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Myhill-Nerode Theorem: Overview

Every language L has a “canonical” deterministic automaton
accepting it.

Every other DA for L is a “refinement” of this canonical DA.
There is a unique DA for L with the minimal number of states.

Holds for any L (not just regular L).

L is regular iff this canonical DA has a finite number of states.

There is an algorithm to compute this canonical DA from any
given finite-state DA for L.
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DA for any language

Note that every language L has DA accepting it (we call this the
“free” DA for L).

The free DA for L = {anbn | n ≥ 0}:
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Illustrating “refinement” of DA: Example 0

Replicate each state p in the first automaton some number of
times (p1, p2, . . . ), and add an edge labelled a from each pi

to some qj such that δ(p, a) = q. The“split” DA accepts the
same language.

Conversely, every DA for L is a “splitting” of the canonical
DA for L.
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Illustrating “refinement” of DA: Example 1

Every DA for L is a “refinement” of this canonical DA:
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Illustrating “refinement” of DA: Example 2

Every DA for L is a “refinement” of this canonical DA:
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Myhill-Nerode Theorem

Canonical equivalence relation ≡L on A∗ induced by L ⊆ A∗:

x ≡L y iff ∀z ∈ A∗, xz ∈ L iff yz ∈ L.

x

y

∈ L

6∈ L

x 6≡L y iff

Theorem (Myhill-Nerode)

L is regular iff ≡L is of finite index (that is has a finite number of
equivalence classes).
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Exercise 1

Describe the equivalence classes for L = “Odd number of a’s”.
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Exercise 2

Describe precisely the equivalence classes of ≡L for the language
L ⊆ {a, b}∗ comprising strings in which the 2nd last letter is a b.

a
b

a
ab
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b

b a

ε, a, . ∗ aa

. ∗ ba. ∗ bb

b, . ∗ ab
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Exercise 3

Describe the equivalence classes of ≡L for the language
L = {anbn | n ≥ 0}.

ab
a2b2

a3b3

aab
a3b2

a4b3

aaab
a4b2

a5b3

.∗b.∗a.∗

b
abb

a, b

ε aaa

b b b b b

b b b b b

a, b a a a a

b

a a a a a
aaaaaaa

Note: The natural deterministic PDA for L gives this DA.
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Myhill-Nerode (MN) relations for a language

An MN relation for a language L on an alphabet A is an
equivalence relation R on A∗ satisfying

1 R is right-invariant (i.e. xRy =⇒ xaRya for each a ∈ A.)
2 R refines (or “respects”) L (i.e.

xRy =⇒ x , y ∈ L or x , y 6∈ L).

A∗
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Deterministic Automata for L and MN relations for L

DA for L and MN relations for L are in 1-1 correspondence (they
represent eachother).

DA for L MN relations for L

A RA

RAR

Maps A7→RA and AR←[R are inverses of eachother.
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Example DA and its induced MN relation

L is “Odd number of a’s”:
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Deterministic Automata for L and MN relations for L

DA (with no unreachable states) for L and MN relations for L are
in 1-1 correspondence.

DA for L MN relations for L

A RA

RAR

Maps A7→RA and AR←[R are inverses of eachother.
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Equivalence relations and Refinement

An equivalence relation R on a set X refines another equivalence
relation S on X if for each x , y ∈ X , xRy =⇒ xSy .

Exercise: Consider the relations R: “equal mod 2” and S : “equal
mod 4”. Which refines which? Picture R and S .
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Any MN-relation for L refines the relation ≡L

Lemma

Let L be any language over an alphabet A. Let R be any
MN-relation for L. Then R refines ≡L.

Proof: To prove that xRy implies x ≡L y . Suppose x 6≡L y . Then
there exists z such that (WLOG) xz ∈ L and yz 6∈ L. Suppose
xRy . Since its an MN relation for L, it must be right invariant; and
hence xzRyz . But this contradicts the assumption that R respects
L.
As a corollary we have:

Theorem (Myhill-Nerode)

L is regular iff ≡L is of finite index (that is has a finite number of
equivalence classes).
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Canonical DA for L

We call A≡L
the “canonical” DA for L.

