
Overview Strings Terms Automata Logic Applications

Tree Automata

Kamal Lodaya

Department of Computer Science and Automation
Indian Institute of Science, Bangalore

7, 9 October 2019

Overview Strings Terms Automata Logic Applications

Outline

1 Overview

2 Strings

3 Terms

4 Automata

5 Logic

6 Applications

Overview Strings Terms Automata Logic Applications

Tree automata: Overview

Generalize language recognition from strings to trees

Analogous results lift from string signature to tree signature

Automata can go bottom-up and top-down

Satisfiability of monadic second-order logic reduces to
nonemptiness of automata

Help in going beyond regular string languages

Overview Strings Terms Automata Logic Applications

Recognition via monoid morphisms

Let A = (Q, s, δ) be a deterministic transition system over A

For w ∈ A∗, let hw = δ̂(,w)

h is a monoid morphism from (A∗, ., ε) to the transition
monoid M(A) = (Q → Q, ◦, id) of unary functions over the
state set Q

L ⊆ A∗ is recognized by morphism h : A∗ → M if for some F :
L = h−1(F)

A = (Q, s, δ,F) is a deterministic automaton (DA) over A

w accepted in L(A) iff hw (s) ∈ F

Syntactic congruence u ∼=L v iff
∀x , y ∈ A∗ : xuy ∈ L ⇐⇒ xvy ∈ L matches the equality
hu = hv derived from the canonical DA

Question (Doner 1970, Thatcher-Wright 1968)

Generalize functions to all arities?

Overview Strings Terms Automata Logic Applications

Recognition via monoid morphisms

Let A = (Q, s, δ) be a deterministic transition system over A

For w ∈ A∗, let hw = δ̂(,w)

h is a monoid morphism from (A∗, ., ε) to the transition
monoid M(A) = (Q → Q, ◦, id) of unary functions over the
state set Q

L ⊆ A∗ is recognized by morphism h : A∗ → M if for some F :
L = h−1(F)

A = (Q, s, δ,F) is a deterministic automaton (DA) over A

w accepted in L(A) iff hw (s) ∈ F

Syntactic congruence u ∼=L v iff
∀x , y ∈ A∗ : xuy ∈ L ⇐⇒ xvy ∈ L matches the equality
hu = hv derived from the canonical DA

Question (Doner 1970, Thatcher-Wright 1968)

Generalize functions to all arities?

Overview Strings Terms Automata Logic Applications

Terms over a signature

Example: Σ = (Σ0,Σ1) a unary signature of function symbols

constant Σ0 = {ε}, unary symbols Σ1 = A

string a1a2 . . . an 7→ term an(. . . (a2(a1(ε))) . . .)

δ̂ : TΣ → Q given by: δ̂(ε) = s and δ̂(a(w)) = δ(a)(δ̂(w))

More generally: let Σ = (Σ0,Σ1,Σ2, . . . ,Σm) be a finite signature

Constants in Σ0 are terms (Σ0 required to be nonempty),
if t1, . . . , tn are terms and f ∈ Σn, f (t1, . . . , tn) is a term

δ(c) ∈ Q for c ∈ Σ0, δ(f) : Qn → Q for f ∈ Σn

δ̂(c) = δ(c) and δ̂(f (t1, . . . , fn)) = δ(f)(δ̂(t1), . . . , δ̂(tn))

Overview Strings Terms Automata Logic Applications

Terms over a signature

Example: Σ = (Σ0,Σ1) a unary signature of function symbols

constant Σ0 = {ε}, unary symbols Σ1 = A

string a1a2 . . . an 7→ term an(. . . (a2(a1(ε))) . . .)

δ̂ : TΣ → Q given by: δ̂(ε) = s and δ̂(a(w)) = δ(a)(δ̂(w))

More generally: let Σ = (Σ0,Σ1,Σ2, . . . ,Σm) be a finite signature

Constants in Σ0 are terms (Σ0 required to be nonempty),
if t1, . . . , tn are terms and f ∈ Σn, f (t1, . . . , tn) is a term

δ(c) ∈ Q for c ∈ Σ0, δ(f) : Qn → Q for f ∈ Σn

δ̂(c) = δ(c) and δ̂(f (t1, . . . , fn)) = δ(f)(δ̂(t1), . . . , δ̂(tn))

