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Preliminaries: Star-Free Languages

▶ A language that can be described by a regular expression of
the alphabet letters, the empty set symbols and Boolean
operators is known as a star-free language

▶ Concatenation is allowed but Kleene Star is not (hence,
Star-Free)

▶ As is the point of this presentation we’ll see later that
Star-Free languages can be characterized as those having
aperiodic syntactic monoids.



Monoids

Definition 1
A monoid is a set M with a binary operation · : M ×M → M with
the following properties

▶ Associativity: (a · b) · b = a · (b · c) ∀a, b, c ∈ M

▶ Identity element: ∃e ∈
M (called the identity) such that e ·m = m · e = m ∀m ∈ M

The monoid as a whole is represented as the triplet (M, ·, e)



Monoid Examples

▶ All groups are also monoids (with the extra group structure).
Eg. (Z,+, 0), (R, ·, 1) (Since monoids don’t require inverses, 0
can be included with R)

▶ (A∗, ·, ϵ), where A is an alphabet, · is the concatentation
operation and ϵ is the empty string.

▶ (2A,∩,A), where A is a set, 2A is its power set and ∩ is the
intersection operation



Idempotents

An element m ∈ M is called idempotent if m2 := m ·m = m

Proposition 2

If M is a finite monoid, then ∀m ∈ M,∃k ∈ N such that mk is
idempotent

Proof: Let m ∈ M. Then ∀n ∈ N,mn ∈ M. But theres only
finitely many elements in M. So, there must exist p, q ∈ N such
that mp+q = mp.
Then, mp+q ·mq = mp+q

mp+2q = mp+q = mp. Clearly, this holds for all multiples of q.
(Seen by induction)



Idempotents

Take b such that bq > p,
(mbq)2 = m2bq = mbq−p ·mbq + p = mbq−p ·mp = mbq

Thus, mbq is idempotent.

Corollary 3

∃ω ∈ N such that mω is idempotent ∀m ∈ M,

Proof: Since there are only finitely many m ∈ M, take all the
elements, take the powers for which each element in idempotent,
and take the LCM of all the powers.
This ω is called the exponent of M



Green’s Relations

Let M be a monoid. We define the following four relations on M

1. s ≤R t iff s = tu for some u ∈ M

2. s ≤L t iff s = ut for some u ∈ M

3. s ≤J t iff s = vut for some u, v ∈ M

4. s ≤H t iff s ≤R tands ≤L t

Equivalently

1. s ≤R t iff sM ⊆ tM

2. s ≤L t iff Ms ⊆ Mt

3. s ≤J t iff MsM ⊆ MtM

4. s ≤H t iff s ≤R tands ≤L t



Green’s Relations

We’ll also proceed to define the following equivalence relations

1. sRt iff sM = tM

2. sLt iff Ms = Mt

3. sJ t iff MsM = MtM

4. sHt iff sRt and sLt
5. sDt iff ∃u ∈ M such that sRu and uLt

or ∃v ∈ M such that sLv and vRt



Green’s Relations

Theorem 4
We claim that in a finite monoid, the relations J and D are equal.
Additionally,

1. s ≤J sm =⇒ sR(sm)

2. s ≤J ms =⇒ sL(ms)

3. sJ t ∧ s ≤R t =⇒ sRt

4. sJ t ∧ s ≤L t =⇒ sLt
5. ∃u, v ∈ M such that (s = usv) =⇒ (us)HsH(sv)



Green’s Lemma

Theorem 5
Let the elements s, t ∈ M such that sRt. Let s = tp and t = sq.
Then, the following holds:

1. The map x → xp is a bijection from L(t) onto L(s)
2. The map x → xq is a bijection from L(s) onto L(t)
3. The above two maps are inverses of each other

4. H classes are preserved by these maps



Ordered Monoids

Definition 6
An ordered monoid (M,≤) is a monoid along with an order
relation leq, such that x ≤ y =⇒ uxv ≤ uyv , ∀u, v ∈ M

Definition 7
A subset P of an ordered monoid M is called an upper set if u ∈ P
and u ≤ v =⇒ v ∈ P