In what sense is A≡L
canonical?

Every other DA for L is a refinement of A≡L
.

A is a refinement of B if there is a stable partitioning ∼ of A
such that quotient of A under ∼ (written A/∼) is isomorphic
to B.
Stable partitioning of A = (Q, s, δ,F ) is an equivalence
relation ∼ on Q such that:

p ∼ q implies δ(p, a) ∼ δ(q, a).
If p ∼ q and p ∈ F , then q ∈ F also.

Note that if ∼ is a stable partitioning of A, then A/∼ accepts
the same language as A.
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Example: 1

A stable partitioning shown by pink and light pink classes, and
below, the quotiented automaton:
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Example: 2
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Proving canonicity of A≡L

Let A be a DA for L with no unreachable states. Then A≡L

represents a stable partitioning of A. (Use the refinement of ≡L by
the MN relation RA.)
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b b

bb

b
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←[≡L

A7→RA

ε a

aaaaa

ε a
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Stable partitioning ≈

Let A = (Q, s, δ,F ) be a DA for L with no unreach. states.

The canonical MN relation for L (i.e. ≡L) induces a
“coarsest” stable partitioning ≈L of A given by

p ≈L q iff ∃x , y ∈ A∗ such that δ̂(s, x) = p and δ̂(s, y) = q,
with x ≡L y .

Define a stable partitioning ≈ of A by

p ≈ q iff ∀z ∈ A∗ : δ̂(p, z) ∈ F iff δ̂(q, z) ∈ F .

p

z

z

q
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Example of ≈ partitioning relation

p q

st

u r

b

b
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a, b

a, b

a, b

b
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Stable partitioning ≈ is coarsest

Claim: ≈ coincides with ≈L.
≈L = ≈.

Proof:

p 6≈ q iff ∃x , y , z : δ̂(s, x) = p, δ̂(s, y) = q, and

δ̂(p, z) ∈ F but δ̂(q, z) 6∈ F .
iff p 6≈L q.
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Algorithm to compute ≈ for a given DFA

Input: DFA A = (Q, s, δ,F ).
Output: ≈ for A.

1 Create a (symmetric) table indexed by pairs of states.
Initialize entry for each pair to “unmarked”.

2 Mark (p, q) if p ∈ F and q 6∈ F (or vice-versa).

3 Call a pair (p, q) markable if (p, q) is unmarked, and for some
a ∈ A, the pair (δ(p, a), δ(q, a)) is marked.

4 While there is an markable pair:
1 Pick a markable pair (p, q) and mark it.

5 Return ≈ as: p ≈ q iff (p, q) is left unmarked in table.
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Example

Run minimization algorithm on DFA below:

p q
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u p t q s r
u ·
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√ √ √
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√ √ √

·
r

√ √ √ √ √

·
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Correctness of minimization algorithm

Claim: Algo always terminates.

n(n − 1)/2 table entries in each scan, and at most n(n − 1)/2
scans.

In fact, number of scans in algo is ≤ n, where n = |Q|.
1 Consider modified step 3.1 in which mark check is done wrt

the table at the end of previous scan.
2 Argue that at end of i-th scan algo computes ≈i , where

p ≈i q iff ∀w ∈ A∗ with |w | ≤ i : δ̂(p,w) ∈ F iff δ̂(q,w) ∈ F .

3 Observe that ≈i+1 strictly refines ≈i , unless the algo
terminates after scan i + 1. So modified algo does at most n
scans.

4 Both versions mark the same set of pairs. Also if modified algo
marks a pair, original algo has already marked it.
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Correctness of minimization algorithm

Claim: Original algo marks (p, q) iff p 6≈ q.

(⇒:) Argue by induction on number of steps of the algo that
this is true.

(⇐:) Suppose p 6≈ q. Argue by induction on n that if two
states t and u are distinguished by a string z of length n, then
(t, u) will be marked by the algo.

p

z

z

q
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A corollary

If p and q are two states such that p 6≈ q, then there is a string of
length at most n − 2 which distinguishes them.

a1a2

6≈06≈1

≈0

6≈2

≈1

ak

6≈k

≈k−1
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