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Presburger Logic

First-Order logic of (N, <,+).

Interpreted over N = {0, 1, 2, 3, . . .}.
What you can say:

x + 2y < z + 1, ∃xϕ, ∀xϕ, ¬,∧,∨.

Examples:
1 ∀x∀y((x < y) =⇒ ∃z(x < z < y)) (Also in FO(<)).
2 Solutions to a system of linear inequalities:
∃x∃y(x + 2y ≤ 1 ∧ x = y).

3 “Every number is odd or even”: ∀x∃y(x = 2y ∨ x = 2y + 1).

Studied by Mojzesz Presburger, who gave a sound and
complete axiomatization, as well as a decision procedure for
validity, circa 1929.
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Problems to solve

Questions: Is there an algorithm to decide the following problems:

Is a given Presburger logic sentence is true or not (validity
problem)?

Given a Presburger logic formula ϕ(x , y), do there exist
natural numbers x and y satisfying ϕ (satisfiability problem)?
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Presburger Logic more formally

Terms t are of the form:

0 | 1 | x | y | t + t

Atomic formulas (f ) are of the form:

t = t | t < t

General formulas (ϕ):

f | ¬ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ | ∃xϕ | ∀xϕ.

We denote by L(ϕ) the set of all interpretations for variables I that
satisfy ϕ.
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Overall idea

Represent interpretation of variables as (rows of) binary
strings

x 001111
y 100011
z 011100

Construct automata over such words, that accept all satisfying
assignments of the variables, for atomic formulas.

Use closure properties of automata to inductively construct
automata for more complex formulas.
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Representing numbers as binary strings

Represent the number 3 by “011” or “0011” or “00011” etc.

The automata will read the strings from right to left.

Will read a tuple of bits: For example for the formula
x ≤ 2y + 1 it will read inputs from the alphabet

{0, 1}2

which we represent as:(
0
0

)
,

(
0
1

)
,

(
1
0

)
,

(
1
1

)
.

Thus, automaton constructed for a given formula will accept
the reverse of actual interpretations.
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Automaton for x + 2y − 3z = 1

Accepting run on:

x (= 0) : 000
y (= 2) : 010
z (= 1) : 001

x (= 15) : 001111
y (= 35) : 100011
z (= 28) : 011100

but none on:

x (= 1) : 001
y (= 2) : 010
z (= 1) : 001
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Construction for atomic formulas: Idea

Consider formula x + 2y − 3z = 1.

x 00111 1
y 10001 1
z 01110 0

Keep track of the weighted sum needed in the future to reach the
original weighted sum of b.
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Construction for atomic formulas (=)

Consider formula ϕ : a1x1 + a2x2 + · · ·+ anxn = b, with ai ∈ Z:
Construct automaton Aϕ as follows:

Begin with initial state labelled b.

In general, if state is c , on reading bit vector (θ1, . . . , θn)

Check if (a1θ1 + · · ·+ anθn) ≡ c ( mod 2).

Move to state labelled c−(a1θ1+···+anθn)
2 .

Else, move to “Error” state.

Make state with label 0 the (only) final state.

Example formula x + 2y − 3z = 1.

x 00111 1
y 10001 1
z 01110 0
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Bounded state claim

Claim

The number of states is bounded by 2M + 1 where

M = max(|b|, |a1|+ · · ·+ |an|).

The “remaining” weighted sum is always in the interval [−M,M].
Observe that the remaining weighted sum is an order less (the
place value of bits goes down by a factor of 2).
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Weighted Sum

Fix an atomic formula ϕ: a1x1 + · · ·+ anxn = b

Define weighted sum of a string w = uk · · · u0 ∈ ({0, 1}n)∗:

wsum(w) = a1(k1) + · · ·+ an(kn),

where k1, . . . kn are the numbers represented by w .

Thus, if w 6= ε, then

wsum(w) = a1(2kuk(1) + · · ·+ 20u0(1))+
· · ·
an(2kuk(n) + · · ·+ 20u0(n))

If w = ε, then wsum(w) is defined to be 0.

Claim

If w = v · u then wsum(w) = 2|u| · wsum(v) + wsum(u).
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Correctness of construction for atomic formulas with =

Claim

After reading u ∈ ({0, 1}k)∗ the automaton Aϕ will be in state{
c such that c · 2|u| + wsum(u) = b if wsum(u) ≡ b mod 2|u|

Error otherwise

Proof: By induction on |u|.
Base case: u = ε

Induction step: u = d · w
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Construction for ≤

a1x1 + a2x2 + · · ·+ anxn ≤ b.

One approach:

Begin with initial state label b
From state c on input (θ1, . . . , θn) go to state

bc − (a1θ1 + · · ·+ anθn)

2
c

and make all states with labels c ≥ 0, final.
State labels are still in the range [−M,M].
Note that remaining weighted sum is an integer.

Another approach: Replace by ∃z(a1x1 + · · ·+ anxn + z = b).
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Construction for general formulas

We use models in ({a} × {0, 1}n)+ (0 ≤ n). Thus models are
non-empty words of tuples of the form (a, 0, 1, . . . , 0). All
operations (including complementation) is wrt this universe of
models.

For a given formula ϕ, we define a relation Rϕ that relates
valuations for variables (say I) with models w of the form
above.

Let Aϕ denote the alphabet {a} × {0, 1}|FV (ϕ)|.

Then (I,w) ∈ Rϕ iff w ∈ A+
ϕ and for each x ∈ FV (ϕ),

I(x) = (w(x))2.

We use “(w(x))2” to denote the value of the binary string
corresponding to the row for x in w .

Note that Rϕ is a many-to-many relation.
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Construction for general formulas

Claim

For any Presburger logic formula ϕ we can construct an
automaton Aϕ that accepts precisely the set Rϕ(L(ϕ)).

We construct Aϕ inductively:

For atomic formulas, construct as described earlier.

For ψ1 ∨ ψ2, we add rows for new variables (for example x in
FV (ψ2)− FV (ψ1)) in the automata Aψ1 and Aψ2 , and then
“union” them.

For ¬ψ, we construct an automaton for A+
ψ − L(Aψ).

For ∃xψ, we do the following:

Project out the row for x in Aϕ
If no free vars in ϕ, then take acceptance-closure.
Else (if there are free vars in ϕ), take zero-closure.
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Illustrating acceptance-closure: ¬∃x(x > 2)
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Illustrating zero-closure: ∃y(x + y > 2)
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Deciding the logical questions

Given a Presburger logic formula ϕ we contruct the automaton Aϕ
as described, which accepts all the satisfying assignments that
make ϕ true.

If ϕ is a sentence (no free variables), then Aϕ runs on the
single-letter alphabet {a}. Then ϕ is valid iff L(Aϕ) = a+.
This can be checked algorithmically, by complementing Aϕ,
intersecting with Aa+ and checking for emptiness.

If ϕ has free variables, then ϕ is satisfiable iff L(Aϕ) accepts a
non-empty word. Again this can be algorithmically checked in
linear time in size of Aϕ.
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Summary

Another application of automata-theory to solve a problem in
logic.

Automata approach gives us a convenient representation of
the set of all satisfying assignments for a Presburger formula.

Automata-based approach can be expensive (tower of
exponentials), but more efficient decision procedures are
known (triple exponential).
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