# Presburger formulas and Semilinear sets A proof of their equivalence

### Rohit Kumar and Adithya Upadhya

UG department, IISc

## Overview



- 2 Presburger formulas
  - Formulas
  - Sets
  - Closure Properties
- 3 Semilinear sets
  - Definitions
  - Examples
  - Properties
- 4 Semilinear  $\subseteq$  Presburger
- **5** Presburger  $\subseteq$  Semilinear
- 6 References

# Notation

Corresponding operations on Presburger formulas and subsets of  $\mathbb{N}^n$ :

- $\lor$  Conjunction and  $\cup$  Union (finite)
- $\wedge$  Disjunction and  $\cap$  Intersection (finite)
- $\neg$  Negation and  $\mathbb{N}^n X$  Complementation
- $\exists$  Universal quantifier and  $\pi:\mathbb{N}^{n+1}\to\mathbb{N}^n$  Projection

## Partial Order on $\mathbb{N}^n$

We define a partial order on  $\mathbb{N}^n$ , denoted  $\leq$ . Given  $a, b \in \mathbb{N}^n$ , we say  $a \leq b$  if  $a_i \leq b_i \ \forall \ 1 \leq i \leq n$ .

**Lemma:** If  $S \subseteq \mathbb{N}^n$  is such that elements in S are pairwise incomparable, then S is finite.

**Proof:** By induction on *n*.

Formulas Sets Closure Properties

## Modified Presburger formulas Definitions

The set of all (modified) Presburger formulas  $\mathscr P$  is the smallest set satisfying

- $t_0 + \sum_{i=1}^n t_i x_i = t'_0 + \sum_{i=1}^n t'_i x_i$ , where  $x_i$  for  $1 \le i \le n$  are free variables, is in  $\mathscr{P}$ .
- If  $\mathcal{P}_1$  and  $\mathcal{P}_2$  are in  $\mathscr{P}$ , then  $\mathcal{P}_1 \lor \mathcal{P}_2$  and  $\mathcal{P}_1 \land \mathcal{P}_2$  are also in  $\mathscr{P}$ .
- If  $\mathcal{P}$  is in  $\mathscr{P}$ ,  $\neg \mathcal{P}$  is in  $\mathscr{P}$ .
- If  $\mathcal{P}(x_1, ..., x_n)$  is in  $\mathscr{P}$ , then  $(\exists x_i)\mathcal{P}(x_1, ..., x_n)$  is in  $\mathscr{P}$  for  $1 \leq i \leq n$ .

Formulas Sets Closure Properties

# Presburger formulas Examples

S

Notice that the following formulas are also in  $\mathscr{P}$ :

• 
$$t_0 + \sum_{i=1}^n t_i x_i \leq t'_0 + \sum_{i=1}^n t'_i x_i$$
, equivalent to  
 $(\exists z)(z + t_0 + \sum_{i=1}^n t_i x_i = t'_0 + \sum_{i=1}^n t'_i x_i)$   
•  $(\forall x_i)\mathcal{P}(x_1, ..., x_n)$ , equivalent to  $\neg(\exists x_i)(\neg \mathcal{P}(x_1, ..., x_n))$ .  
ome examples:

• 
$$\mathcal{P}_1(x) = (\exists y)(x = y + 3 \land y < 5)$$

• 
$$\mathcal{P}_2(x, y, z) = (x + 3y = 4z + 7)$$

Formulas **Sets** Closure Properties

# Presburger sets Definition and Examples

A set *P* is called a **Presburger set** in  $\mathbb{N}^n$ , n > 0 if  $P = \{ (x_1, ..., x_n) \in \mathbb{N}^n \mid \mathcal{P}(x_1, ..., x_n) \}$ , and we shall say the formula  $\mathcal{P}$  describes the set *P*. *P* is called a Presburger set if it is Presburger in some  $\mathbb{N}^k$ , k > 0. Some examples:

• 
$$P_1 = \{3, 4, 5, 6, 7\} = \{x \in \mathbb{N} \mid \mathcal{P}_1(x)\}$$
  
•  $P_2 = \{(7 + 4b - 3a, a, b) \mid a, b \in \mathbb{N}\} = \{x \in \mathbb{N}^3 \mid \mathcal{P}_2(x)\}$ 

Presburger sets Closure Properties

**Lemma**: Presburger sets are closed under  $\cup$ ,  $\cap$ ,  $\mathbb{N}^n - X$  and  $\pi$ .

**Proof**: Follows immediately from the definition of Presburger formulas, since the operations  $\cup$ ,  $\cap$ ,  $\mathbb{N}^n - X$  and  $\pi$  correspond to  $\vee, \wedge, \neg$  and  $(\exists x_i)\mathcal{P}(x_1, ... x_n)$  on Presburger formulas, and Presburger formulas are closed under these operations.

Semilinear sets

Definitions

Let 
$$C, P \subseteq \mathbb{N}^n$$
. Define  $\mathcal{L}(C; P) \subseteq \mathbb{N}^n$  as  
 $\mathcal{L}(C; P) := \{ x_0 + \sum_{i=1}^k t_i x_i \mid x_0 \in C \text{ and } \forall 1 \le i \le k, t_i \in \mathbb{N}, x_i \in P \}.$   
 $C$  is called the set of constants, and  $P$  the set of periods.

 $L \subseteq \mathbb{N}^n$  is **linear** if  $L = \mathcal{L}(C; P)$  for a singleton set C and a finite set P.

$$S \subseteq \mathbb{N}^n$$
 is **semilinear** if it is a finite union of linear sets, i.e.,  
 $S = \bigcup_{i=1}^k \mathcal{L}(C_i; P_i)$  for singleton sets  $C_i$  and finite sets  $P_i$ .

Definitions Examples Properties

## Semilinear sets Examples

- The set  $\mathbb{N}^n = \mathcal{L}(0^n; \{e_1, \dots, e_n\})$  is semi-linear.
- The set  $X \subseteq \mathbb{N}^2$  defined as  $X = \{(x, y) | x \ge 1\}$  is semi-linear as  $X = \mathcal{L}((1, 0); \{(1, 0), (0, 1)\})$
- The set  $X \subseteq \mathbb{N}^n$  defined by  $X = \{(a_1, \ldots, a_n) | a_1 \text{ not divisible by 5} \}$  is semi-linear because  $X = \mathcal{L}(\{e_1, 2e_1, 3e_1, 4e_1\}; \{5e_1, e_2, \ldots, e_n\})$

Definitions Examples Properties

## Semilinear sets

**Basic Properties** 

### Lemma:

For C<sub>1</sub>, C<sub>2</sub>, P ⊆ N<sup>n</sup>, L(C<sub>1</sub> ∪ C<sub>2</sub>; P) = L(C<sub>1</sub>; P) ∪ L(C<sub>2</sub>; P)
For C, P<sub>1</sub>, P<sub>2</sub> ⊆ N<sup>n</sup>, L(L(C; P<sub>1</sub>); P<sub>2</sub>)) = L(C; P<sub>1</sub> ∪ P<sub>2</sub>)
For C<sub>1</sub>, P<sub>1</sub> ⊆ N<sup>k</sup> and C<sub>2</sub>, P<sub>2</sub> ⊆ N<sup>l</sup>, L(C<sub>1</sub>; P<sub>1</sub>) × L(C<sub>2</sub>; P<sub>2</sub>) = L(C<sub>1</sub> × C<sub>2</sub>; (P<sub>1</sub> × {0<sup>l</sup>}) ∪ ({0<sup>k</sup>} × P<sub>2</sub>))

Proof: Follows from the definition.

Definitions Examples Properties

Semilinear sets Basic Properties

### Corollaries:

If S ⊆ N<sup>n</sup> is semilinear and P ⊆ N<sup>n</sup> is finite, then L(S; P) is semilinear.