Definition 8
Given an upper set P define the syntantic order relation on
(M,≤) as, u ≤P v iff xuy ∈ P =⇒ xvy ∈ P ∀x , y ∈ M



Examples of Ordered Monoids

▶ The monoid (2A,∩,A,⊆) is an ordered monoid with the
subset relation

▶ We can equip all monoids with the order relation ’=’ to
obtain an ordered monoid (M,=)

▶ (N,×, 1,≤) is an ordered relation with the usual definitions of
× and ≤



Homomorphisms

Definition 9
A homomorphism (sometimes called a ’morphism’) is a map
between two monoids (M, ·, idM) and (N,×, idN), φ : M → N such
that
φ(m1 ·m2) = φ(m1)× φ(m2) ∀m1,m2 ∈ M
It is easy to make the two following observations :

▶ φ(idM) = idN
▶ (φ(M),×, φ(idM))



Recognisable Subsets and Languages

Definition 10
A subset L of a monoid M is said to be recognisable if there exists
a finite monoid N and a morphism φ : M → N and a subset
X ⊆ N such that L = φ−1(X )
We say that (φ,X ) recognises L

Definition 11
A language L under an alphabet A is said to be recognisable if it is
a recognisable subset of the monoid (A∗, ·, ϵ) (where · is the
concatenation operator)



Transition Monoids

Definition 12
Given a DFA A = (Q,A, δ, s,F ) (the same terminology used in
class), we define its transition monoid as follows:
Given a word w ∈ A∗, we define the map fw : Q → Q as
fw (q) = δ̂(q,w)

Then, the set FA = {fw |w ∈ A∗} is a monoid with the composition
operation and the identity map as the identity, i.e
(FA, ◦, id) is a monoid called the transition monoid.



Transition Monoids

Given a DFA A, the language L(A) is recognised by the
morphism-set pair (φ,φ(L(A))), where φ is the map that sends w
to fw as defined in the last slide.

Given a recognisable language L ⊆ A∗, recognised by the finite
monoid M via the morphism-set pair (φ,X ), we can define the
following DFA, A := (M,A, δ, id ,X ), where
δ(m, a) := m · φ(a), ∀m ∈ Ma ∈ A
It can be easily seen that L = L(A)
Thus, the set of regular languages over an alphabet A is same as
the set of recognisable languages over A



Syntactic Monoid

Definition 13
Given a subset X of a monoid M, we say that u is syntactically
congruent to v over X , denoted as u ∼=X v iff
xuy ∈ X ⇐⇒ xvy ∈ X ∀x , y ∈ M
∼=X is an equivalence relation on M

Definition 14
The syntactic monoid of X ⊆ M is the monoid M/ ∼=X , i.e its the
monoid with the same operation as M, but the elements and
identity of M/ ∼=X are the equivalence classes of M under the
equivalence relation ∼=X .
The ordered syntactic monoid is the ordered monoid (M/ ∼=X ,≤X )
(with ≤X being the syntactic order)



Syntactic Monoid of a Language

Definition 15
A morphism between two monoids M and N is said to be an
isomorphism if it is bijective.
Two monoids M and N are said to be isomorphic if there exists an
isomorphism between the two.

Proposition 16

The syntactic morphism of a recognisable language under an
alphabet is isomorphic to the transition monoid of its minimal DFA



Aperiodic Monoid

Definition 17
We say that a finite monoid is aperiodic if ∃n ∈ N such that
mn = mn+1 ∀m ∈ M

Proposition 18

A finite ordered monoid is aperiodic iff ∀m ∈ M, ∃n ∈ N such that
mn+1 ≤ mn

Proof:
If M is aperiodic, then ∃n ∈ N such that
mn+1 = m ∀m ∈ M =⇒ mn+1 ≤ mn

Now, if ∀m ∈ M, ∃mn ∈ N such that mn+1 ≤ mn, take a multiple
ω of the exponent ω′ that is greater than all the mn’s. So, we get,
∀m ∈ M, mω = m2ω ≤ m2ω−1 ≤ m2ω−2 . . .mω+1 ≤ mω

So, we have mω ≤ mω+1 ≤ momega and so, mω = mω+1

Thus, the monoid is aperiodic.



