single-source graph reachability)
 - ◆ Language inclusion, language equivalence ...

Checking Structured Programs

- Control-flow requires stack, so (abstracted) program P defines a context-free language
- Algorithms exist for checking regular specifications against context-free models
 - ◆ Emptiness of pushdown automata is solvable
 - ◆ Product of a regular language and a context-free language is context-free
- But, checking context-free spec against a context-free model is undecidable!
 - ◆ Context-free languages are not closed under intersection
 - ◆ Inclusion as well as emptiness of intersection undecidable
- Existing software model checkers: pushdown models (Boolean programs) and regular specifications

Are Context-free Specs Interesting?

- Classical Hoare-style pre/post conditions
 - ◆ If p holds when procedure A is invoked, q holds upon return
 - ◆ Total correctness: every invocation of A terminates
 - ◆ Integral part of emerging standard JML
- Stack inspection properties (security/access control)
 - ◆ If setuuid bit is being set, root must be in call stack
- Interprocedural data-flow analysis
- All these need matching of calls with returns, or finding unmatched calls
 - ◆ Recall: Language of words over $[,]$ such that brackets are well matched is not regular, but context-free

Checking Context-free Specs

- Many tools exist for checking specific properties
 - ◆ Security research on stack inspection properties
 - ◆ Annotating programs with asserts and local variables
 - ◆ Inter-procedural data-flow analysis algorithms
- What's common to checkable properties?
 - ◆ Both program P and spec S have their own stacks, but the two stacks are synchronized
- As a generator, program should expose the matching structure of calls and returns

Solution: Nested words and theory of regular languages over nested words

Program Executions as Nested Words

Program

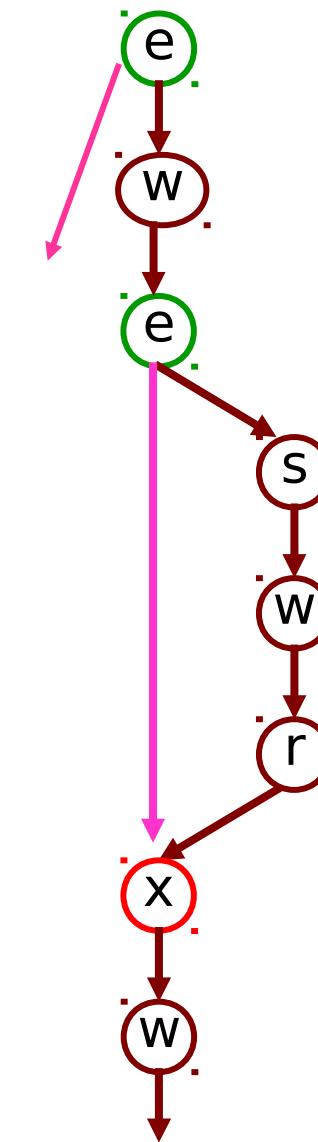
```
global int x;  
main() {  
    x = 3;  
    if P  x = 1 ;  
    ....  
}  
  
bool P () {  
    local int y=0;  
    x = y;  
    return (x==0);  
}
```

If a procedure writes to x , it must later read it

An execution as a word

Symbols:
w : write x
r : read x
e: enter
x: exit
s : other

An execution as a nested word



Summary edges from calls to returns

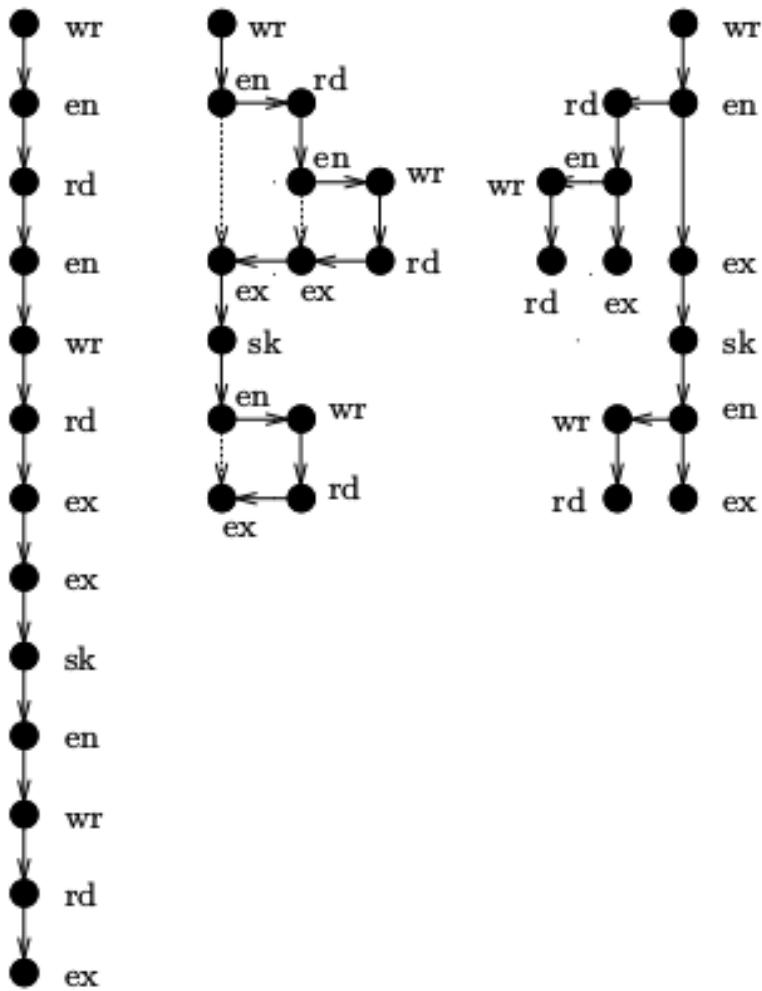
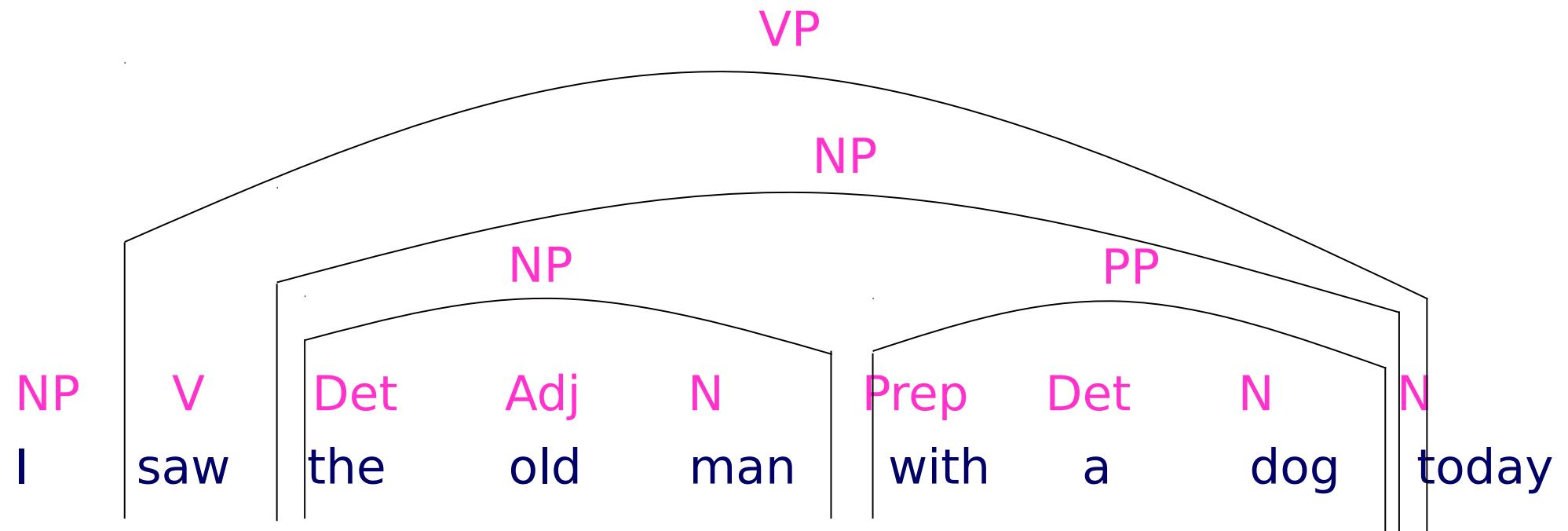


