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Notation

Corresponding operations on Presburger formulas and subsets of
Nn:

∨ - Conjunction and ∪ - Union (finite)

∧ - Disjunction and ∩ - Intersection (finite)

¬ - Negation and Nn − X - Complementation

∃ - Universal quantifier and π : Nn+1 → Nn - Projection
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Partial Order on Nn

We define a partial order on Nn, denoted ≤.
Given a, b ∈ Nn, we say a ≤ b if ai ≤ bi ∀ 1 ≤ i ≤ n.

Lemma: If S ⊆ Nn is such that elements in S are pairwise
incomparable, then S is finite.

Proof: By induction on n.
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Modified Presburger formulas
Definitions

The set of all (modified) Presburger formulas P is the smallest set
satisfying

t0 +
n∑

i=1
tixi = t ′0 +

n∑
i=1

t ′i xi , where xi for 1 ≤ i ≤ n are free

variables, is in P.

If P1 and P2 are in P, then P1 ∨ P2 and P1 ∧ P2 are also in
P.

If P is in P, ¬P is in P.

If P(x1, ..., xn) is in P, then (∃xi )P(x1, ..., xn) is in P for
1 ≤ i ≤ n.
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Presburger formulas
Examples

Notice that the following formulas are also in P:

t0 +
n∑

i=1
tixi ≤ t ′0 +

n∑
i=1

t ′i xi , equivalent to

(∃z)(z + t0 +
n∑

i=1
tixi = t ′0 +

n∑
i=1

t ′i xi )

(∀xi )P(x1, ..., xn), equivalent to ¬(∃xi )(¬P(x1, ..., xn)).

Some examples:

P1(x) = (∃y)(x = y + 3 ∧ y < 5)

P2(x , y , z) = (x + 3y = 4z + 7)
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Presburger sets
Definition and Examples

A set P is called a Presburger set in Nn, n > 0 if
P = { (x1, ..., xn) ∈ Nn | P(x1, ..., xn) }, and we shall say the
formula P describes the set P.
P is called a Presburger set if it is Presburger in some Nk , k > 0.
Some examples:

P1 = {3, 4, 5, 6, 7} = {x ∈ N | P1(x) }
P2 = {(7 + 4b − 3a, a, b) | a, b ∈ N} = {x ∈ N3 | P2(x) }
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Presburger sets
Closure Properties

Lemma: Presburger sets are closed under ∪, ∩, Nn − X and π.

Proof: Follows immediately from the definition of Presburger
formulas, since the operations ∪, ∩, Nn − X and π correspond to
∨,∧,¬ and (∃xi )P(x1, ...xn) on Presburger formulas, and
Presburger formulas are closed under these operations.
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Semilinear sets
Definitions

Let C ,P ⊆ Nn. Define L(C ;P) ⊆ Nn as

L(C ;P) := {x0 +
k∑

i=1
tixi | x0 ∈ C and ∀1 ≤ i ≤ k , ti ∈ N, xi ∈ P}.

C is called the set of constants, and P the set of periods.

L ⊆ Nn is linear if L = L(C ;P) for a singleton set C and a finite
set P.
S ⊆ Nn is semilinear if it is a finite union of linear sets, i.e.,

S =
k⋃

i=1
L(Ci ;Pi ) for singleton sets Ci and finite sets Pi .
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Semilinear sets
Examples

The set Nn = L(0n; {e1, . . . , en}) is semi-linear.

The set X ⊆ N2 defined as X = {(x , y)|x ≥ 1} is semi-linear
as X = L((1, 0); {(1, 0), (0, 1)})
The set X ⊆ Nn defined by
X = {(a1, . . . , an)|a1 not divisible by 5} is semi-linear because
X = L({e1, 2e1, 3e1, 4e1}; {5e1, e2, . . . , en})
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Semilinear sets
Basic Properties

Lemma:

1 For C1,C2,P ⊆ Nn,
L(C1 ∪ C2;P) = L(C1;P) ∪ L(C2;P)

2 For C ,P1,P2 ⊆ Nn,
L(L(C ;P1);P2)) = L(C ;P1 ∪ P2)

3 For C1,P1 ⊆ Nk and C2,P2 ⊆ Nl ,
L(C1;P1)×L(C2;P2) = L(C1×C2; (P1×{0l})∪ ({0k}×P2))

Proof: Follows from the definition.
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Semilinear sets
Basic Properties

Corollaries:

If S ⊆ Nn is semilinear and P ⊆ Nn is finite, then L(S ;P) is
semilinear.