Some Lemmas on Aperiodic Monoids

We’ll state some lemmas (without proof) that we will be using in
the proof later.

Lemma 19
If L1, L2 ⊆ A∗ are recognisable languages recognised by the
aperiodic monoids M1 and M2, then let L = L1L2 be recognised by
M.
Then, M is aperiodic.

Lemma 20
If a finite monoid M is aperiodic then it is H-trivial

Lemma 21
Let m be an element of an aperiodic monoid M. Then,
{m} = (mM ∩Mm)\Jm, with Jm := {s ∈ M : m /∈ MsM}



Simplification Lemma

Lemma 22
If M is an aperiodic monoid and pqr = q for some p, q, r ∈ M,
then pq = q = qr

Proof:
pqr = q =⇒ p(pqr)r = q =⇒ p2qr2 = q
Extending this via induction, we get pnqrn = q ∀n ∈ N
Since M is aperiodic, this holds for the n0 ∈ N such that
pn0 = pn0+1

So, pn0+1qrn0 = p(pn0qrn0) = pq
Similarly, we get qr = q (Using rn0 = rn0+1)



Star Free Languages

Definition 23
Given an alphabet A, the set of star-free languages R is the
smallest subset of 2A

∗
such that:

▶ ϕ ∈ R, {ϵ} ∈ R, {a} ∈ R, ∀a ∈ A

▶ S ,T ∈ R =⇒ A∗\S ∈ R, S ∪ T ∈ R, S · T ∈ R

Notation
We will, later on, for brevity use + to denote ∪, 0 to denote ϕ, 1
to denote {ϵ}, a to denote {a} ∀a ∈ A, Lc to denote
complementation and L1L2 to denote L1 · L2



Examples of Star Free Languages

▶ All finite languages are Star-Free

▶ A∗ is star-free, since A∗ = ϕc = 0c

▶ More examples in the proof



Schützenberger’s Theorem

Theorem (Schützenberger)
A language is star-free iff its syntactic monoid is aperiodic.



Proof of Schützenberger’s Theorem

Proof: [Sch65; Kum; ]
Let A be the alphabet. For one direction, Define A(A) as the set
of recognisable languages over A, whose syntactic monoids are
aperiodic. Then,

▶ ϕ, {ϵ}, {a} ∈ A(A),∀a ∈ A (Using the trivial monoid and the
unique aperiodic monoid of cardinality 2 in different ways,
with the natural homomorphisms)

▶ A(A) is closed under complementation.

▶ A(A) is closed under finite intersection, which along with the
previous property gives that it is closed under finite union.

▶ A(A) is closed under finite product.

Thus A(A) contains all the star-free languages over A.



Proof of Schützenberger’s Theorem

In the other direction, we must prove that the set of all star-free
languages over A contains A(A).
Let M be an aperiodic monoid, and let φ : A∗ → M be any monoid
morphism over it. It is enough to show that φ−1(P) is star-free
∀P ⊆ M.
Since M is finite, P is finite and φ−1(P) =

∑
m∈P φ−1(m), so

WLOG we may assume that P is a singleton set.



Proof of Schützenberger’s Theorem

Claim 1 φ−1(m) is a star-free language, ∀m ∈ M.
Proof: The proof will proceed by induction over
r(m) := |M \MmM|
For the base case, r(m) = 0 =⇒ M = MmM. Thus ∃u, v ∈ M
s.t. umv = 1. Multiplying by 1, (um)1(v) = 1 and (u)1(mv) = 1.
Using the simplification lemma this gives u = v = 1 and thus
m = 1.



Proof of Schützenberger’s Theorem

Let B := {a ∈ A : φ(a) = 1}. Then ∀u ∈ B∗,
u ∈ φ−1(1) =⇒ B∗ ⊆ φ−1(1).
u ∈ φ−1(1) implies that φ(b) = 1 for each letter b in u, by using
the simplification lemma.
Thus φ−1(1) ⊆ B∗ =⇒ φ−1(1) = B∗, which is star-free since

B∗ =
(∑

a∈A\B A∗aA∗
)c

.