Follows by noticing that  $S = \bigcup_{i=1}^k \mathcal{L}(C_i; P_i)$  and using lemmas 1

and 2 successively.

• If  $X \subseteq \mathbb{N}^n$  and  $Y \subseteq \mathbb{N}^m$  are semilinear, then  $X \times Y \subseteq \mathbb{N}^{n+m}$  is semilinear.

Follows from lemma 3 because the cartesian product distributes across union.

Definitions Examples **Properties** 

## Semilinear sets

Closure under Linear Maps

**Lemma:** If  $\tau : \mathbb{N}^n \to \mathbb{N}^m$  is a linear map, and  $A \subseteq \mathbb{N}^n$  is semilinear, then  $\tau(A)$  is semilinear.

**Proof:** As A is semilinear, 
$$A = \bigcup_{i=1}^{k} \mathcal{L}(C_i; P_i)$$
. Then,  
 $\tau(A) = \tau(\bigcup_{i=1}^{k} \mathcal{L}(C_i; P_i)) = \bigcup_{i=1}^{k} \tau(\mathcal{L}(C_i; P_i)) = \bigcup_{i=1}^{k} \mathcal{L}(\tau(C_i); \tau(P_i)))$ 

Hence,  $\tau(A)$  is semilinear.

Semilinear sets Closure Properties

**Theorem**: Semilinear sets are closed under  $\cup$ ,  $\cap$ ,  $\mathbb{N}^n - X$  and  $\pi$ .

**Proof:** Semilinear sets are clearly closed under  $\cup$ , since the finite union of semilinear sets is a finite union of a finite union of linear sets, which is simply a finite union of linear sets, and is hence semilinear.

The proofs for the remaining parts of the theorem are much longer.

Definitions Examples Properties

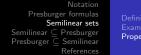
## Closure under Intersection

Let 
$$L = \mathcal{L}(x_0; \{x_1, ..., x_p\})$$
,  $L' = \mathcal{L}(x'_0; \{x'_1, ..., x'_q\})$  be linear sets.  
Define  $A = \{(y, z) \in \mathbb{N}^{p+q} \mid x_0 + \sum_{i=1}^p y_i x_i = x'_0 + \sum_{i=1}^q z_i x'_i\}$ ,  
 $B = \{(y, z) \in \mathbb{N}^{p+q} \mid \sum_{i=1}^p y_i x_i = \sum_{i=1}^q z_i x'_i\}$ , and  
 $\tau : \mathbb{N}^{p+q} \to \mathbb{N}^n$  as  $\tau(y, z) = \sum_{i=1}^p y_i x_i$ .  $\tau$  is a linear map.

Definitions Examples Properties

### Closure under Intersection

Let *C* and *P* be the set of minimal elements in *A* and  $B - \{0^n\}$ . These sets are finite since their elements are pairwise incomparable. By arguments identical to those for basic Presburger sets, we have that  $A = \mathcal{L}(C; P)$  and hence, *A* is semilinear.  $L \cap L' = \{x_0 + u \mid u \in \tau(A)\}$ , and hence,  $L \cap L'$  is semilinear. Let  $X = \bigcup_{i=1}^{n} L_i$  and  $X' = \bigcup_{i=1}^{m} L'_i$  be two semilinear sets.  $X \cap X' = \bigcup_{i=1}^{n} \bigcup_{j=1}^{m} L_i \cap L_j$ , a finite union of semilinear sets, and hence semilinear.



### Closure under inverses of Linear Maps

**Lemma:** If  $\tau : \mathbb{N}^n \to \mathbb{N}^m$  is a linear map, and  $A \subseteq \mathbb{N}^m$  is semilinear, then  $\tau^{-1}(A)$  is semilinear.