Fig. 1. Execution as a word, as a nested word, and as a tree

Linguistic Annotated Data



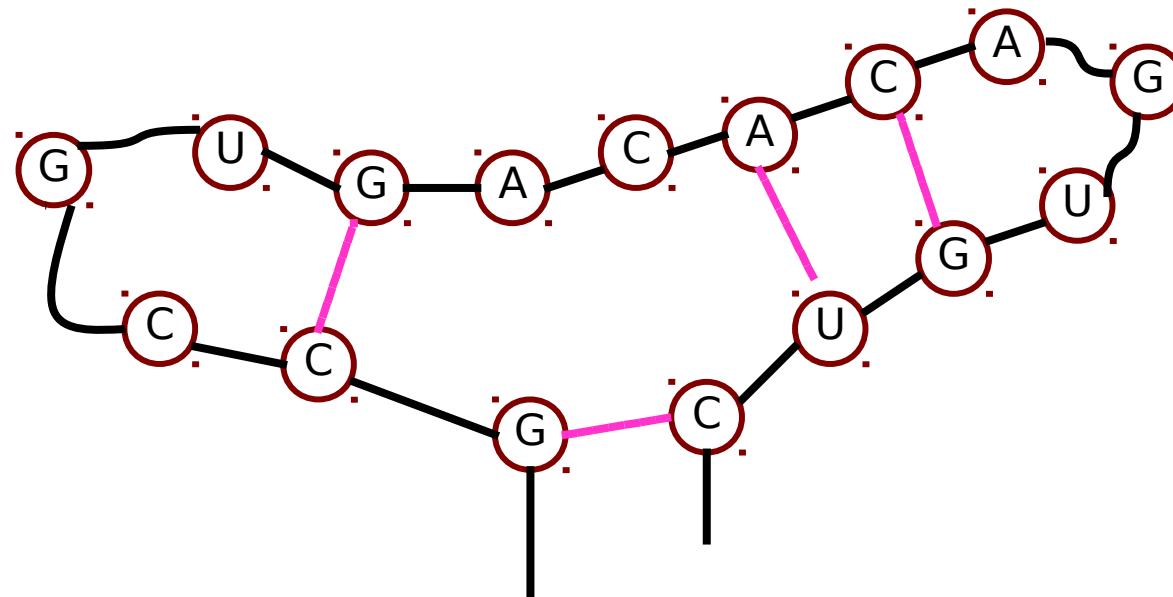
Linguistic data stored as annotated sentences (eg. Penn Treebank)

Sample query: Find nouns that follow a verb which is a child of a verb phrase

RNA as a Nested Word

Primary structure: Linear sequence of nucleotides (A, C, G, U)

Secondary structure: Hydrogen bonds between complementary nucleotides (A-U, G-C, G-U)



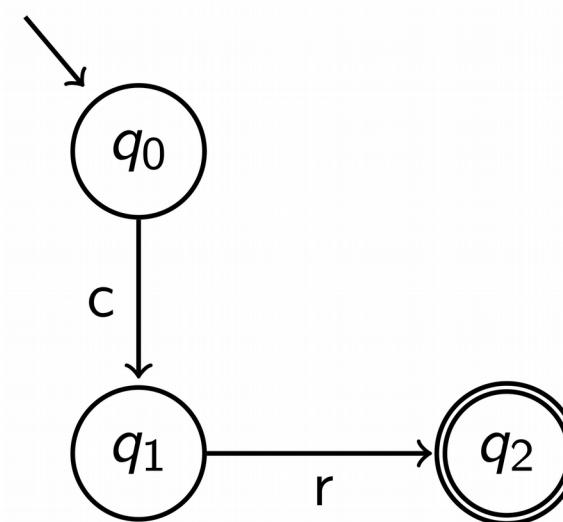
In literature, this is modeled as trees.

Algorithmic question: Find similarity between RNAs using edit distances

Regular language

```
1 procedure foo()
2 {
3     return ;
4 }
```

$$\mathcal{L}_1 = \{c\ r\}$$



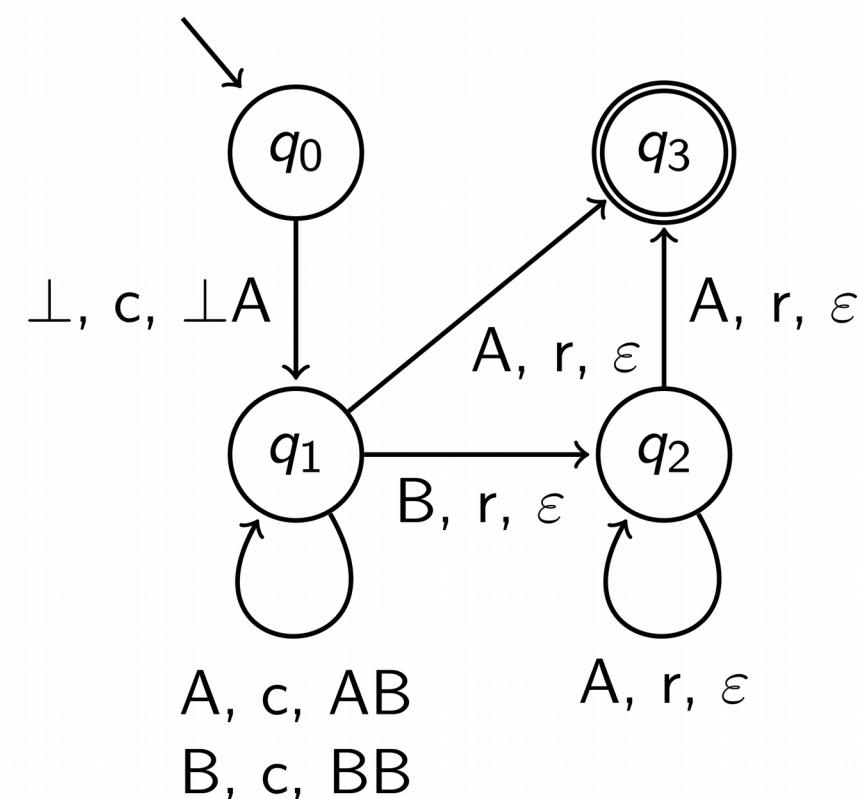
(det.) Context-free language

```

1  procedure bar()
2  {
3      if (*)
4          call bar();
5      return;
6  }

