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Algebraic approach to automata: Overview

Defines language recognition via morphisms into a monoid.

Analogous result to canonical automaton in the setting of
monoids.

Helps in characterising class of FO-definable languages.
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Monoids

A monoid is a structure (M, ◦, 1), where

M is a base set containing the element “1”,
◦ is an associative binary operation on M, and
1 is the identity element with respect to ◦.

Examples of monoids: (N,+, 0), (A∗, ·, ε).

Another Example: (X → X , ◦, id), where

X → X denotes the set of all functions from a set X to itself,
f ◦ g is function composition:

(f ◦ g)(x) = g(f (x)).



Overview Recognition via monoid morphisms Transition monoid Syntactic Monoid First-Order Definable Languages

Monoid morphisms

A morphism from a monoid (M, ◦M , 1M) to a monoid
(N, ◦N , 1N) is a map ϕ : M → N, satisfying

ϕ(1M) = 1N , and,
ϕ(m ◦M m′) = ϕ(m) ◦N ϕ(m′).

Example: ϕ : A∗ → N, given by

ϕ(w) = |w |

is a morphism from (A∗, ·, ε) to (N,+, 0).
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Language recognition via monoid morphisms

A language L ⊆ A∗ is said to be recognizable if there exists a
monoid (M, ◦, 1) and a morphism ϕ from (A∗, ·, ε) to
(M, ◦, 1), and a subset X of M such that

L = ϕ−1(X ).

In this case, we say that the monoid M recognizes L.
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Example of language recognition via monoid

Consider monoid M = ({1,m}, ◦, 1} where ◦ is given by:

◦ 1 m

1 1 m

m m m

Consider the morphism ϕ : A∗ → M given by

ε 7→ 1
w 7→ m for w ∈ A+.

Then M recognizes A+, since ϕ−1({m}) = A+.
M also recognizes {ε} (taking X = {1}), A∗ (taking X = {1,m}),
and ∅ (taking X = {}).

Question: Is every language recognizable?
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Exercise

Show that the language of odd a’s over the alpbabet A = {a, b} is
recognizable.
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Transition Monoid of a DA

Let A = (Q, s, δ,F ) be a deterministic automaton (DA).

For w ∈ A∗, define fw : Q → Q by

fw (q) = δ̂(q,w).

Consider the monoid

M(A) = ({fw | w ∈ A∗}, ◦, 1).

M(A) is called the transition monoid of A.
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Example DA and Transition Monoid

b

a

ab

a, b

1

3

2

Distinct elements of M(A) are {fε, fa, fb, faa, fab, fba}.

We write fa as

(
1 2 3
2 3 3

)
, or simply (2 3 3).

Question: If Q is finite, how many elements can M(A) have?
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Syntactic Monoid of a language

Let A≡L
= (Q, s, δ,F ) be the canonical automaton for a

language L ⊆ A∗.

The transition monoid of A≡L
is called the syntactic monoid

of L.

We denote the syntactic monoid of L by M(L).
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Syntactic Congruence of a language

Define an equivalence relation ∼=L on A∗, induced by L, as

u ∼=L v iff ∀x , y ∈ A∗ : xuy ∈ L iff xvy ∈ L.

∼=L is called the syntactic congruence of L.
Check that ∼=L is a two-sided congruence:

That is, ∼=L is both a left-congruence (i.e u ∼=L v implies
wu ∼=L wv , for each w ∈ A∗) and a right-congruence (i.e
u ∼=L v implies uw ∼=L vw).
Equivalently, u ∼=L u′ and v ∼=L v ′ imples uv ∼=L u′v ′.

∼=L refines the canonical MN relation, ≡L, for L.
Example?

Consider the language (a + b)∗bb:

ε

(a + b)∗a

(a + b)∗bb

(a + b)∗ab

b
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Characterization of the syntactic monoid

Claim

For a canonical DA A = (Q, s, δ,F ),

fu = fv iff u ∼=L v .