Follows by noticing that S =
k⋃

i=1
L(Ci ;Pi ) and using lemmas 1

and 2 successively.

If X ⊆ Nn and Y ⊆ Nm are semilinear, then X × Y ⊆ Nn+m

is semilinear.
Follows from lemma 3 because the cartesian product
distributes across union.
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Semilinear sets
Closure under Linear Maps

Lemma: If τ : Nn → Nm is a linear map, and A ⊆ Nn is
semilinear, then τ(A) is semilinear.

Proof: As A is semilinear, A =
k⋃

i=1
L(Ci ;Pi ). Then,

τ(A) = τ(
k⋃

i=1
L(Ci ;Pi )) =

k⋃
i=1

τ(L(Ci ;Pi )) =
k⋃

i=1
L(τ(Ci ); τ(Pi )))

Hence, τ(A) is semilinear.
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Semilinear sets
Closure Properties

Theorem: Semilinear sets are closed under ∪, ∩, Nn − X and π.

Proof: Semilinear sets are clearly closed under ∪, since the finite
union of semilinear sets is a finite union of a finite union of linear
sets, which is simply a finite union of linear sets, and is hence
semilinear.
The proofs for the remaining parts of the theorem are much longer.
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Closure under Intersection

Let L = L(x0; {x1, ..., xp}), L′ = L(x ′0; {x ′1, ..., x ′q}) be linear sets.

Define A = {(y , z) ∈ Np+q | x0 +
p∑

i=1
yixi = x ′0 +

q∑
i=1

zix
′
i },

B = {(y , z) ∈ Np+q |
p∑

i=1
yixi =

q∑
i=1

zix
′
i }, and

τ : Np+q → Nn as τ(y , z) =
p∑

i=1
yixi . τ is a linear map.
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Closure under Intersection

Let C and P be the set of minimal elements in A and B − {0n}.
These sets are finite since their elements are pairwise incomparable.
By arguments identical to those for basic Presburger sets, we have
that A = L(C ;P) and hence, A is semilinear.
L ∩ L′ = {x0 + u | u ∈ τ(A)}, and hence, L ∩ L′ is semilinear.

Let X =
n⋃

i=1
Li and X ′ =

m⋃
i=1

L′i be two semilinear sets.

X ∩ X ′ =
n⋃

i=1

m⋃
j=1

Li ∩ Lj , a finite union of semilinear sets, and

hence semilinear.
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Closure under inverses of Linear Maps

Lemma: If τ : Nn → Nm is a linear map, and A ⊆ Nm is
semilinear, then τ−1(A) is semilinear.

Proof: Define η : Nn → Nn+m, η(x) = (x , τ(x)). η is linear.
Hence, η(Nn) is semilinear. Since A is semilinear, Nn × A is
semilinear, and hence, K = η(Nn) ∩ (Nn × A) is semilinear as well.
Define π : Nn+m → Nn, π(x , y) = x . π is linear.
Hence π(K ) is semilinear. Note that π(K ) = τ−1(A), and hence,
τ−1(A) is semilinear.
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Linear Independence of Periods

Lemma: Every linear set L can be written as the union of linear
sets with linearly independent periods.

Proof: By induction on the number of elements in P. The
statement is clearly true if L has only one period.
Assume the statement is true for linear sets with ≤ m periods.
Let L have m + 1 periods, i.e., L = L(x0; {x1, ..., , xm+1}, and let
the periods be linearly dependent. Then, by a relabelling of indices
of the periods, ∃k, 1 ≤ k ≤ m such that for some a1, .., am ∈ N
k∑

i=1
aixi =

m∑
i>k

aixi
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Linear Independence of Periods

For each j > k , let Cj = {x0 + bjxj | 0 ≤ bj < aj} if aj ≥ 1 and
{x0} otherwise, and Pj = P − {xj}. Define Zj = L(Cj ,Pj)

Claim : L =
⋃
j>k

Zj (= Z )

Clearly, by definition, Zj ⊆ L for each j > k and hence, Z ⊆ L.