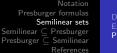
**Proof:** Define  $\eta : \mathbb{N}^n \to \mathbb{N}^{n+m}$ ,  $\eta(x) = (x, \tau(x))$ .  $\eta$  is linear. Hence,  $\eta(\mathbb{N}^n)$  is semilinear. Since A is semilinear,  $\mathbb{N}^n \times A$  is semilinear, and hence,  $K = \eta(\mathbb{N}^n) \cap (\mathbb{N}^n \times A)$  is semilinear as well. Define  $\pi : \mathbb{N}^{n+m} \to \mathbb{N}^n$ ,  $\pi(x, y) = x$ .  $\pi$  is linear. Hence  $\pi(K)$  is semilinear. Note that  $\pi(K) = \tau^{-1}(A)$ , and hence,  $\tau^{-1}(A)$  is semilinear.



## Linear Independence of Periods

**Lemma:** Every linear set *L* can be written as the union of linear sets with linearly independent periods.

**Proof:** By induction on the number of elements in *P*. The statement is clearly true if *L* has only one period. Assume the statement is true for linear sets with  $\leq m$  periods. Let *L* have m + 1 periods, i.e.,  $L = \mathcal{L}(x_0; \{x_1, ..., x_{m+1}\})$ , and let the periods be linearly dependent. Then, by a relabelling of indices of the periods,  $\exists k, 1 \leq k \leq m$  such that for some  $a_1, ..., a_m \in \mathbb{N}$  $\sum_{i=1}^k a_i x_i = \sum_{i>k}^m a_i x_i$ 



## Linear Independence of Periods

For each j > k, let  $C_j = \{x_0 + b_j x_j | 0 \le b_j < a_j\}$  if  $a_j \ge 1$  and  $\{x_0\}$  otherwise, and  $P_j = P - \{x_j\}$ . Define  $Z_j = \mathcal{L}(C_j, P_j)$ 

**Claim**: 
$$L = \bigcup_{j>k} Z_j$$
 (= Z)  
Clearly, by definition,  $Z_j \subseteq L$  for each  $j > k$  and hence,  $Z \subseteq L$ .  
Let  $y = x_0 + \sum_{i=1}^m b_i x_i$ . If  $b_j \ge a_j$  for all  $j > k$ , then

$$y = x_0 + \sum_{i=1}^{m} b_i x_i + \sum_{i=1}^{k} a_i x_i - \sum_{i>k}^{m} a_i x_i$$
$$= x_0 + \sum_{i=1}^{k} (b_i + a_i) x_i + \sum_{i>k}^{m} (b_i - a_i) x_i$$

Definitions Examples Properties

### Linear Independence of Periods

Thus, we can assume that  $b_j < a_j$  for some j > k. Then,  $y = x_0 + b_j x_j + \sum_{i \neq j} b_i x_i \in Z_j$  and hence,  $L \subseteq Z$ , giving L = Z. Now each  $Z_j$  has  $\leq m$  periods and by the induction hypothesis, can be written as a union of sets with linearly independent periods. Hence, L can be written as a union of sets with linearly independent periods and the lemma follows.



Properties

# Span of a Basis

**Definition:** Given 
$$\{x_1, ..., x_k\} \subseteq \mathbb{N}^n$$
,  
 $span_{\mathbb{Z}}\{x_1, ..., x_k\} = \{\sum_{i=1}^k a_i x_i \mid a_i \in \mathbb{Z} \ \forall \ 1 \le i \le k\}$   
**Lemma:** Let  $\{x_1, ..., x_n\}$  be a set of linearly independent vectors in  
 $\mathbb{N}^n$ . Then,  $\exists \ k_0 \in \mathbb{N}^n$  such that  $\forall y \in \mathbb{N}^n$ ,  $\exists k$  such that  
 $ky \in span_{\mathbb{Z}}\{x_1, ..., x_n\}$  and  $1 \le k \le k_0$ .

**Proof:** It is enough to show that for each  $e_i = (0, \ldots, 0, 1, 0, \ldots, 0)$ (1 at the *i*th coordinate),  $\exists k_i$  such that  $k_i e_i \in span_{\mathbb{Z}}\{x_1, ..., x_n\}$ . We show this for i = 1, as the same proof works for all i's. Let  $\pi: \mathbb{N}^n \to \mathbb{N}^{n-1}$  be the projection onto the last n-1 coordinates.  $\pi$  is linear.