Overview Strings Terms Automata Logic Applications

Algebra and automata

Q = (Q, δ) is an algebra, accepting states make it a DTA

δ : Σ0 → Q, δ : Σn → (Qn → Q) for n > 0

δ̂(c) = δ(c) and δ̂(f (t1, . . . , fn)) = δ(f)(δ̂(t1), . . . , δ̂(tn))

A = (Q, δ,F) a deterministic (bottom-up) tree automaton

t accepted in L(A) iff δ̂(t) ∈ F

Homomorphism h(f (t1, . . . , tn)) = f (h(t1), . . . , h(tn))

Tree language L ⊆ TΣ is recognized by h : TΣ → Q (algebra Q) if
for some F : L = h−1(F)

Σ0 = {t, f },
Σ1 = {¬},
Σ2 = {∧,∨},
Q = {0, 1},
F = {1}

∨1

∧1 ∧0
��
��

HH
HH

∨1 ∨1 ∨0 ∨1

t1 f 0 f 0 t1 f 0 f 0 t1 f 0

Overview Strings Terms Automata Logic Applications

Exercises

Problem

Design automata for these tree languages:

1 There are at least two a-labelled leaves, a ∈ Σ0

2 The frontier has no b before an a, a, b ∈ Σ0

3 There are an odd number of f -labelled nodes, f ∈ Σ2

4 All the three conditions above are satisfied

Overview Strings Terms Automata Logic Applications

Nondeterministic automata, bottom-up and top-down

A = (Q,∆,F) a nondeterministic automaton (NTA), where
∆ ⊆

⋃
0≤i≤m(Q i × Σi × Q),

A = (Q,∆, I) a nondeterministic top-down automaton (↓NTA),
initial states I ⊆ Q and ∆ ⊆

⋃
1≤i≤m(Q × Σi × Q i) ∪ (Q × Σ0).

The last are called final combinations. If there isn’t one, a run gets
stuck at a leaf and is not accepting.

Theorem

Every ↓NTA has an equivalent NTA, every NTA has an equivalent
DTA, accepting the same language. Emptiness of the accepted
language can be checked in polynomial time.

Proof: Compute the states R that are reachable (respectively, from
which runs can reach the leaves) at the roots of input trees. Check
whether a final state (respectively, an initial state) is in R.

Overview Strings Terms Automata Logic Applications

Nondeterministic automata, bottom-up and top-down

A = (Q,∆,F) a nondeterministic automaton (NTA), where
∆ ⊆

⋃
0≤i≤m(Q i × Σi × Q),

A = (Q,∆, I) a nondeterministic top-down automaton (↓NTA),
initial states I ⊆ Q and ∆ ⊆

⋃
1≤i≤m(Q × Σi × Q i) ∪ (Q × Σ0).

The last are called final combinations. If there isn’t one, a run gets
stuck at a leaf and is not accepting.

Theorem

Every ↓NTA has an equivalent NTA, every NTA has an equivalent
DTA, accepting the same language. Emptiness of the accepted
language can be checked in polynomial time.

Proof: Compute the states R that are reachable (respectively, from
which runs can reach the leaves) at the roots of input trees. Check
whether a final state (respectively, an initial state) is in R.

Overview Strings Terms Automata Logic Applications

Deterministic automata, top-down

A deterministic top-down automaton (↓DTA) A = (Q, δ, s) has a
single start state and transition function
δ :

⋃
1≤i≤m Σi → (Q → Q i) with final combinations δ ⊆ (Q ×Σ0).

Theorem

The finite tree language {f (a, b), f (b, a)} with a, b ∈ Σ0 and
f ∈ Σ2 is not accepted by a ↓DTA

Proof: Construct a DTA accepting these terms. It will also accept
f (a, a) and f (b, b).

Overview Strings Terms Automata Logic Applications

Nonregular languages

Lemma (Pumping)

For a tree automaton with n states, if it accepts a tree of height
≥ n, then there are two nodes on some path of the tree such that
the tree can be decomposed r [s[t]] at these nodes, where r [] and
s[] are singular contexts and t is a tree, such that the trees r [t],
r [s[s[t]]], r [s[. . . [s[t]]]] . . . , where the context s is iterated i ≥ 0
times, are all accepted by the automaton.

Corollary

The language of all full binary trees is not regular.

Proof: Suppose a tree automaton accepts a full binary tree of
height n. Then it can be decomposed r [s[t]] as in the lemma. By
the lemma, r [s[s[t]]] is accepted, but this is not a full binary tree.

