Tree Automata

Kamal Lodaya

Department of Computer Science and Automation
Indian Institute of Science, Bangalore

7, 9 October 2019

Outline

© Overview
© Strings
© Terms

@ Automata
O Logic

@ Applications

Overview

Tree automata: Overview

Generalize language recognition from strings to trees
Analogous results lift from string signature to tree signature
Automata can go bottom-up and top-down

Satisfiability of monadic second-order logic reduces to
nonemptiness of automata

Help in going beyond regular string languages

Strings

Recognition via monoid morphisms

Let A= (Q,s,0) be a deterministic transition system over A

e For w € A*, let h, = (-, w)

@ his a monoid morphism from (A*,.,€) to the transition
monoid M(A) = (Q — Q, o, id) of unary functions over the
state set @

@ L C A* is recognized by morphism h: A* — M if for some F:
L=h"1(F)

o A=(Q,s,0,F) is a deterministic automaton (DA) over A

e w accepted in L(A) iff hy(s) € F

@ Syntactic congruence u =2, v iff
Vx,y € A* : xuy € L <= xvy € L matches the equality
h, = h, derived from the canonical DA

Strings

Recognition via monoid morphisms

Let A= (Q,s,0) be a deterministic transition system over A

e For w € A*, let h, = (-, w)

@ his a monoid morphism from (A*,.,€) to the transition
monoid M(A) = (Q — Q, o, id) of unary functions over the
state set @

@ L C A* is recognized by morphism h: A* — M if for some F:
L=h"1(F)

o A=(Q,s,0,F) is a deterministic automaton (DA) over A

e w accepted in L(A) iff hy(s) € F

@ Syntactic congruence u =2, v iff
Vx,y € A* : xuy € L <= xvy € L matches the equality
h, = h, derived from the canonical DA

Question (Doner 1970, Thatcher-Wright 1968)

Generalize functions to all arities?

Terms

Terms over a signature

Example: ¥ = (X9, X1) a unary signature of function symbols
@ constant Xy = {€}, unary symbols X1 = A
@ string ajay...ap — term ap(...(az2(a1(€)))...)
@ 6: Ty — Q given by: 0(¢) = s and &(a(w)) = 6(a)((w))

Terms

Terms over a signature

Example: ¥ = (X9, X1) a unary signature of function symbols

@ constant Xy = {€}, unary symbols X1 = A
@ string ajaz...a, — term ap(...(az(ai(e€)))...)
@ 6: Ty — Q given by: 0(¢) = s and &(a(w)) = 6(a)((w))
More generally: let ¥ = (Xo,X1,%2,..., L) be a finite signature
e Constants in X are terms (X required to be nonempty),
if t1,...,t, are terms and f € X, f(t1,...,t,) is a term
@)(c)e Qforce Xy o(f): Q" = Q for f € &,

~ ~ ~ ~

o 5(c) = d(c) and 3(F(ts, ..., £)) = 6(F)(B(tr), d(tn))

Automata

Algebra and automata

Q = (Q,9) is an algebra, accepting states make it a DTA
00: X0~ Qd: X" = (Q"—= Q) forn>0
o 6(c)=0d(c) and 8(F(t1, ..., %)) = 6(F)(6(t), - .., d(tn))
o A=(Q,0,F) a deterministic (bottom-up) tree automaton
o t accepted in L(A) iff (t) € F
@ Homomorphism h(f(t1,...,tn)) = f(h(t1),..., h(t,))
Tree language L C Ty is recognized by h: Ty — Q (algebra Q) if

for some F: L = h™1(F) V1
Yo = (t.7]. . / \ o
T =, /N /N

Yo ={A,V},
V1 V1 VO V1
Q=1{01}, N N N VAN

F={1
1 tL f0 fO tl fO fO tl O

Automata

Exercises

Design automata for these tree languages:

@ There are at least two a-labelled leaves, a € ¥

@ The frontier has no b before an a, a,b € X

© There are an odd number of f-labelled nodes, f € ¥ >
@ Al the three conditions above are satisfied

Automata

Nondeterministic automata, bottom-up and top-down

(Q, A, F) a nondeterministic automaton (NTA), where
Uncinm(@ * E; % Q),
(Q,A /) a nondeterministic top-down automaton ([NTA),
initial states / C Q and A C | J;;c,(Q X Xj x Q') (Q x Xo).
The last are called final combinations. If there isn't one, a run gets
stuck at a leaf and is not accepting.

