
Presburger Logic Automata-based procedure Decision Procedure Summary

Automata-based decision procedure for Presburger
Logic

Deepak D’Souza

Department of Computer Science and Automation
Indian Institute of Science, Bangalore.

26 August 2019

Presburger Logic Automata-based procedure Decision Procedure Summary

Outline

1 Presburger Logic

2 Automata-based procedure

3 Decision Procedure

4 Summary

Presburger Logic Automata-based procedure Decision Procedure Summary

Presburger Logic

First-Order logic of (N, <,+).

Interpreted over N = {0, 1, 2, 3, . . .}.
What you can say:

x + 2y < z + 1, ∃xϕ, ∀xϕ, ¬,∧,∨.

Examples:
1 ∀x∀y((x < y) =⇒ ∃z(x < z < y)) (Also in FO(<)).
2 Solutions to a system of linear inequalities:
∃x∃y(x + 2y ≤ 1 ∧ x = y).

3 “Every number is odd or even”: ∀x∃y(x = 2y ∨ x = 2y + 1).

Studied by Mojzesz Presburger, who gave a sound and
complete axiomatization, as well as a decision procedure for
validity, circa 1929.

Presburger Logic Automata-based procedure Decision Procedure Summary

Problems to solve

Questions: Is there an algorithm to decide the following problems:

Is a given Presburger logic sentence is true or not (validity
problem)?

Given a Presburger logic formula ϕ(x , y), do there exist
natural numbers x and y satisfying ϕ (satisfiability problem)?

Presburger Logic Automata-based procedure Decision Procedure Summary

Presburger Logic more formally

Terms t are of the form:

0 | 1 | x | y | t + t

Atomic formulas (f) are of the form:

t = t | t < t

General formulas (ϕ):

f | ¬ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ | ∃xϕ | ∀xϕ.

We denote by L(ϕ) the set of all interpretations for variables I that
satisfy ϕ.

Presburger Logic Automata-based procedure Decision Procedure Summary

Overall idea

Represent interpretation of variables as (rows of) binary
strings

x 001111
y 100011
z 011100

Construct automata over such words, that accept all satisfying
assignments of the variables, for atomic formulas.

Use closure properties of automata to inductively construct
automata for more complex formulas.

Presburger Logic Automata-based procedure Decision Procedure Summary

Representing numbers as binary strings

Represent the number 3 by “011” or “0011” or “00011” etc.

The automata will read the strings from right to left.

Will read a tuple of bits: For example for the formula
x ≤ 2y + 1 it will read inputs from the alphabet

{0, 1}2

which we represent as:(
0
0

)
,

(
0
1

)
,

(
1
0

)
,

(
1
1

)
.

Thus, automaton constructed for a given formula will accept
the reverse of actual interpretations.

Presburger Logic Automata-based procedure Decision Procedure Summary

Automaton for x + 2y − 3z = 1

Accepting run on:

x (= 0) : 000
y (= 2) : 010
z (= 1) : 001

x (= 15) : 001111
y (= 35) : 100011
z (= 28) : 011100

but none on:

x (= 1) : 001
y (= 2) : 010
z (= 1) : 001

0

1

1

1

0

0

1

1

1

0

0

0

0

0

0

1

1

1

0

1

1

1

0

0

0

0

0

1

1

1

−2 0 2

−1 1

1

0

1

0

1

0

0

0

1

1

1

0

1

0

1

0

1

0

0

0

1

1

1

0

0

0

1

1

1

0

Presburger Logic Automata-based procedure Decision Procedure Summary

Construction for atomic formulas: Idea

Consider formula x + 2y − 3z = 1.

x 00111 1
y 10001 1
z 01110 0

Keep track of the weighted sum needed in the future to reach the
original weighted sum of b.

1

1

0

1

1

0

1

0

1

1

0

1

0

0

1

0

1

0

0 1 2 3 4 5 6−1−2−3−4−6 −5

−M M

Presburger Logic Automata-based procedure Decision Procedure Summary

Construction for atomic formulas (=)

Consider formula ϕ : a1x1 + a2x2 + · · ·+ anxn = b, with ai ∈ Z:
Construct automaton Aϕ as follows:

Begin with initial state labelled b.

In general, if state is c , on reading bit vector (θ1, . . . , θn)

Check if (a1θ1 + · · ·+ anθn) ≡ c (mod 2).

Move to state labelled c−(a1θ1+···+anθn)
2 .

Else, move to “Error” state.

Make state with label 0 the (only) final state.

Example formula x + 2y − 3z = 1.

x 00111 1
y 10001 1
z 01110 0

Presburger Logic Automata-based procedure Decision Procedure Summary

Bounded state claim

Claim

The number of states is bounded by 2M + 1 where

M = max(|b|, |a1|+ · · ·+ |an|).

The “remaining” weighted sum is always in the interval [−M,M].
Observe that the remaining weighted sum is an order less (the
place value of bits goes down by a factor of 2).

Presburger Logic Automata-based procedure Decision Procedure Summary

Weighted Sum

Fix an atomic formula ϕ: a1x1 + · · ·+ anxn = b

Define weighted sum of a string w = uk · · · u0 ∈ ({0, 1}n)∗:

wsum(w) = a1(k1) + · · ·+ an(kn),

where k1, . . . kn are the numbers represented by w .

