REGULARITY-PRESERVING RELATIONS

・ 何 ト ・ ヨ ト ・ ヨ ト

Regularity-preserving relations - J.I Seiferas, R McNaughton
Automata Theory - Kozen

Definition

For each binary relation r on the set \mathbb{N} of nonnegative integers and each language L, define $P(r, L) := \{x \mid \exists y \text{ s.t. } r(|x|, |y|) \text{ and } xy \in L\}.$

Definition

For each binary relation r on the set \mathbb{N} of nonnegative integers and each language L, define $P(r, L) := \{x | \exists y \text{ s.t. } r(|x|, |y|) \text{ and } xy \in L\}.$

Definition (Regularity preserving relation)

A relation r is regularity preserving if P(r, L) is regular for every regular language L.

Definition (Ultimate periodicity)

A subset X of N is ultimately periodic if There exist $n_0 \ge 0$, $p \ge 1$ in N, such that for all $m \ge n_0$, $m \in X$ iff $m + p \in X$.

Definition (Ultimate periodicity)

A subset X of N is ultimately periodic if There exist $n_0 \ge 0$, $p \ge 1$ in N, such that for all $m \ge n_0$, $m \in X$ iff $m + p \in X$.

Definition (U.P. preserving relations)

A relation is U.P. preserving if for all ultimately periodic set A, the set

$$r^{-1}(A) := \{i \mid \exists j \in A \text{ s.t. } (i,j) \in r\}$$

is also U.P.

Characterisation of U.P. relations

Lemma

If L is regular, then $\{|x|| x \in L\}$ U.P.

Characterisation of U.P. relations

Lemma

If L is regular, then $\{|x|| x \in L\}$ U.P.

Lemma

If A is U.P, then $\{x \in \Sigma^* | |x| \in A\}$ is regular, for each finite alphabet Σ .

Characterisation of U.P. relations

Lemma

If L is regular, then $\{|x|| x \in L\}$ U.P.

Lemma

If A is U.P, then $\{x \in \Sigma^* | \ |x| \in A\}$ is regular, for each finite alphabet Σ .

Theorem

A relation is regularity preserving iff it is U.P.

U.P. degenerating relations

Definition

A binary relation r is U.P. degenerating if $r^{-1}(A)$ is finite/cofinite if A is finite/infinite respectively.

U.P. degenerating relations

Definition

A binary relation r is U.P. degenerating if $r^{-1}(A)$ is finite/cofinite if A is finite/infinite respectively.

Theorem

If r_1, r_2 are U.P. degenerating relations then $P(r_1, L) \setminus P(r_2, L)$ is finite for every regular language L.