A
A
A

Nl

Every | NTA has an equivalent NTA, every NTA has an equivalent
DTA, accepting the same language. Emptiness of the accepted
language can be checked in polynomial time.

Automata

Nondeterministic automata, bottom-up and top-down

(Q, A, F) a nondeterministic automaton (NTA), where
Uncinm(@ * E; % Q),
(Q,A /) a nondeterministic top-down automaton ([NTA),
initial states / C Q and A C | J;;c,(Q X Xj x Q') (Q x Xo).
The last are called final combinations. If there isn't one, a run gets
stuck at a leaf and is not accepting.

Nl

A
A
A

Every | NTA has an equivalent NTA, every NTA has an equivalent
DTA, accepting the same language. Emptiness of the accepted
language can be checked in polynomial time.

Proof: Compute the states R that are reachable (respectively, from
which runs can reach the leaves) at the roots of input trees. Check
whether a final state (respectively, an initial state) is in R.

Automata

Deterministic automata, top-down

A deterministic top-down automaton (|DTA) A = (Q,d,s) has a

single start state and transition function
0 Uicicm i = (Q = Q') with final combinations § C (Q x Xo).

The finite tree language {f(a, b), f(b,a)} with a,b € ¥y and
f € Y5 is not accepted by a |DTA

Proof: Construct a DTA accepting these terms. It will also accept
f(a,a) and f(b, b).

Automata

Nonregular languages

Lemma (Pumping)

For a tree automaton with n states, if it accepts a tree of height
> n, then there are two nodes on some path of the tree such that
the tree can be decomposed r|s[t]] at these nodes, where r[]| and
s|] are singular contexts and t is a tree, such that the trees r|[t],
r[s[s[t]l], r[s[---[s[t]]]] ..., where the context s is iterated i > 0
times, are all accepted by the automaton.

v

The language of all full binary trees is not regular.

Proof: Suppose a tree automaton accepts a full binary tree of
height n. Then it can be decomposed r[s[t]] as in the lemma. By
the lemma, r[s[s[t]]] is accepted, but this is not a full binary tree.

Automata

Myhill-Nerode congruence

Tree language L C Ty is recognized by h: Ty — Q (algebra Q) if
for some F: L= h"1(F)

Kernel congruence s =, t if h(s) = h(t)

Syntactic congruence s 2, t if for all singular contexts r[],
rlslel < r[tlelL

Theorem (Biichi, Thatcher-Wright 1968)

Let L C Tx. Then the following are equivalent:
© L is a regular tree language
@ The syntactic congruence of L has finite index

© L is recognized by a finite algebra

Monadic second-order logic (MSO) on trees

Signature ¥ = (Xo,..., %)

Syntax x =y, S1(x,y),...,Sm(x,y¥), x <y, Pa(x), Z(x), closed

under boolean operations and first- and second-order quantifiers

t= (dom(t)C(1U---Um)* _ol,...,_
(Uiztm -0)", {lab(-) = a | a € X})

Interpretation t, v, V = ¢(X, Z), defined inductively

Extended signature ¥ = (Lo U---UX,,) x Vary x Var, to encode
every first-order and every second-order variable at a position

om
Structure ’

Theorem (Doner 1970, Thatcher-Wright 1968)

L C Ty is regular iff L is definable by an MSO sentence

Checking satisfiability of MSO formulae reduces to checking
nonemptiness of tree automata

Example formulae

z
Signature ¥ = (Xo,..., %)
'/'/5,'15]\\~
leaf (x) = =3x(S1(x,y) V-V Sm(x, y)) 7 P
X y

beforeS(z, z1,z2) = \/,-:17,,1_1(5;(2, 1) A \/J-:,url,m Si(z,22))

before(x,y) = x <y V 3z3z3z(—leaf(z) A beforeS(z, z1, zo) A
a SxA~a <)) Az Sy Ao <)
firste(x) = Pr(x) A =3y (Pr(y) A before(y, x))
lasts(x) = Pr(x) A =3y(Ps(y) A before(x, y))

nexte(x,y) =
Ps(x)A\P¢(y)Abefore(x, y)N—3z(Ps(z) Abefore(x, z) Abefore(z, y))

Example sentences

@ There are at least two a-labelled leaves, a € Y g:
IxJy(x # y A leaf (x) A Pa(x) A leaf (y) A Pa(y))

@ The frontier has no b before an a, a,b € Xg:
Vx(Pa(x) A leaf (x) = =3y (Py(y) A leaf (y) A before(x, y))