Thus, if w 6= ε, then

wsum(w) = a1(2kuk(1) + · · ·+ 20u0(1))+
· · ·
an(2kuk(n) + · · ·+ 20u0(n))

If w = ε, then wsum(w) is defined to be 0.

Claim

If w = v · u then wsum(w) = 2|u| · wsum(v) + wsum(u).

Presburger Logic Automata-based procedure Decision Procedure Summary

Correctness of construction for atomic formulas with =

Claim

After reading u ∈ ({0, 1}k)∗ the automaton Aϕ will be in state{
c such that c · 2|u| + wsum(u) = b if wsum(u) ≡ b mod 2|u|

Error otherwise

Proof: By induction on |u|.
Base case: u = ε

Induction step: u = d · w

Presburger Logic Automata-based procedure Decision Procedure Summary

Construction for ≤

a1x1 + a2x2 + · · ·+ anxn ≤ b.

One approach:

Begin with initial state label b
From state c on input (θ1, . . . , θn) go to state

bc − (a1θ1 + · · ·+ anθn)

2
c

and make all states with labels c ≥ 0, final.
State labels are still in the range [−M,M].
Note that remaining weighted sum is an integer.

Another approach: Replace by ∃z(a1x1 + · · ·+ anxn + z = b).

Presburger Logic Automata-based procedure Decision Procedure Summary

Construction for general formulas

We use models in ({a} × {0, 1}n)+ (0 ≤ n). Thus models are
non-empty words of tuples of the form (a, 0, 1, . . . , 0). All
operations (including complementation) is wrt this universe of
models.

For a given formula ϕ, we define a relation Rϕ that relates
valuations for variables (say I) with models w of the form
above.

Let Aϕ denote the alphabet {a} × {0, 1}|FV (ϕ)|.

Then (I,w) ∈ Rϕ iff w ∈ A+
ϕ and for each x ∈ FV (ϕ),

I(x) = (w(x))2.

We use “(w(x))2” to denote the value of the binary string
corresponding to the row for x in w .

Note that Rϕ is a many-to-many relation.

Presburger Logic Automata-based procedure Decision Procedure Summary

Construction for general formulas

Claim

For any Presburger logic formula ϕ we can construct an
automaton Aϕ that accepts precisely the set Rϕ(L(ϕ)).

We construct Aϕ inductively:

For atomic formulas, construct as described earlier.

For ψ1 ∨ ψ2, we add rows for new variables (for example x in
FV (ψ2)− FV (ψ1)) in the automata Aψ1 and Aψ2 , and then
“union” them.

For ¬ψ, we construct an automaton for A+
ψ − L(Aψ).

For ∃xψ, we do the following:

Project out the row for x in Aϕ
If no free vars in ϕ, then take acceptance-closure.
Else (if there are free vars in ϕ), take zero-closure.

Presburger Logic Automata-based procedure Decision Procedure Summary

Illustrating acceptance-closure: ¬∃x(x > 2)

Acceptance

Closure

Project

away x

a
0

a
1

a
0

a
1

a
1

a
1

a
0

a
0

a
1

a
0

≥0

>0

≥1

>1 >2

a

a a

a

a
a

a aa

a

≥0

>0

≥1

>1 >2

a

a a

a

a
a

a aa

a

≥0

>0

≥1

>1 >2

∃x

x > 2

¬

Presburger Logic Automata-based procedure Decision Procedure Summary

Illustrating zero-closure: ∃y(x + y > 2)

Project

away y

Zero

Closure

a
0

a
1

a
1

a
1

a
0

a
0

a
0

a
1

a
1

a
1

a
1

a
0

a
1

a
0

a
0

a
0

a
1

a
0
0

a
0
1

a
1
0

a
1
1

a
1
0

a
0
1

a
0
0

a
0
0

a
0
1

a
1
0

a
1
1

a
0
1

a
1
0

a
1
1

a
0
1

a
1
0

a
1
1

a
0

a
1

a
1

a
1

a
0

a
0

a
0

a
1

a
1

a
1

a
1

a
0

a
1

a
0

a
0

a
0

a
1

∃y

x + y > 2

≥0

>0

≥1

>1 >2
a
1

a
0

a
0

≥0

>0

≥1

>1 >2
a
1
1 a

0
0

a
0
0

≥0

>0

≥1

>1 >2
a
1

a
0

a
0

Presburger Logic Automata-based procedure Decision Procedure Summary

Deciding the logical questions

Given a Presburger logic formula ϕ we contruct the automaton Aϕ
as described, which accepts all the satisfying assignments that
make ϕ true.

If ϕ is a sentence (no free variables), then Aϕ runs on the
single-letter alphabet {a}. Then ϕ is valid iff L(Aϕ) = a+.
This can be checked algorithmically, by complementing Aϕ,
intersecting with Aa+ and checking for emptiness.

If ϕ has free variables, then ϕ is satisfiable iff L(Aϕ) accepts a
non-empty word. Again this can be algorithmically checked in
linear time in size of Aϕ.

Presburger Logic Automata-based procedure Decision Procedure Summary

Summary

Another application of automata-theory to solve a problem in
logic.

Automata approach gives us a convenient representation of
the set of all satisfying assignments for a Presburger formula.

Automata-based approach can be expensive (tower of
exponentials), but more efficient decision procedures are
known (triple exponential).

	Presburger Logic
	Automata-based procedure
	Decision Procedure
	Summary

