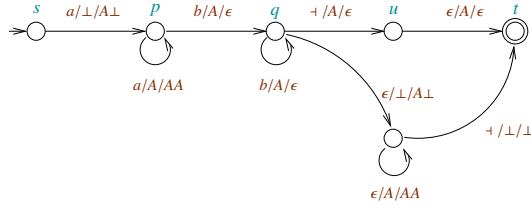


Automata Theory and Computability

Assignment 4 (Pushdown Reachability, DPDA, VPAs, Turing Machines)

(Total Marks 55. Due on Mon 18 Nov 2019)

1. Consider the DPDA M given below. (15)



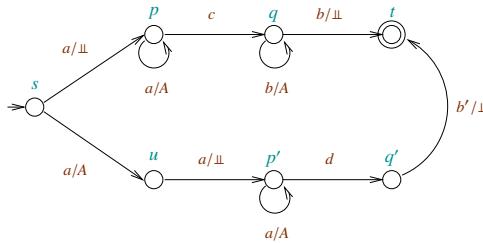
Follow the steps discussed in class to construct a DPDA N that accepts the complement of the language accepted by M .

- (a) First construct a language-equivalent PDA M' that has sink accepting states, and a single reject state r' . M' must read all its inputs, except possibly for inputs that cause it to enter into an infinite sequence of ϵ -moves.
- (b) Use the pushdown reachability algorithm to find the spurious transitions in M' . Describe the PDS and set of configurations C you consider. Apply the algorithm for $Pre^*(C)$, showing the saturated P -automaton.
- (c) Identify the spurious transitions. Describe the DPDA M'' you obtain by “removing” the spurious transitions.
- (d) Describe the complemented DPDA N obtained from M'' .

2. Describe a procedure similar to the one for pre^* , for computing $post^*$ for a given regular set C of configurations of a pushdown system P . (10)

3. Let $\widetilde{\Sigma} = (\Sigma_c, \Sigma_r, \Sigma_i)$ be a partitioned alphabet, with $\Sigma = \Sigma_c, \Sigma_r, \Sigma_i$. Show that if $L \subseteq \Sigma^*$ is a Visibly Pushdown Language (VPL) over $\widetilde{\Sigma}$ then so is L^* . (10)

4. Consider the VPA below over the partitioned alphabet $(\{a\}, \{b, b'\}, \{c, d\})$. (10)



(a) Describe the language accepted by the VPA.

(b) Use the construction discussed in class to determinize it.

5. Show that the following functions are computable by a Turing Machine in the sense discussed in class. Describe your TMs using a modular diagrammatic representation as done in class. (10)

- (a) $\text{square} : \mathbb{N} \rightarrow \mathbb{N}$ where $\text{square}(n) = n^2$.
- (b) (integer division) $\text{div} : \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$, where $\text{div}(m, n)$ is the largest integer less than or equal to m/n if $n > 0$, and 0 otherwise.