```

$$\mathcal{L}_2 = \{c^n r^n \mid n > 0\}$$



Comparison

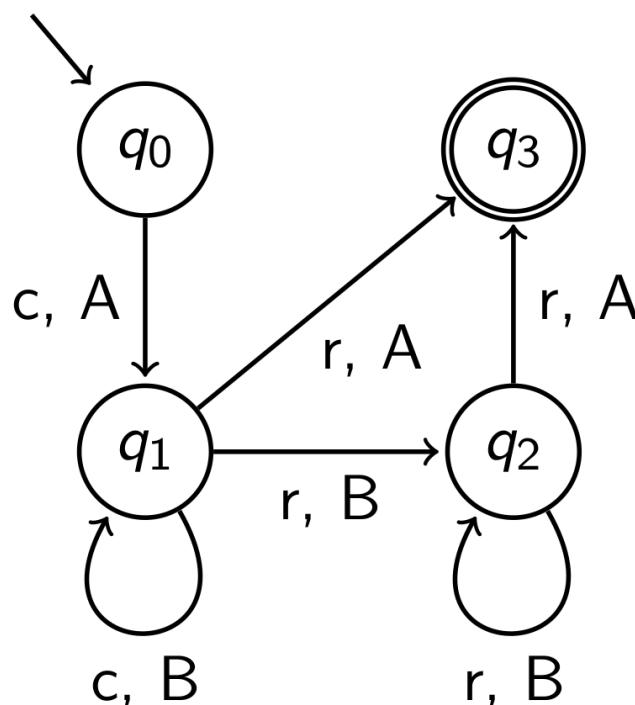
😊 😐 😐 😐	regular	context-free
comparison of numbers	constants	two variables
closure	all standard properties	not under intersection and complementation
decidability	all standard problems	intersection, inclusion, equivalence undecidable
determinize	powerset construction	not possible

Question: Is there some class of languages in between that is more expressive than regular languages, but keeps their nice properties?

Answer (Alur & Madhusudan 2004): yes, at least in some sense

\mathcal{L}_2 as VPL

Consider again $\mathcal{L}_2 = \{c^n r^n \mid n > 0\}$. We construct a VPA for \mathcal{L}_2 .



Partitioning:

$$\Sigma_i = \emptyset, \Sigma_c = \{c\}, \Sigma_r = \{r\}$$

$$\delta_c = \{ (q_0, c, A, q_1), (q_1, c, B, q_1) \}$$

$$\delta_r = \{ (q_1, r, A, q_3), (q_1, r, B, q_2), (q_2, r, A, q_3), (q_2, r, B, q_2) \}$$

From VPAs to NWAs

- main differences between VPAs and PDAs:
 - closed under determinism
 - partitioning of the alphabet
 - very limited use of the stack
- Do we really need the stack?
(Alur & Madhusudan 2006): no, with some further treatment of the input → *nested words* (NWs)
- automaton model: *nested word automata* (NWAs)
- *nested word languages* (NWLs) and VPLs have same power
→ NWAs \preceq deterministic PDAs
- main idea: call and return symbols are matched in the input

Nested words

A relation $\sim \subset \{-\infty, 1, 2, \dots, \ell\} \times \{1, 2, \dots, \ell, \infty\}$ of length $\ell \geq 0$ is a *matching relation* if the following holds:

- I if $i \sim j$, then $i < j$ (monotone)
- II if $i_1 \sim j$ and $i_2 \sim j$, then $i_1 = i_2$ (left-unique)
if $i \sim j_1$ and $i \sim j_2$, then $j_1 = j_2$ (right-unique)
- III if $i_1 \sim j_1$ and $i_2 \sim j_2$, then we have not $i_1 < i_2 < j_1 < j_2$ (well nested)

Explanation:

- I not **r c**, not reflexive
- II not **c c r**, not **c r r**
- III not **c c r r**

ex post note: $(-\infty, \infty) \notin \sim$,
 $\pm\infty$ excluded from uniqueness

Nested words

A relation $\sim \subset \{-\infty, 1, 2, \dots, \ell\} \times \{1, 2, \dots, \ell, \infty\}$ of length $\ell \geq 0$ is a *matching relation* if the following holds:

- I if $i \sim j$, then $i < j$ (monotone)
- II if $i_1 \sim j$ and $i_2 \sim j$, then $i_1 = i_2$ (left-unique)
- if $i \sim j_1$ and $i \sim j_2$, then $j_1 = j_2$ (right-unique)
- III if $i_1 \sim j_1$ and $i_2 \sim j_2$, then we have not $i_1 < i_2 < j_1 < j_2$ (well nested)

If $i \sim j$, i is a *call position* and j is a *return position*. All the rest is an *internal position*. If $i \neq -\infty$ and $j \neq \infty$, they are *well-matched*, otherwise *pending*. $e \in \sim$ is a *nesting edge*.

A *nested word* n over Σ is a pair $(a_1 \cdots a_\ell, \sim)$, where $a_i \in \Sigma$ and \sim is a matching relation of length ℓ .

Well nested sequences

A sequence of symbols is *well nested* if calls and returns are matched without crossing, i.e., for any different call-return-pairs $(c_i, r_i), (c_j, r_j)$, $c_i < c_j < r_i < r_j$ is forbidden.

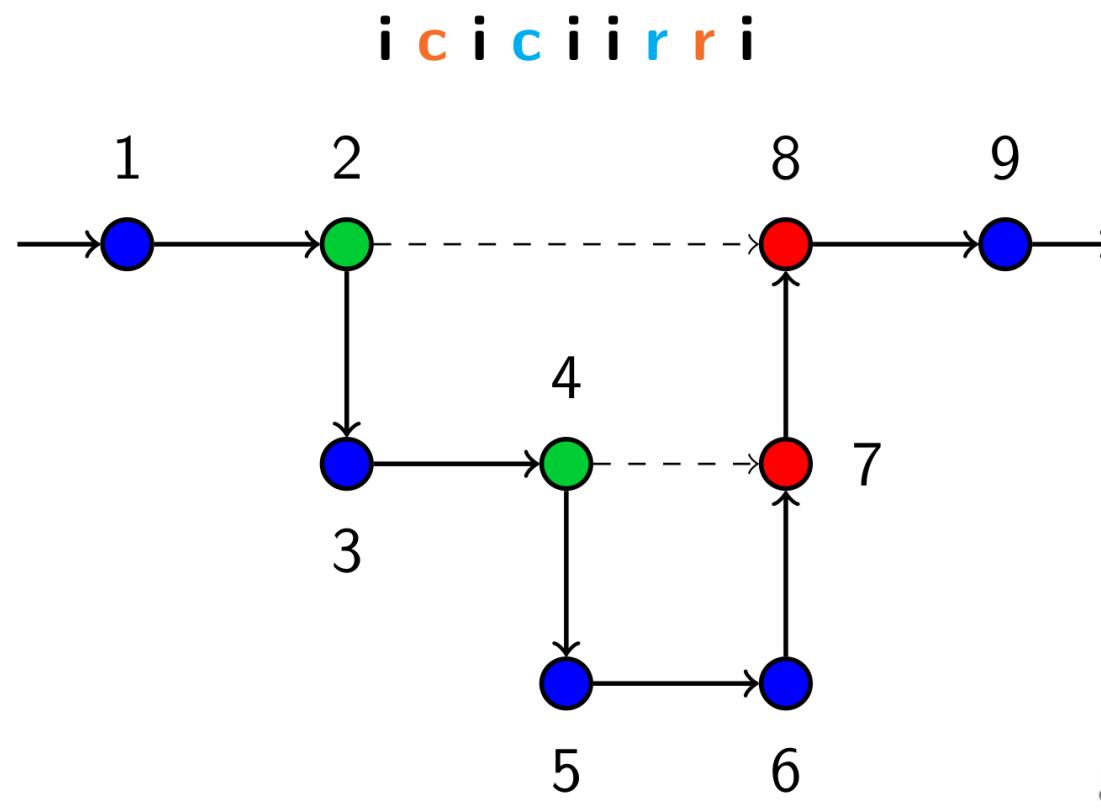
Examples:

i c i c i r r i

r c r r c i c i

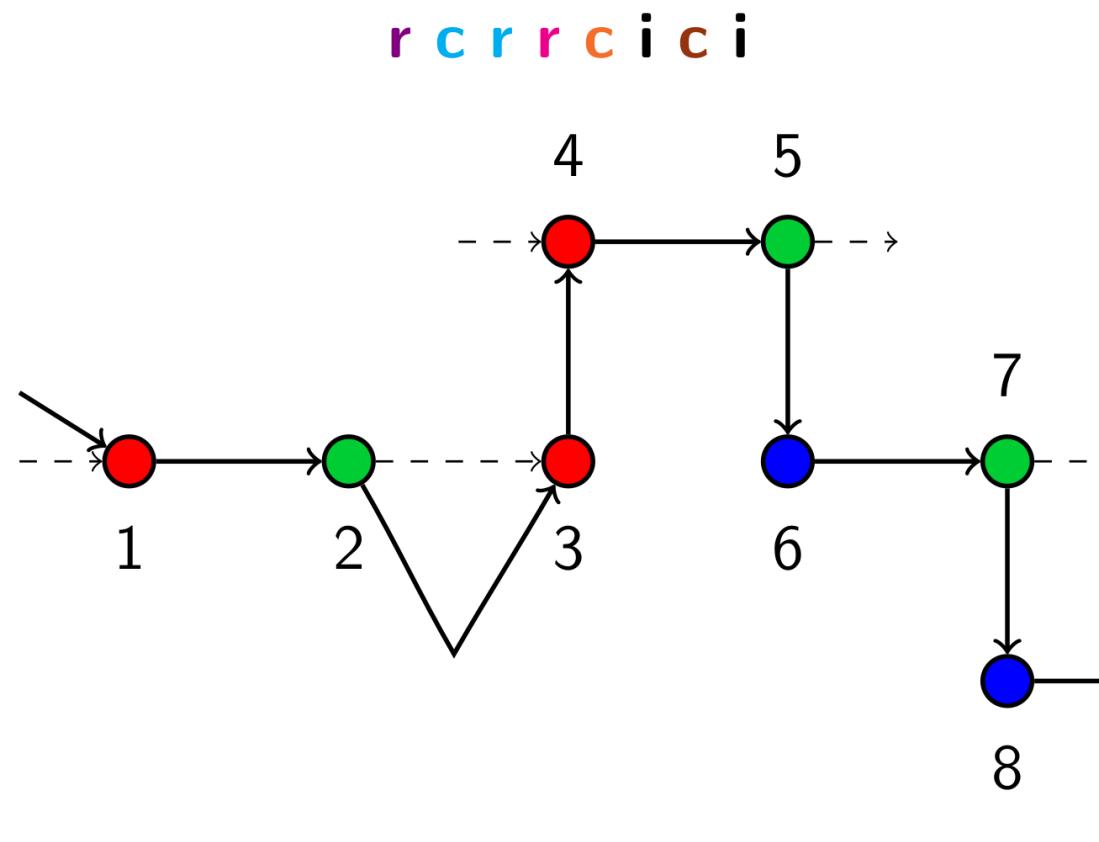
Note: Every sequence has a unique well nesting.

Example 1



Here: $2 \rightsquigarrow 8$, $4 \rightsquigarrow 7$ and the whole word is well-matched.

Example 2



Here: $-\infty \rightsquigarrow 1$, $2 \rightsquigarrow 3$, $-\infty \rightsquigarrow 4, 5 \rightsquigarrow \infty$, $7 \rightsquigarrow \infty$ and only $2 \rightsquigarrow 3$ is well-matched.

Program Executions as Nested Words

Program

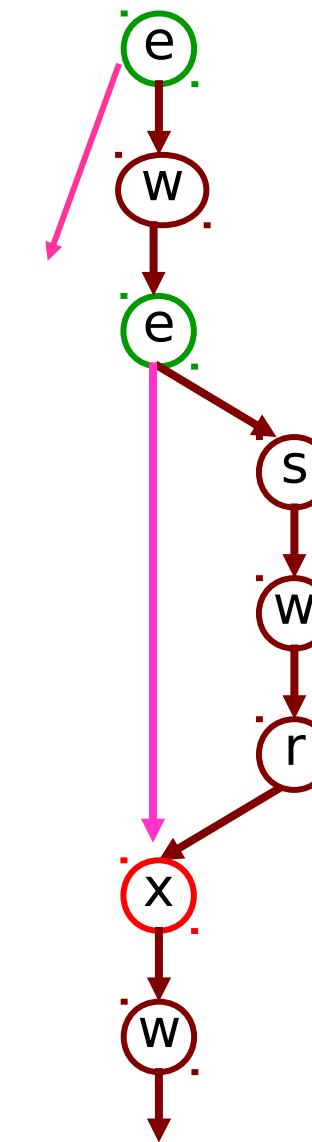
```
global int x;  
main() {  
    x = 3;  
    if P  x = 1 ;  
    ....  
}  
  
bool P () {  
    local int y=0;  
    x = y;  
    return (x==0);  
}
```

If a procedure writes to x , it must later read it

An execution as a word

Symbols:
w : write x
r : read x
e: enter
x: exit
s : other

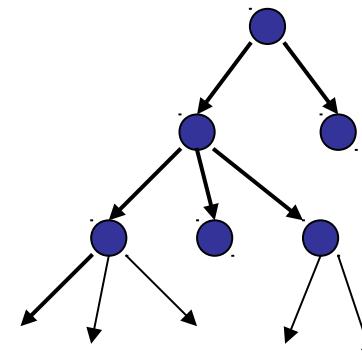
An execution as a nested word



Summary edges from calls to returns

Words:

Data with linear order

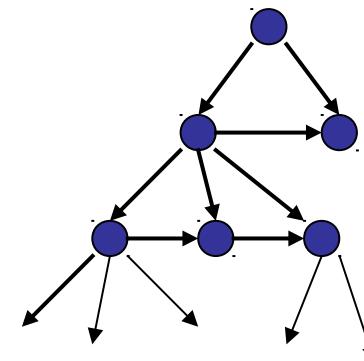


(Unordered) Trees:

Data with hierarchical order

Nested Words (AM06):