© There are an odd number of f-labelled nodes, f € ¥:
321322VXVy((f/rstf() = Zl(X))/\

(lastr(y) = Zi(y))A
(nextr(x,y) = (Z1(x) & Z2(x))))

Definition

$1 D P2 = (1 V ¢2) A (1 A ¢2)

Applications

Context-free languages

Q@ S— NP VP S
@ NP — [Adj] NP N
@ VP — IV [Adv] | NP VP
TV Obj [Adv] |
© Obj — [Prep] N / Obj\
d(John) = N rn
d(writes) = TV N TV Prep N Adv

(
O(furiously) = Adv ' / ' \
d(P4.1)(Prep,N) = Obj John writes his exam furiously
d(P3.2)(1V, Adv) = VP

5(P3.4)(TV, Obj, Adv) = VP

Yo ={S,NP, VP, Obj}, X3 ={VP}, ¥y= {John,writes,...}

All context-free languages are yields of tree automata

Applications

Intervals of a string on a virtual tree

@ For simplicity, we think of every word as a letter of the
alphabet: ((John)((writes)((his)(exam))(furiously))

@ Parentheses depict labelled intervals but they are not present
on the string, interpreted as second-order variables

@ The MSO-interpretation gives tree-MSO formulas on the
imagined structure of intervals

Tran(P,(x)) = leaf (x) A Pa(x)
Tran(x < y) = leaf (x) A leaf (y) A before(x, y)
Int(Z) =Vxe Z: leaf(x)N(Vy,z€ Z: x<zNhNz<x = z€Z)

Tran(P¢(Z)) = Int(Z) A 3y(—leaf (y) A Pe(y)A

Vx(x € Z <= leaf(x) Ny < x))
) = Int(X)AInt(Y)AVx € X : Vy € Y : before(x, y)
C))= Int(Z)ANInt(C)A(C C 2)A
VY(nt(Y)A(CCY)A(Y CZ) = (Y CQ))

Tran(51(Z, FC)) = succ(Z, FC) ANV C(succ(Z,C) = bf(FC, (C))

Tran(bf(X,Y)
Tran(succ(Z,

Applications

Tree transducers realize tree homomorphisms

Tree signatures X and I, variables X, = {x1,...,xp}

00:X0—>Q, Val : X9 — Tr

0 8:5" 5 (Q"— Q), Val: " — Tr(X,)

o 0(F(tr,-- - tn)) = 0(F)(3(tr), - -, (tn)) and -
Val(f(t1,...,ty)) = Val(f)(x1,...,xn) where x; = Val(t;)

o A=(Q,0, Val,F) a deterministic bottom-up tree transducer
from X to I’

e Tree homomorphism h(f(t1,...,tn)) = h(f)(x1,...,xn),
where x; = h(t;)

Tree transduction T(A): Ty — Ty = {(t — Val(t)) | 5(t) € F}

Problem
String and tree transducers are a subject of current research

Applications

Translation as tree transduction

s
QS NP VP

@ NP - [Adj] NP NP/ N
© VP IV [AdY] |

. / \
TV Obj [Adv] / Obj /Adv v

© Obj — [Prep] N RN CA N

© Adv — N Modif N Prep N NModif TVC Part
Q@ TV — TVC Part '

Val(exam) = pariksha John apni parlksha _ja|dl se likhta hai
Val(P4.1 Obj(Xl,XQ)

(P4.1) =
Va/(P3 1)(X1,X2) VP(X2,X1)
Val(P3.2)(TV, Obj, Adv) = VP(x2, x3, x1)
Val(Adv) = Adv(N, Modif), Val(TV) = TV(TVC, Part)
[, = {S, NP, VP, Obj, TV, Adv},
I3 = {VP}, To = {John, apni, pariksha, likhta, . . . }

Applications

Transformation of deep structure

S(NP, VP(TV, Obj, Adv)) = S(AdvQ, NP, VP(TV, Obj, ——))

s
© S AdvQ NP VP
. /
@ NP — [Adj] NP A va4 \

@ VP — IV| TV Obj
Q Obj — [Prep] N / \ /)J
Q@ AdvQ — Wh Part

(5(HOW) — Wh Wh Part TV Prep

d(does) = Part
5(P4.1)(Prep, N) = Obj ~ How does John write his exam -
d(P3.4)(IV,AdvTr) = VP, §(P3.2)(TV, Obj,AdvTr) = VP

Problem
Transformational grammars using tree automata? MSO logic?

	Overview
	Strings
	Terms
	Automata
	Logic
	Applications