Definitions Examples Properties

## Span of a Basis

 $\{\pi(x_1), ..., \pi(x_n)\} \subseteq \mathbb{N}^{n-1} \subseteq \mathbb{Q}^{n-1}$ . This is a set of *n* vectors in a vector space of dimension n-1, and is hence linearly dependent. Hence  $\sum_{i=1}^{n} q_i \pi(x_i) = 0$  for some  $\{q_i\}$ , with atleast one non-zero  $q_i$ . Clearing denominators, we get  $\sum_{i=1}^{n} r_i \pi(x_i) = 0$ , where  $\{r_i\} \subseteq \mathbb{Z}^{n-1}$ .  $\sum_{i=1}^{n} r_i \pi(x_i) = \pi(\sum_{i=1}^{n} r_i x_i) = 0 \implies \sum_{i=1}^{n} r_i x_i = (k_1, 0, ..., 0)$ . As the  $x_i$ 's are linearly independent,  $k_1 \neq 0$ .

Thus,  $k_1e_1 \in span_{\mathbb{Z}}\{x_1,\ldots,x_n\}$ .

Definitions Examples Properties

## Span of a Basis

**Lemma:** Let  $\{x_1, ..., x_n\} \subseteq \mathbb{N}^n$  be a set of linearly independent vectors and  $y \in \mathbb{N}^n$ . Let  $k_y$  denote the smallest k such that  $ky \in span_{\mathbb{Z}}\{x_1, ..., x_n\}$ . Let  $k_yy = \sum_{i=1}^n a_ix_i$  and  $ky = \sum_{i=1}^n b_ix_i$ . Then,  $\exists p \in \mathbb{N}$  such that  $k = pk_y$  and  $b_i = pa_i$ . **Proof:** Let  $k = pk_y + r$ , with  $r < k_y$ . Then,  $ry = \sum_{i=1}^n (b_i - pa_i)x_i$ . Hence,  $ry \in span_{\mathbb{Z}}\{x_1, ..., x_n\}$ , giving r = 0. The linear independence of  $\{x_i\}$  gives  $b_i - pa_i = 0 \quad \forall 1 \le i \le n$ .

Definitions Examples **Properties** 

### Closure under Complements

**Lemma:** let  $L = \mathcal{L}(0^n; \{x_1, ..., x_{j_0}\})$  be a linear subset of  $\mathbb{N}^n$  with independent periods. Then  $\mathbb{N}^n - L$  is semilinear.

**Proof:** Let  $P = \{x_1, ..., x_{j_0}\}$  be the set of independent periods of the X. Adjoin  $n - j_0$  of the  $e_i$ 's to P to get n linearly independent vectors in  $\mathbb{N}^n$ . Let  $k_0$  be as in the previous lemma.

Presburger formulas Semilinear sets Semilinear  $\subseteq$  Presburger References

Properties

### **Closure under Complements**

Define the following sets:

| • $G_1 = \{y \in \mathbb{N}^n \mid k_y y = \sum_{i=1}^n a_i x_i \Rightarrow \exists i \text{ such that } a_i < 0\}$ and   |
|---------------------------------------------------------------------------------------------------------------------------|
| $H_1 = \mathbb{N}^n - G_1$                                                                                                |
| • $G_2 = \{ y \in \mathbb{N}^n \mid k_y y = \sum_{i=1}^n a_i x_i \Rightarrow \exists i > j \text{ such that } a_i > 0 \}$ |
| and $H_2 = H_1 - G_2$                                                                                                     |
| Note that both $G_1, G_2 \subseteq \mathbb{N}^n - L$ . Hence,                                                             |
| $\mathbb{N}^n-L=(\mathit{G}_1\cup \mathit{G}_2)\cup((\mathbb{N}^n-(\mathit{G}_1\cup \mathit{G}_2))-L)$                    |
| $=G_1\cupG_2\cup((H_1-G_2)-L)=G_1\cupG_2\cup(H_2-L).$                                                                     |
| Hence, to show that $\mathbb{N}^n - L$ is semilinear, it suffices to show that                                            |

 $G_1, G_2$  and  $H_2 - L$  are semilinear.