Data with linear order +
Nesting edges

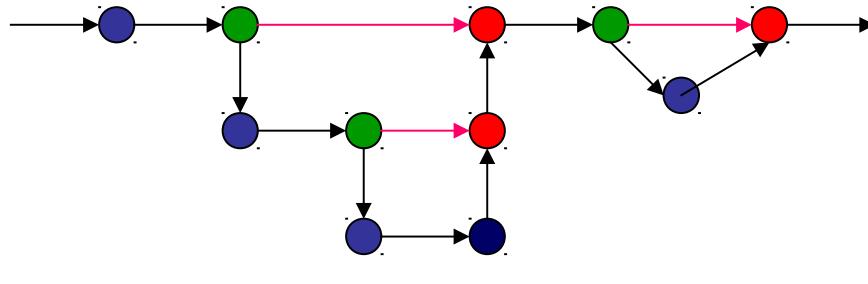
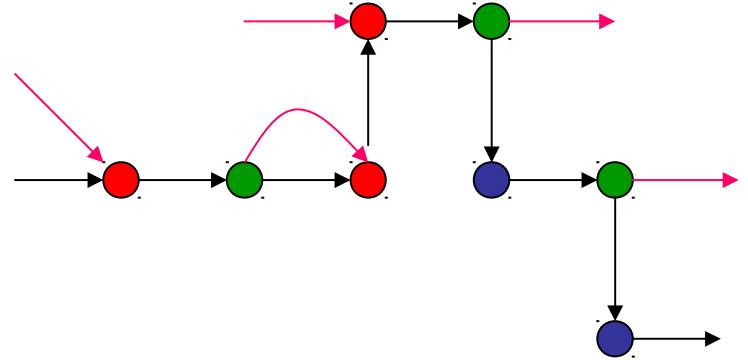


Ordered Trees/Hedges:

Data with hierarchical order +
Linear order on siblings

Nested Shape:

- ◆ Linear sequence + Non-crossing nesting edges
- ◆ Nesting edges can be pending, Sequence can be infinite



Positions classified as:

- ◆ Call positions: both linear and hierarchical outgoing edges
- ◆ Return positions: both linear and hierarchical incoming edges
- ◆ Internal positions: otherwise

Nested word:

Nested shape + Positions labeled with symbols in Σ

Concatenation of Nested Words

Given two nested words

$nw1 = (w1, v1)$ and $nw2 = (w2, v2)$,
of lengths $k1$ and $k2$, respectively,

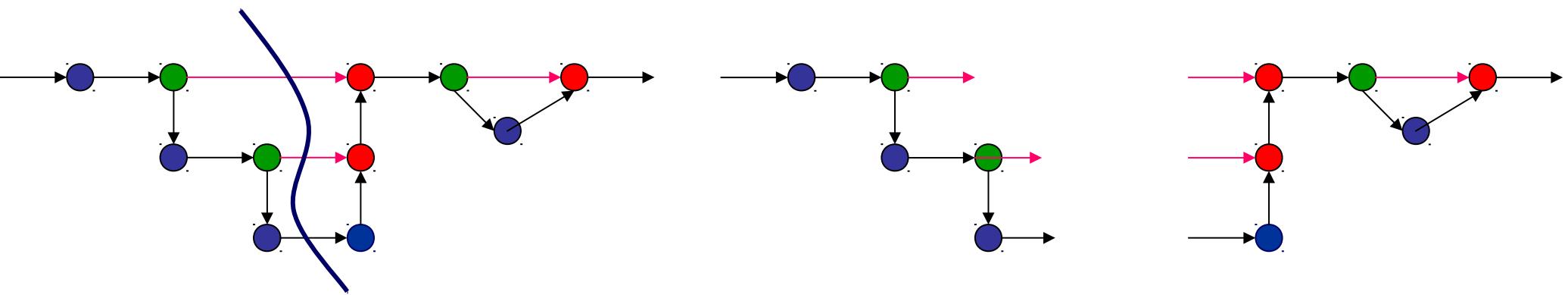
the concatenation of $nw1$ and $nw2$ is the nested word

$nw1 . nw2 = (w1 . w2, v)$ of length $k1 + k2$,
where v is the nested relation

$$v1 \cup \{(k1 + i, k1 + j) \mid (i, j) \in v2\}.$$

Word operations:

Prefixes, suffixes, concatenation, reverse



Insertion for nested words

A context is a pair (nw, i)

where nw is a nested word of length k , and $0 \leq i \leq k$.

Given a context (nw, i) , for $nw = (a_1 \dots a_k, v)$,
and a nested word nw' , with $nw' = (w', v')$,

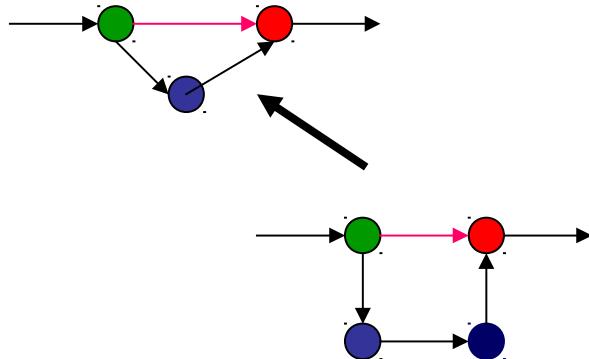
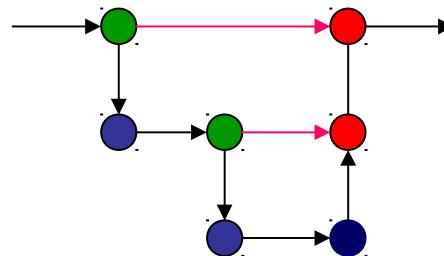
$(nw, i) \oplus nw'$ is the nested word obtained by inserting the
nested word nw' at position i in nw .

More precisely, $(nw, i) \oplus nw'$ is the
nested word $(a_1 \dots a_i.w'.a_{i+1} \dots a_k, v'')$, where
 $v'' = \{(\pi_1(j), \pi_1(j')) \mid (j, j') \in v\}$
 $\cup \{(\pi_2(j), \pi_2(j')) \mid (j, j') \in v'\}$

where $\pi_1(j) = j$, if $j \leq i$,
 $= |w'| + j$ otherwise,
and $\pi_2(j) = i + j$

Tree operations:

- Inserting/deleting well-matched words
- Well-matched: no pending calls/returns



Word Encoding

- The tagged alphabet $\hat{\Sigma}$ to be the set $\Sigma \cup \langle \Sigma \rangle$. Formally,
- we define the mapping $nw_w : NW(\Sigma) \rightarrow \hat{\Sigma}^*$