Overview Strings Terms Automata Logic Applications

Myhill-Nerode congruence

Tree language L ⊆ TΣ is recognized by h : TΣ → Q (algebra Q) if
for some F : L = h−1(F)
Kernel congruence s ∼=h t if h(s) = h(t)
Syntactic congruence s ∼=L t if for all singular contexts r [],
r [s] ∈ L ⇐⇒ r [t] ∈ L

Theorem (Büchi, Thatcher-Wright 1968)

Let L ⊆ TΣ. Then the following are equivalent:

1 L is a regular tree language

2 The syntactic congruence of L has finite index

3 L is recognized by a finite algebra

Overview Strings Terms Automata Logic Applications

Monadic second-order logic (MSO) on trees

Signature Σ = (Σ0, . . . ,Σm)

Syntax x = y , S1(x , y), . . . ,Sm(x , y), x ≤ y , Pa(x), Z (x), closed
under boolean operations and first- and second-order quantifiers

Structure
t = (dom(t) ⊆ (1 ∪ · · · ∪m)∗, ◦ 1, . . . , ◦m,

(
⋃

i=1,m ◦ i)∗, {lab() = a | a ∈ Σ})

Interpretation t, v̄ , V̄ |= φ(x̄ , Z̄), defined inductively

Extended signature Σ = (Σ0 ∪ · · · ∪ Σm)× Var1 × Var2 to encode
every first-order and every second-order variable at a position

Theorem (Doner 1970, Thatcher-Wright 1968)

L ⊆ TΣ is regular iff L is definable by an MSO sentence

Corollary

Checking satisfiability of MSO formulae reduces to checking
nonemptiness of tree automata

Overview Strings Terms Automata Logic Applications

Example formulae

Signature Σ = (Σ0, . . . ,Σm)

leaf (x) = ¬∃x(S1(x , y) ∨ · · · ∨ Sm(x , y))

z

z1 z2

�
�+ %%	Si ?

eeRSj

Q
Qs

x y

beforeS(z , z1, z2) =
∨

i=1,m−1(Si (z , z1) ∧
∨

j=i+1,m Sj(z , z2))

before(x , y) = x < y ∨ ∃z∃z1∃z2(¬leaf (z) ∧ beforeS(z , z1, z2)∧
z1 ≤ x ∧ ¬(z1 ≤ y) ∧ z2 ≤ y ∧ ¬(z2 ≤ x))))

firstf (x) = Pf (x) ∧ ¬∃y(Pf (y) ∧ before(y , x))

lastf (x) = Pf (x) ∧ ¬∃y(Pf (y) ∧ before(x , y))

nextf (x , y) =
Pf (x)∧Pf (y)∧before(x , y)∧¬∃z(Pf (z)∧before(x , z)∧before(z , y))

Overview Strings Terms Automata Logic Applications

Example sentences

1 There are at least two a-labelled leaves, a ∈ Σ0:
∃x∃y(x 6= y ∧ leaf (x) ∧ Pa(x) ∧ leaf (y) ∧ Pa(y))

2 The frontier has no b before an a, a, b ∈ Σ0:
∀x(Pa(x) ∧ leaf (x) ⇒ ¬∃y(Pb(y) ∧ leaf (y) ∧ before(x , y))

3 There are an odd number of f -labelled nodes, f ∈ Σ2:

∃Z1∃Z2∀x∀y((firstf (x) ⇒ Z1(x))∧
(lastf (y) ⇒ Z1(y))∧
(nextf (x , y) ⇒ (Z1(x)⊕ Z2(x))))

Definition

φ1 ⊕ φ2 = (φ1 ∨ φ2) ∧ ¬(φ1 ∧ φ2)

Overview Strings Terms Automata Logic Applications

Context-free languages

1 S → NP VP

2 NP → [Adj] NP

3 VP → IV [Adv] |
TV Obj [Adv]

4 Obj → [Prep] N

δ(John) = N
δ(writes) = TV
δ(furiously) = Adv
δ(P4.1)(Prep,N) = Obj
δ(P3.2)(IV ,Adv) = VP

S

NP VP
��
��

N

John

�
�
�
�

Obj

TV Adv
#
#
#
#
#

S
S
S
S

writes furiously

Prep

his

N

exam

δ(P3.4)(TV ,Obj ,Adv) = VP
Σ2 = {S ,NP,VP,Obj}, Σ3 = {VP}, Σ0 = {John,writes, . . . }