### Closure under Complements

Define the following linear maps:

• For  $1 \le k \le k_0$  and  $I \subseteq \{1, ..., n\}$ , define  $\tau_{k,I} : \mathbb{N}^n \times \mathbb{N}^n \to \mathbb{N}^n \times \mathbb{N}^n$ ,  $\tau_{k,I}(y, a) = (ky + \sum_{i \in I} a_i x_i, \sum_{i \notin I} a_i x_i)$ 

• 
$$\pi:\mathbb{N}^n imes\mathbb{N}^n o\mathbb{N}^n$$
,  $\pi(x,y)=x$ 

Define the following subsets of  $\mathbb{N}^n \times \mathbb{N}^n$ :

- $K = \{(y, y) | y \in \mathbb{N}^n\}$ . Let  $T : \mathbb{N}^n \to \mathbb{N}^n \times \mathbb{N}^n$ , T(y) = (y, y). Then T is linear, and  $K = T(\mathbb{N}^n)$  and is hence semilinear.
- $D_i = \{(y, a) \mid a_i > 0\}$ .  $D_i = \mathcal{L}(e_{n+i}; \{e_1, ..., e_{2n}\})$  and hence,  $D_i$  is semilinear.

• 
$$A_I = \{(y, a) \mid a_i > 0 \ \forall i \in I\}. \ A_I = \mathcal{L}(\sum_{i \in I} e_{n+i}; \{e_1, ..., e_{2n}\})$$

and hence,  $A_I$  is semilinear.



### Closure under Complements

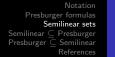
First, we show  $G_1$  is semilinear.

 $\tau_{k,I}^{-1}(K)$  and  $A_I$  are semilinear, thus  $\tau_{k,I}^{-1}(K) \cap A_I$  is semi-linear, and  $\pi(\tau_{k,I}^{-1}(K) \cap A_I)$  is semilinear as well.

$$G_1 = \bigcup_{k \leq k_0} \bigcup_{I \neq \phi} \pi(\tau_{k,I}^{-1}(K) \cap A_I)$$
 and hence,  $G_1$  is semilinear.

Next, we show  $G_2$  is semilinear.

 $D_i$  is semilinear, thus  $D_i \cap \tau_{k,I}^{-1}(K) \cap A_I$  is semi-linear, and  $\pi(D_i \cap \tau_{k,I}^{-1}(K) \cap A_I)$  is semilinear as well.  $G_2 = \bigcup_{i>j_0} \bigcup_{I \subseteq \{1,...,n\} - \{i\}} \bigcup_{k \le k_0} \pi(D_i \cap A_I \cap \tau_{k,I}^{-1}(K))$  and hence,  $G_2$  is semilinear.



### Closure under Complements

It remains to prove  $H_2 - L$  is semilinear. For  $k \leq k_0$  and  $j \leq j_0$ , define  $B_{kj} = \{(y, b) \in \mathbb{N}^n \times \mathbb{N}^{j_0} \mid k_y y = \sum_{i=1}^J a_i x_i, a_j \text{ not divisible by } k_y\}.$ Define  $E_k = \{(y, a) \in \mathbb{N}^n \times \mathbb{N}^{j_0} \mid k_y y = \sum_{i=1}^j b_i x_i\}$  and  $F_{ki} = \{(y, b) | b_i \text{ is not divisible by } k\}$ .  $E_k$  and  $F_{kj}$  are semilinear. Also,  $B_{ki} = E_k \cap F_{ki}$  and thus  $B_{ki}$  is semilinear. Now,  $H_2 - X = \bigcup \bigcup \pi(B_{ki})$ . Hence,  $H_2 - L$  is semi-linear and thus  $i \leq i_0 k \leq k_0$ we are done.