Definition of NWAs

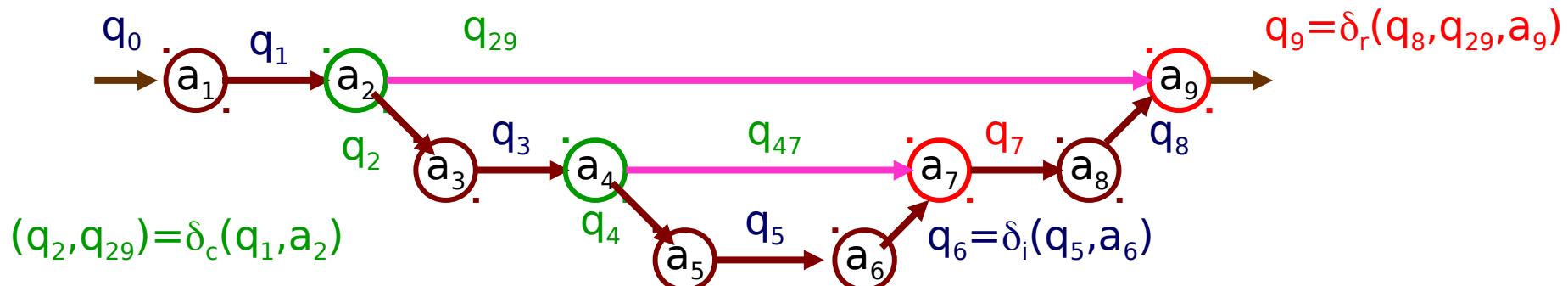
$\mathcal{A} = \langle Q, q_0, Q_f, P, p_0, P_f, \delta_i, \delta_c, \delta_r \rangle$ over alphabet Σ

- Q finite set of *linear* states,
- $q_0 \in Q$ initial *linear* state,
- $Q_f \subseteq Q$ set of *linear* final states,
- P finite set of *hierarchical* states,
- $p_0 \in P$ initial *hierarchical* state,
- $P_f \subseteq P$ set of *hierarchical* final states,
- $\delta_i \subseteq Q \times \Sigma \rightarrow Q$ internal transition function,
- $\delta_c \subseteq Q \times \Sigma \rightarrow Q \times P$ call transition function,
- $\delta_r \subseteq Q \times P \times \Sigma \rightarrow Q$ return transition function

acceptance via both Q_f and P_f

as VPAs: at return implicitly go to hierarchical state before matching call

Nested Word Automata (NWA)

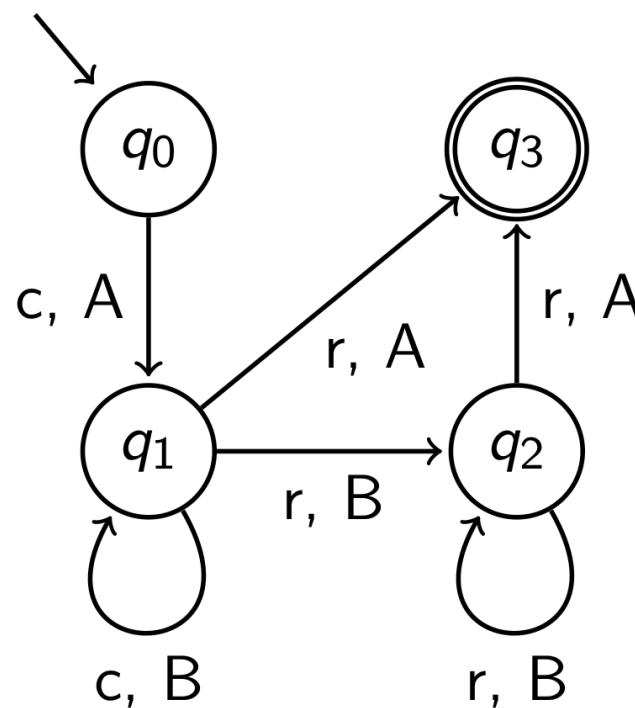


- ◆ States Q , initial state q_0 , final states F
- ◆ Reads the word from left to right labeling edges with states
- ◆ Transition function:
 - $\delta_c : Q \times \Sigma \rightarrow Q \times Q$ (for call positions)
 - $\delta_i : Q \times \Sigma \rightarrow Q$ (for internal positions)
 - $\delta_r : Q \times Q \times \Sigma \rightarrow Q$ (for return positions)
- ◆ Nested word is accepted if the run ends in a final state

\mathcal{L}_2 as NWA

Consider again $\mathcal{L}_2 = \{c^n \ r^n \mid n > 0\}$.

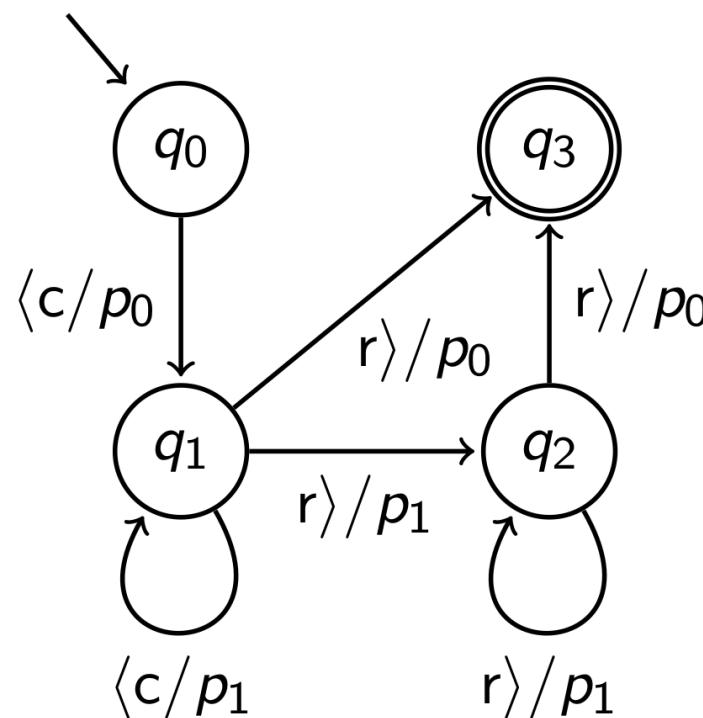
We construct an NWA for $\mathcal{L}'_2 := \{(\langle c \rangle^n \ (r))^n \mid n > 0\}$.



\mathcal{L}_2 as NWA

Consider again $\mathcal{L}_2 = \{c^n \ r^n \mid n > 0\}$.

We construct an NWA for $\mathcal{L}'_2 := \{(\langle c \rangle^n \ (r \rangle)^n \mid n > 0\}$.



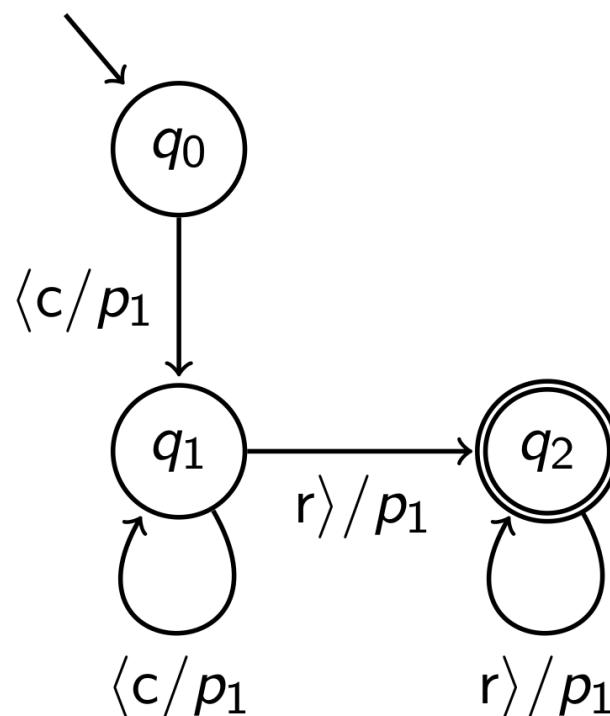
$$P = \{p_0, p_1\}, \quad P_f \subseteq \{p_0\}$$

\mathcal{L}_2 as NWA

Consider again $\mathcal{L}_2 = \{c^n \ r^n \mid n > 0\}$.