Let y = x0 +
m∑
i=1

bixi . If bj ≥ aj for all j > k , then

y = x0 +
m∑
i=1

bixi +
k∑

i=1

aixi −
m∑
i>k

aixi

= x0 +
k∑

i=1

(bi + ai )xi +
m∑
i>k

(bi − ai )xi

Rohit Kumar and Adithya Upadhya Presburger formulas and Semilinear sets



Notation
Presburger formulas

Semilinear sets
Semilinear ⊆ Presburger
Presburger ⊆ Semilinear

References

Definitions
Examples
Properties

Linear Independence of Periods

Thus, we can assume that bj < aj for some j > k . Then,
y = x0 + bjxj +

∑
i 6=j

bixi ∈ Zj and hence, L ⊆ Z , giving L = Z . Now

each Zj has ≤ m periods and by the induction hypothesis, can be
written as a union of sets with linearly independent periods.
Hence, L can be written as a union of sets with linearly
independent periods and the lemma follows.

Rohit Kumar and Adithya Upadhya Presburger formulas and Semilinear sets



Notation
Presburger formulas

Semilinear sets
Semilinear ⊆ Presburger
Presburger ⊆ Semilinear

References

Definitions
Examples
Properties

Span of a Basis

Definition: Given {x1, .., xk} ⊆ Nn,

spanZ{x1, .., xk} = {
k∑

i=1
aixi | ai ∈ Z ∀ 1 ≤ i ≤ k}

Lemma: Let {x1, .., xn} be a set of linearly independent vectors in
Nn. Then, ∃ k0 ∈ Nn such that ∀y ∈ Nn, ∃k such that
ky ∈ spanZ{x1, .., xn} and 1 ≤ k ≤ k0.

Proof: It is enough to show that for each ei = (0, . . . 0, 1, 0 . . . 0)
(1 at the ith coordinate), ∃ ki such that kiei ∈ spanZ{x1, ..., xn}.
We show this for i = 1, as the same proof works for all i ’s. Let
π : Nn → Nn−1 be the projection onto the last n − 1 coordinates.
π is linear.
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Span of a Basis

{π(x1), ..., π(xn)} ⊆ Nn−1 ⊆ Qn−1. This is a set of n vectors in a
vector space of dimension n − 1, and is hence linearly dependent.

Hence
n∑

i=1
qiπ(xi ) = 0 for some {qi}, with atleast one non-zero qi .

Clearing denominators, we get
n∑

i=1
riπ(xi ) = 0, where {ri} ⊆ Zn−1.

n∑
i=1

riπ(xi ) = π(
n∑

i=1
rixi ) = 0 =⇒

n∑
i=1

rixi = (k1, 0, ..., 0).

As the xi ’s are linearly independent, k1 6= 0.
Thus, k1e1 ∈ spanZ{x1, . . . , xn}.
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Span of a Basis

Lemma: Let {x1, .., xn} ⊆ Nn be a set of linearly independent
vectors and y ∈ Nn. Let ky denote the smallest k such that

ky ∈ spanZ{x1, ..., xn}. Let kyy =
n∑

i=1
aixi and ky =

n∑
i=1

bixi .

Then, ∃ p ∈ N such that k = pky and bi = pai .

Proof: Let k = pky + r , with r < ky . Then, ry =
n∑

i=1
(bi − pai )xi .

Hence, ry ∈ spanZ{x1, ..., xn}, giving r = 0.
The linear independence of {xi} gives bi − pai = 0 ∀ 1 ≤ i ≤ n.
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Closure under Complements

Lemma: let L = L(0n; {x1, ..., xj0}) be a linear subset of Nn with
independent periods. Then Nn − L is semilinear.