### Closure under Complements

**Lemma:** let  $L \subseteq \mathbb{N}^n$  be a linear subset with independent periods. Then  $\mathbb{N}^n - L$  is semi-linear.

**Proof:** Let 
$$L = \mathcal{L}(x_0; \{x_1, \dots, x_k\})$$
 with  $k \le n$ .  
For each *i* such that  $(x_0)_i > 0$ , define  $C_i = \{(u_1, \dots, u_n) \mid u_i = 0 \text{ for } j \ne i \text{ and } 0 \le u_j < (x_0)_i\}$  and  $P_i = \{e_1, \dots, e_{i-1}, e_{i+1}, \dots, e_n\}$ .  
Then,  $Z_i = L(C_i; P_i)$  is semilinear and  $G = \bigcup_{\substack{(x_0)_i > 0 \\ (x_0)_i > 0}} Z_i$  is the set of all elements in  $\mathbb{N}^n$  such that  $y \ge x_0$  is false. Thus,  $G \subseteq \mathbb{N}^n - L$ .  
Let  $Y = \{y \in \mathbb{N}^n \mid x_0 \le y\}$ .  $Y = \mathbb{N}^n - G$ , and hence,  
 $\mathbb{N}^n - L = G \cup (\mathbb{N}^n - L - G) = G \cup (Y - L)$ .

Definitions Examples **Properties** 

### **Closure under Complements**

Now, we show Y - L is semilinear. Define  $f : \mathbb{N}^n \to Y$ ,  $f(y) = y + x_0$ . Note that  $f(\mathcal{L}(C; P)) = \mathcal{L}(f(C); P)$  and hence, Z is semilinear  $\Rightarrow f(Z)$  is semilinear. We have that  $f^{-1}(Y - L) = f^{-1}(Y) - f^{-1}(L) = \mathbb{N}^n - f^{-1}(L)$ .  $f^{-1}(L) = L(0^n; \{x_1, \dots, x_n\})$  and thus  $\mathbb{N}^n - f^{-1}(L)$  is semilinear by the previous lemma. Since  $Y - L \subseteq f(\mathbb{N}^n)$ ,  $Y - L = f(f^{-1}(Y - L))$ , and hence, Y - L is semilinear.

Definitions Examples **Properties** 

## Closure under Complements

**Theorem:** Let  $Y \subseteq \mathbb{N}^n$  be a semilinear subset. Then  $\mathbb{N}^n - Y$  is a semilinear subset of  $\mathbb{N}^n$ .

**Proof:** It is enough to consider the case when Y is linear. By the lemma on independent periods,  $Y = \bigcup_{i=1}^{m} Z_i$  with each  $Z_i$  being linear with independent periods. Then,  $\mathbb{N}^n - Y = \bigcap_{i=1}^{m} (\mathbb{N}^n - Z_i)$ . By the previous lemma, each  $\mathbb{N}^n - Z_i$  is semilinear, and the intersection of semilinear sets is semilinear. Hence,  $\mathbb{N}^n - Y$  is semilinear.

### Semilinear sets are Presburger sets

We will now show that every Semilinear set is Presburger. Let  $L \subseteq \mathbb{N}^n$  be linear. Then,  $L = \mathcal{L}(v_0; \{v_1, ..., v_k\})$ . Let  $v_{ij}, 0 \le i \le k, 1 \le j \le n$  denote the  $j^{th}$  coordinate of  $v_i$ . Define  $\mathcal{P}_L(x_1, ..., x_n) := (\exists a_1)...(\exists a_k) \left( \bigwedge_{j=1}^n (x_j = v_{0j} + \sum_{i=1}^k a_i v_{ij}) \right)$   $\mathcal{P}_L$  describes L, and hence L is a Presburger set. If S is semilinear, then  $S = \bigcup_{i=1}^k L_i$  for linear sets  $L_i$ . Define  $\mathcal{P}_S := \bigvee_{i=1}^k \mathcal{P}_{L_i}$ , and  $\mathcal{P}_S$  describes S.