Theorem

All context-free languages are yields of tree automata

Overview Strings Terms Automata Logic Applications

Intervals of a string on a virtual tree

For simplicity, we think of every word as a letter of the
alphabet: ((John)((writes)((his)(exam))(furiously))

Parentheses depict labelled intervals but they are not present
on the string, interpreted as second-order variables

The MSO-interpretation gives tree-MSO formulas on the
imagined structure of intervals

Tran(Pa(x)) = leaf (x) ∧ Pa(x)
Tran(x < y) = leaf (x) ∧ leaf (y) ∧ before(x , y)
Int(Z) = ∀x ∈ Z : leaf (x) ∧ (∀y , z ∈ Z : x < z ∧ z < x ⇒ z ∈ Z)
Tran(Pf (Z)) = Int(Z) ∧ ∃y(¬leaf (y) ∧ Pf (y)∧

∀x(x ∈ Z ⇐⇒ leaf (x) ∧ y < x))
Tran(bf (X ,Y)) = Int(X)∧Int(Y)∧∀x ∈ X : ∀y ∈ Y : before(x , y)
Tran(succ(Z ,C)) = Int(Z) ∧ Int(C) ∧ (C ⊆ Z)∧

∀Y (Int(Y) ∧ (C ⊆ Y) ∧ (Y ⊆ Z) ⇒ (Y ⊆ C))
Tran(S1(Z ,FC)) = succ(Z ,FC) ∧ ∀C (succ(Z ,C) ⇒ bf (FC ,C))

Overview Strings Terms Automata Logic Applications

Tree transducers realize tree homomorphisms

Tree signatures Σ and Γ, variables Xn = {x1, . . . , xn}
δ : Σ0 → Q, Val : Σ0 → TΓ

δ : Σn → (Qn → Q), Val : Σn → TΓ(Xn)

δ̂(f (t1, . . . , tn)) = δ(f)(δ̂(t1), . . . , δ̂(tn)) and

V̂al(f (t1, . . . , tn)) = Val(f)(x1, . . . , xn) where xi = V̂al(ti)

A = (Q, δ,Val ,F) a deterministic bottom-up tree transducer
from Σ to Γ

Tree homomorphism h(f (t1, . . . , tn)) = h(f)(x1, . . . , xn),
where xi = h(ti)

Tree transduction T (A) : TΣ → TΓ = {(t 7→ V̂al(t)) | δ̂(t) ∈ F}

Problem

String and tree transducers are a subject of current research

Overview Strings Terms Automata Logic Applications

Translation as tree transduction

1 S → NP VP

2 NP → [Adj] NP

3 VP → IV [Adv] |
TV Obj [Adv]

4 Obj → [Prep] N

5 Adv → N Modif

6 TV → TVC Part

Val(exam) = pariksha

S

NP VP
��
��

N

John

�
�
�
�

Obj TVAdv
!!
!!
!

Q
Q

TVC Part

likhta hai

N Modif

jaldi se

Prep

apni

N

pariksha

Val(P4.1) = Obj(x1, x2)
Val(P3.1)(x1, x2) = VP(x2, x1)
Val(P3.2)(TV ,Obj ,Adv) = VP(x2, x3, x1)
Val(Adv) = Adv(N,Modif), Val(TV) = TV (TVC ,Part)
Γ2 = {S ,NP,VP,Obj ,TV ,Adv},
Γ3 = {VP}, Γ0 = {John, apni , pariksha, likhta, . . . }

Overview Strings Terms Automata Logic Applications

Transformation of deep structure

S(NP,VP(TV ,Obj ,Adv)) =⇒ S(AdvQ,NP,VP(TV ,Obj ,−−))

1 S → AdvQ NP VP

2 NP → [Adj] NP

3 VP → IV | TV Obj

4 Obj → [Prep] N

5 AdvQ →Wh Part

δ(How) = Wh
δ(does) = Part
δ(P4.1)(Prep,N) = Obj

S

AdvQ NP VP
HH

HH
!!
!!
!

Wh Part

�
�
�

C
C
C
C

How does

N

John

TV

Obj

–

�
�
�
�

B
B
B
B
B
B

write

Prep

his

N

exam

δ(P3.4)(IV ,AdvTr) = VP, δ(P3.2)(TV ,Obj ,AdvTr) = VP

Problem

Transformational grammars using tree automata? MSO logic?

	Overview
	Strings
	Terms
	Automata
	Logic
	Applications