Proof: Let P = {x1, ..., xj0} be the set of independent periods of
the X . Adjoin n − j0 of the ei ’s to P to get n linearly independent
vectors in Nn. Let k0 be as in the previous lemma.
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Closure under Complements

Define the following sets:

G1 = {y ∈ Nn | kyy =
n∑

i=1
aixi ⇒ ∃ i such that ai < 0} and

H1 = Nn − G1

G2 = {y ∈ Nn | kyy =
n∑

i=1
aixi ⇒ ∃ i > j such that ai > 0}

and H2 = H1 − G2

Note that both G1,G2 ⊆ Nn − L. Hence,
Nn − L = (G1 ∪ G2) ∪ ((Nn − (G1 ∪ G2))− L)

= G1 ∪ G2 ∪ ((H1 − G2)− L) = G1 ∪ G2 ∪ (H2 − L).
Hence, to show that Nn − L is semilinear, it suffices to show that
G1,G2 and H2 − L are semilinear.

Rohit Kumar and Adithya Upadhya Presburger formulas and Semilinear sets



Notation
Presburger formulas

Semilinear sets
Semilinear ⊆ Presburger
Presburger ⊆ Semilinear

References

Definitions
Examples
Properties

Closure under Complements

Define the following linear maps:

For 1 ≤ k ≤ k0 and I ⊆ {1, ..., n}, define
τk,I : Nn × Nn → Nn × Nn, τk,I (y , a) = (ky +

∑
i∈I

aixi ,
∑
i 6∈I

aixi )

π : Nn × Nn → Nn, π(x , y) = x

Define the following subsets of Nn × Nn:

K = {(y , y) | y ∈ Nn}. Let T : Nn → Nn×Nn, T (y) = (y , y).
Then T is linear, and K = T (Nn) and is hence semilinear.

Di = {(y , a) | ai > 0}. Di = L(en+i ; {e1, ..., e2n}) and hence,
Di is semilinear.

AI = {(y , a) | ai > 0 ∀ i ∈ I}. AI = L(
∑
i∈I

en+i ; {e1, ..., e2n})

and hence, AI is semilinear.
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Closure under Complements

First, we show G1 is semilinear.
τ−1
k,I (K ) and AI are semilinear, thus τ−1

k,I (K )∩AI is semi-linear, and

π(τ−1
k,I (K ) ∩ AI ) is semilinear as well.

G1 =
⋃

k≤k0

⋃
I 6=φ

π(τ−1
k,I (K ) ∩ AI ) and hence, G1 is semilinear.

Next, we show G2 is semilinear.
Di is semilinear, thus Di ∩ τ−1

k,I (K ) ∩ AI is semi-linear, and

π(Di ∩ τ−1
k,I (K ) ∩ AI ) is semilinear as well.

G2 =
⋃
i>j0

⋃
I⊆{1,...,n}−{i}

⋃
k≤k0

π(Di ∩ AI ∩ τ−1
k,I (K )) and hence, G2 is

semilinear.
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Closure under Complements

It remains to prove H2 − L is semilinear.
For k ≤ k0 and j ≤ j0, define

Bkj = {(y , b) ∈ Nn × Nj0 | kyy =
j∑

i=1
aixi , aj not divisible by ky}.

Define Ek = {(y , a) ∈ Nn × Nj0 | kyy =
j∑

i=1
bixi} and

Fkj = {(y , b) | bj is not divisible by k}. Ek and Fkj are semilinear.
Also, Bkj = Ek ∩ Fkj and thus Bkj is semilinear. Now,
H2 − X =

⋃
j≤j0

⋃
k≤k0

π(Bkj). Hence, H2 − L is semi-linear and thus

we are done.
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Closure under Complements

Lemma: let L ⊆ Nn be a linear subset with independent periods.
Then Nn − L is semi-linear.