We construct an NWA for $\mathcal{L}'_2 := \{(\langle c \rangle^n \ (r\rangle)^n \mid n > 0\}$.

We can also use hierarchical states for acceptance.



$$P = \{p_0, p_1\}, \quad P_f = \{p_0\}$$

Remarks

- no stack anymore, but structure on the input word
- nondeterministic NWAs: $Q_0 \subseteq Q$, $P_0 \subseteq P$, δ
possibly exponentially more states for deterministic NWAs
- not all sets of NWs acceptable by NWAs
 $\{(\langle a \rangle^n (b \rangle))^n \mid n > 0\}$ vs. $\{a^n b^n \mid n > 0\}$

Comparison of properties

	DFA	DNWA	PDA	DPDA
pre-/suffix	✓	✓	✓	✓
$\cup, \cdot, *$	✓	✓	✓	✗
complement	✓	✓	✗	✓
\cap	✓	✓	✗	✗
emptiness	NLOGSPACE	PTIME	PTIME	PTIME
equivalence	NLOGSPACE	PTIME	undecidable	decidable
inclusion	NLOGSPACE	PTIME	undecidable	undecidable

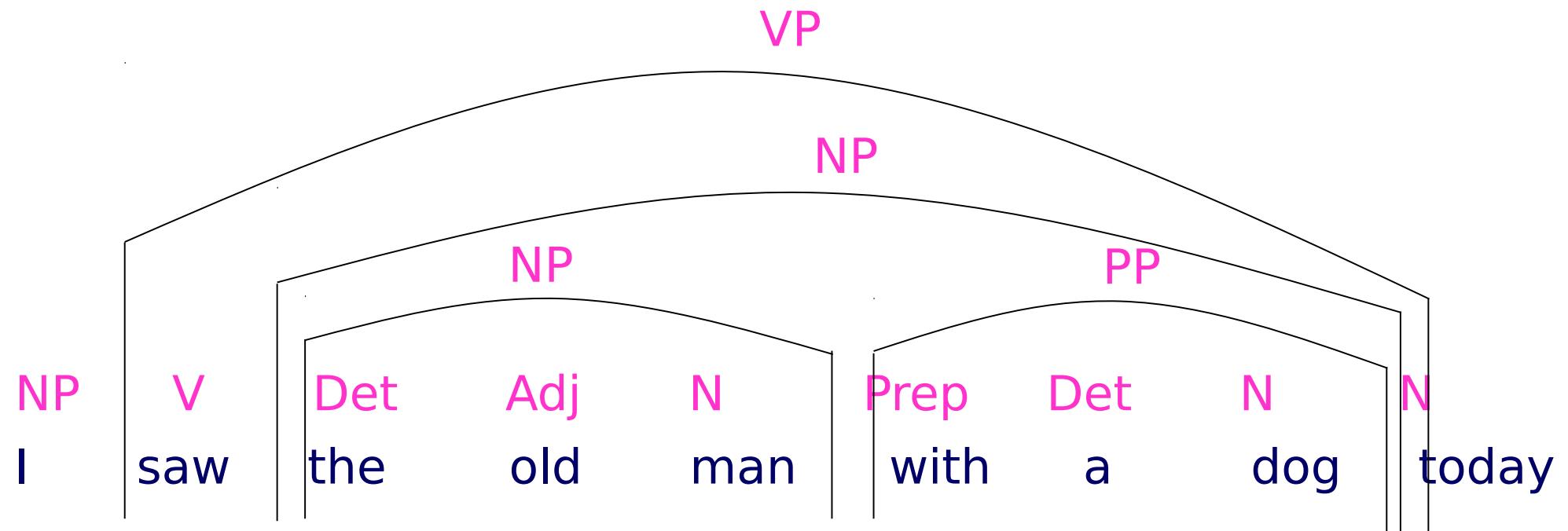
Note: Equivalence and inclusion problem are EXPTIME-complete for nondeterministic NWAs.

Implication: determinization $\in \Omega(\text{EXPTIME})$ if at all possible

Regular Languages of Nested Words

- A set of nested words is regular if there is a finite-state NWA that accepts it
- Nondeterministic automata over nested words
 - ◆ Transition function: $\delta_c: Q \times \Sigma \rightarrow 2^{Q \times Q}$, $\delta_i: Q \times \Sigma \rightarrow 2^Q$, $\delta_r: Q \times Q \times \Sigma \rightarrow 2^Q$
 - ◆ Can be determinized: blow-up 2^{n^2}
- Appealing theoretical properties
 - ◆ Effectively closed under various operations (union, intersection, complement, concatenation, prefix-closure, projection, Kleene-* ...)
 - ◆ Decidable decision problems: membership, language inclusion, language equivalence ...
 - ◆ Alternate characterization: MSO, syntactic congruences

Linguistic Annotated Data



Linguistic data stored as annotated sentences (eg. Penn Treebank)