### Presburger Sets are Semilinear Sets Outline of proof

We will now show that every Presburger set is Semilinear. We call a Presburger set  $B \subseteq \mathbb{N}^n$  a *basic* Presburger set if B is described by a Presburger formula  $\mathcal{P}$ , where  $\mathcal{P} = \left(t_0 + \sum_{i=1}^n t_i x_i = t'_0 + \sum_{i=1}^n t'_i x_i\right).$ 

We show that basic Presburger sets are semilinear. All Presburger sets are obtained through operations  $\cup$ ,  $\cap$ ,  $\mathbb{N}^n - X$  and  $\pi$  on basic Presburger sets, and since semilinear sets are closed under  $\cup$ ,  $\cap$ ,  $\mathbb{N}^n - X$  and  $\pi$ , all Presburger sets are semilinear.

### Basic Presburger sets are Semilinear

Let B be a basic Presburger set described by

$$\mathcal{P} = \left(t_0 + \sum_{i=1}^n t_i x_i = t'_0 + \sum_{i=1}^n t'_i x_i\right).$$
  
Let  $\mathcal{P}'$  be the corresponding homogeneous formula,  
 $\mathcal{P}' = \left(\sum_{i=1}^n t_i x_i = \sum_{i=1}^n t'_i x_i\right)$   
Let  $C$  be the set of minimal solutions to  $\mathcal{P}$  and  $P$  be the set of minimal solutions to  $\mathcal{P}'$  in  $\mathbb{N}^n - \{0^n\}$ .  $C$  and  $P$  are finite, since their elements are pairwise incomparable.

## Basic Presburger sets are Semilinear

**Claim:**  $B = \mathcal{L}(C; P)$  and hence, *B* is semilinear. **Proof:** Solutions to  $\mathcal{P}'$  are closed under addition, and if *v* solves  $\mathcal{P}$ and *u* solves  $\mathcal{P}'$ , v + u solves  $\mathcal{P}$ . Hence,  $\mathcal{L}(C; P) \subseteq B$ . Now, assume *v* solves  $\mathcal{P}$ . Then  $\exists v' \in C$  such that  $v' \leq v$ . Further, v - v' solves  $\mathcal{P}'$ . We show that any solution of  $\mathcal{P}'$  is in  $\mathcal{L}(0^n; P)$ , and hence  $B \subseteq \mathcal{L}(C; P)$ .

## Basic Presburger sets are Semilinear

Let  $v \in \mathbb{N}^n$  solve  $\mathcal{P}'$ . We show that  $v \in \mathcal{L}(0^n; P)$ . The proof is by induction on  $s = \sum_{i=1}^n v_i$ . For  $s = 0, 0^n \in \mathcal{L}(0^n; P)$ . Assume that for  $s \leq k$ , v solves  $\mathcal{P}' \Rightarrow v \in \mathcal{L}(0^n; P)$ . Let v be such that s = k + 1. Then,  $\exists v' \in P$  such that  $v' \leq v$ ,  $v' \neq 0^n$ . Then v - v' has  $s \leq k$  and solves  $\mathcal{P}'$ , and hence,  $v - v' \in \mathcal{L}(0^n; P)$ . Hence,  $v \in \mathcal{L}(0^n; P)$  as well.

This completes the proof of equivalence of Semilinear sets and Presburger sets.



- Ginsburg, Seymour; Spanier, Edwin H. "Bounded Algol-Like Languages." Transactions of the American Mathematical Society, vol. 113, no. 2, 1964, pp. 333–368.
- Ginsburg, Seymour; Spanier, Edwin H. "Semigroups, Presburger formulas, and languages". Pacific J. Math. 16 (1966), no. 2, 285-296.