Proof: Let L = L(x0; {x1, . . . , xk}) with k ≤ n.
For each i such that (x0)i > 0, define Ci = {(u1, . . . , un) | ui = 0
for j 6= i and 0 ≤ uj < (x0)i} and Pi = {e1, ..., ei−1, ei+1, ..., en}.
Then, Zi = L(Ci ;Pi ) is semilinear and G =

⋃
(x0)i>0

Zi is the set of

all elements in Nn such that y ≥ x0 is false. Thus, G ⊆ Nn − L.
Let Y = {y ∈ Nn | x0 ≤ y}. Y = Nn − G , and hence,
Nn − L = G ∪ (Nn − L− G ) = G ∪ (Y − L).
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Closure under Complements

Now, we show Y − L is semilinear.
Define f : Nn → Y , f (y) = y + x0. Note that
f (L(C ;P)) = L(f (C );P) and hence, Z is semilinear ⇒ f (Z ) is
semilinear. We have that
f −1(Y − L) = f −1(Y )− f −1(L) = Nn − f −1(L).
f −1(L) = L(0n; {x1, . . . , xn}) and thus Nn − f −1(L) is semilinear by
the previous lemma. Since Y − L ⊆ f (Nn),
Y − L = f (f −1(Y − L)), and hence, Y − L is semilinear.
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Closure under Complements

Theorem: Let Y ⊆ Nn be a semilinear subset. Then Nn − Y is a
semilinear subset of Nn.

Proof: It is enough to consider the case when Y is linear. By the

lemma on independent periods, Y =
m⋃
i=1

Zi with each Zi being

linear with independent periods. Then, Nn − Y =
m⋂
i=1

(Nn − Zi ).

By the previous lemma, each Nn − Zi is semilinear, and the
intersection of semilinear sets is semilinear. Hence, Nn − Y is
semilinear.
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Semilinear sets are Presburger sets

We will now show that every Semilinear set is Presburger.
Let L ⊆ Nn be linear. Then, L = L(v0; {v1, ..., vk}).
Let vij , 0 ≤ i ≤ k , 1 ≤ j ≤ n denote the j th coordinate of vi .

Define PL(x1, ..., xn) := (∃a1)...(∃ak)

(∧n
j=1 (xj = v0j +

k∑
i=1

aivij)

)
PL describes L, and hence L is a Presburger set.

If S is semilinear, then S =
k⋃

i=1
Li for linear sets Li .

Define PS :=
k∨

i=1
PLi , and PS describes S .
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Outline of proof

We will now show that every Presburger set is Semilinear.
We call a Presburger set B ⊆ Nn a basic Presburger set if B is
described by a Presburger formula P, where

P =

(
t0 +

n∑
i=1

tixi = t ′0 +
n∑

i=1
t ′i xi

)
.

We show that basic Presburger sets are semilinear. All Presburger
sets are obtained through operations ∪, ∩, Nn − X and π on basic
Presburger sets, and since semilinear sets are closed under ∪, ∩,
Nn − X and π, all Presburger sets are semilinear.
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Basic Presburger sets are Semilinear

Let B be a basic Presburger set described by

P =

(
t0 +

n∑
i=1

tixi = t ′0 +
n∑

i=1
t ′i xi

)
.

Let P ′ be the corresponding homogeneous formula,

P ′ =

(
n∑

i=1
tixi =

n∑
i=1

t ′i xi

)
Let C be the set of minimal solutions to P and P be the set of
minimal solutions to P ′ in Nn − {0n}. C and P are finite, since
their elements are pairwise incomparable.
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Claim: B = L(C ;P) and hence, B is semilinear.
Proof: Solutions to P ′ are closed under addition, and if v solves P
and u solves P ′, v + u solves P. Hence, L(C ;P) ⊆ B.
Now, assume v solves P. Then ∃ v ′ ∈ C such that v ′ ≤ v .
Further, v − v ′ solves P ′. We show that any solution of P ′ is in
L(0n;P), and hence B ⊆ L(C ;P).
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Let v ∈ Nn solve P ′. We show that v ∈ L(0n;P).

The proof is by induction on s =
n∑

i=1
vi .

For s = 0, 0n ∈ L(0n;P).
Assume that for s ≤ k , v solves P ′ ⇒ v ∈ L(0n;P).
Let v be such that s = k + 1. Then, ∃ v ′ ∈ P such that v ′ ≤ v ,
v ′ 6= 0n. Then v − v ′ has s ≤ k and solves P ′, and hence,
v − v ′ ∈ L(0n;P). Hence, v ∈ L(0n;P) as well.

This completes the proof of equivalence of Semilinear sets and
Presburger sets.
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