Proof:
By definition the element fu of the transition monoid of the
canonical DA is δ̂( , u).
xuy ∈ L iff (fx ◦ fu ◦ fy )(s) ∈ F (in other words, δ̂(s, xuy) ∈ F ) in
the canonical DA iff (fx ◦ fv ◦ fy )(s) ∈ F in the canonical DA iff
xvy ∈ L
Thus the syntactic congruence u ∼=L v matches the equality
fu = fv derived from the canonical DA.
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Syntactic monoid via syntactic congruence

For a language L ⊆ A∗, consider the monoid A∗/ ∼=L, whose
elements are equivalence classes under ∼=L, operation ◦ is given by

[u] ◦ [v ] = [uv ],

and identity element is [ε].

Claim

The monoids M(L) and A∗/∼=L are isomorphic.

(Use the morphism fw 7→ [w ].)
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Algebraic definition of regular languages

Theorem

Let L ⊆ A∗. Then the following are equivalent:

1 L is regular

2 The syntactic monoid of L, i.e. M(L), is finite.

3 L is recognized by a finite monoid.

Proof:

(1) =⇒ (2): since A≡L
is finite, and hence so is M(L).

(2) =⇒ (3): Define morphism ϕ : A∗ → M(L), given by w 7→ fw .
(3) =⇒ (1): Let L be recognized by a finite monoid (M, ◦, 1), via
a morphism ϕ and X ⊆ M. Define a DFA A = (M, 1, δ,X ), where

δ(m, a) = m ◦ ϕ(a).
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Canonicity of syntactic monoid/congruence

Let M and N be monoids. We say N divides M if there is a
submonoid M ′ of M, and a surjective morphism from M ′ to N.

1 1

M

M′
N

Theorem

Let L ⊆ A∗. Then L is recognized by a monoid M iff M(L) divides
M.
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First-Order definable languages

Theorem (Schutzenberger (1965), McNaughton-Papert (1971))

Let L ⊆ A∗. Then the following are equivalent

1 L is definable in FO(<).

2 L is accepted by a counter-free DFA.

3 A≡L
is a counter-free DFA.

4 L is definable by a star-free extended regular expression.

5 L is recognized by an aperiodic finite monoid.

6 M(L) is aperiodic.
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FO-definable languages

DFA

CF

Fin Monoid

AP

MSO

FO

ERE

SF

LTL

Kamp1968

McNaughton, Paper 1971

Schutzenberger 1965
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Definitions: Aperiodic Monoids

A finite monoid is called aperiodic, if it does not contain a
non-trivial group, or equivalently, for each element m in the
monoid, mn = mn+1, for some n > 0.

Periodic Aperiodic

m

m2

m3 m4

m5

m6
m

m2

m3 m4

Examples:

◦ 1 m
1 1 m
m m 1

A periodic monoid.

◦ 1 m
1 1 m
m m m

An aperiodic monoid.
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Definitions: Counter in a DFA

A counter in a DFA A = (Q, s, δ,F ) is a string u ∈ A∗ and
distinct states q0, q1, . . . , qk in Q, with k ≥ 1, such that for
each i , δ̂(qi , u) = qi+1, and δ̂(qk , u) = q0.

u
u

u

u

u

q4
q3

q2

q1

q0

A DFA is counter-free if it does not have any counters.

b

a

ab

a, b

1

3

2

b b

e o

a

a
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Definitions: Star-Free Regular Expressions

A star-free regular expression is an extended regular expression
obtained using the syntax:

s ::= ∅ | a | s + s | s · s | s ∩ s | s,

where a ∈ A, and s denotes the language A∗ − L(s).

A language L ⊆ A∗ is called star-free if there is a star-free
regular expression defining it.

For example the language A∗ is star-free since the star-free
expression ∅ denotes it.
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Illustrative example: L = (ab)∗

FO(<) sentence for L:

∀x ( zero(x) =⇒ Qa(x) ∧
(Qa(x) =⇒ ∃y(succ(x , y) ∧ Qb(y))) ∧
(Qb(x) ∧ ¬last(x) =⇒ ∃y(succ(x , y) ∧ Qa(y))))

)

Counter-Free DFA for L:

b

a

ab

a, b

1

3

2

Star-Free ERE:

{ε} ∪ (aA∗ ∩ A∗b ∩ A∗(aa + bb)A∗).

Note that A∗ is short-hand for ∅ (what about {ε}?).
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