Sample query: Find nouns that follow a verb which is a child of a verb phrase

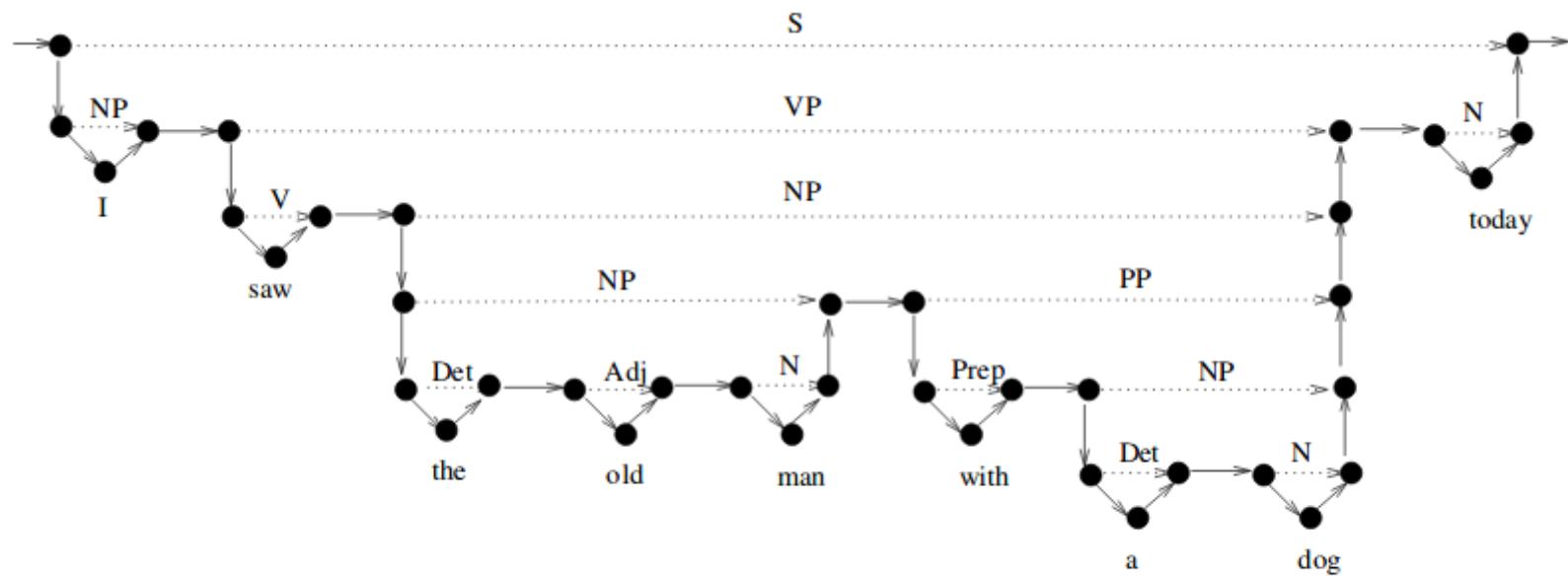


Fig. 4. Parsed sentence as a nested word

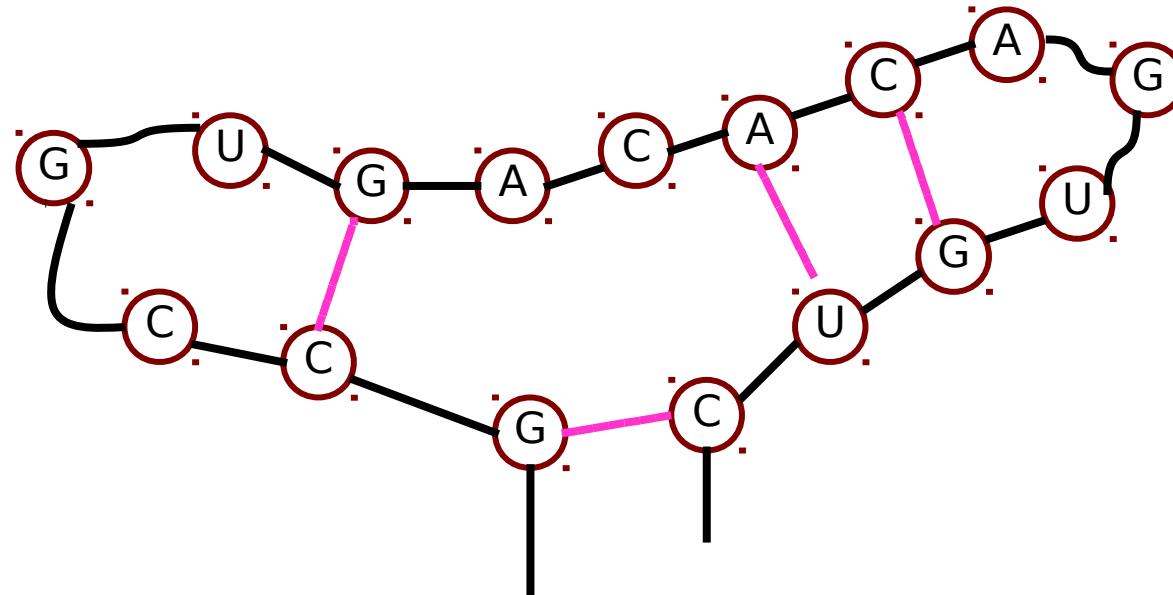
```
<S>
  <NP> I
  </NP>
  <VP>
    <V> saw
    </V>
    <NP>
      <NP>
        <Det> the
        </Det>
        <Adj> old
        </Adj>
        <N> man
        </N>
      </NP>
      <PP>
        <Prep> with
        </Prep>
        <NP>
          <Det> a
          </Det>
          <N> dog
          </N>
        </NP>
      </PP>
    </NP>
  </VP>
  <N> today
  </N>
</S>
```

Fig. 5. XML representation of parsed sentence

RNA as a Nested Word

Primary structure: Linear sequence of nucleotides (A, C, G, U)

Secondary structure: Hydrogen bonds between complementary nucleotides (A-U, G-C, G-U)



In literature, this is modeled as trees.

Algorithmic question: Find similarity between RNAs using edit distances

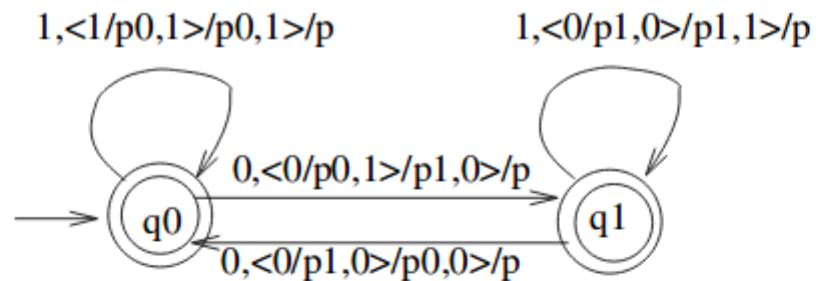
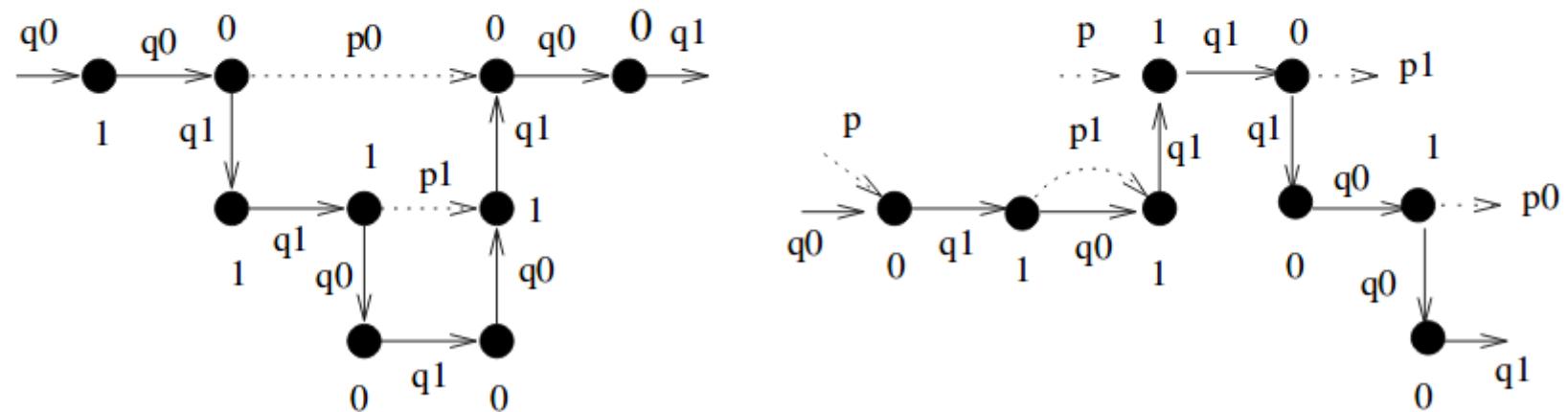


Fig. 6. Example of an NWA and its runs

References

- Adding Nested Structure to Words, Rajeev Alur and P. Madhusudan, JACM 2009
- Adding Nested Structure to Words, Rajeev Alur and P. Madhusudan, DLT 2006
- Marrying Words and Trees (slides), Rajeev Alur
- Nested Word Automata (slides), Christian Schilling