Proof of Schützenberger’s Theorem

Now for the induction step, let r(m) > 0 and let ϕ−1(s) be
star-free for all s with r(s) < r(m).
Claim 2

φ−1(m) = L, where

L = (UA∗ ∩ A∗V ) \ (A∗CA∗ ∪ A∗WA∗), with

U :=
∑

(n,a)∈E

φ−1(n)a,

E := {(n, a) ∈ M × A : nφ(a)Rm ∧ n /∈ mM}



Proof of Schützenberger’s Theorem

V :=
∑

(a,n)∈F

aφ−1(n),

F := {(a, n) ∈ A×M : φ(a)nLm ∧ n /∈ Mm}

C := {a ∈ A : m /∈ Mφ(a)M}

W :=
∑

(a,n,b)∈G

aφ−1(n)b,

G := {(a, n, b) ∈ A×M × A :

m ∈ (Mφ(a)nM ∩Mnφ(b)M) \Mφ(a)nφ(b)M}



Proof of Schützenberger’s Theorem

Proof of Claim 2: Given any u ∈ φ−1(m), let p be the shortest
prefix of u s.t. φ(p)Rm. We can assume p ̸= ϵ, as this would
imply that mR1 =⇒ m = 1 (By the simplification lemma), and
we would be done.
So we can write p = ra, with r ∈ A∗ and a ∈ A. Let n = φ(r). By
construction, (n, a) ∈ E , explained next.
nφ(a) = φ(r)φ(a) = φ(p), and φ(p)Rm.
Also since m ≤R φ(p) and φ(p) = nφ(a) ≤R n, n /∈ mM as
otherwise this would imply that nRm, a contradiction.

(Recall, E := {(n, a) ∈ M × A : nφ(a)Rm ∧ n /∈ mM})



Proof of Schützenberger’s Theorem

Thus p ∈ φ−1(n)a and u ∈ UA∗

Similarly it can be proven that u ∈ A∗V .
If u ∈ A∗CA∗,∃a ∈ C s.t. m = φ(u) ∈ Mφ(a)M, a contradiction
since a ∈ C .

(Recall, C := {a ∈ A : m /∈ Mφ(a)M})



Proof of Schützenberger’s Theorem

If u ∈ A∗WA∗,∃(a, n, b) ∈ G s.t. m ∈ Mφ(a)nφ(b)M, a
contradiction since (a, n, b) ∈ G .

(Recall, G := {(a, n, b) ∈ A×M × A :

m ∈ (Mφ(a)nM ∩Mnφ(b)M) \Mφ(a)nφ(b)M})

Thus by definition of L, u ∈ L =⇒ φ−1(m) ⊆ L



Proof of Schützenberger’s Theorem

To prove the other direction, given any u ∈ L, we must show that
u ∈ φ−1(m). Let s = φ(u)
Since u ∈ UA∗, we have u ∈ φ−1(n)aA∗, for some (n, a) ∈ E .
Thus s = φ(u) ∈ nφ(a)M.
Also (n, a) ∈ E , nφ(a)M = mM implying s ∈ mM.

(Recall, E := {(n, a) ∈ M × A : nφ(a)Rm ∧ n /∈ mM})



Proof of Schützenberger’s Theorem

A similar argument using u ∈ A∗V can be used to see that
s ∈ Mm.
Thus, via the Lemma 21 about Aperiodic Monoids, s /∈ JM would
give that s = m. So it suffices to prove that m ∈ MsM.
Assume otherwise, that m /∈ MsM. Then there exists a factor of
minimal length of u, f s.t. f ̸= ϵ and m /∈ Mφ(f )M.



Proof of Schützenberger’s Theorem

If f ∈ A then f ∈ C and thus u ∈ A∗CA∗, which is is a
contradiction.

(Recall, C := {a ∈ A : m /∈ Mφ(a)M})



Proof of Schützenberger’s Theorem

So f contains more than one alphabet. Let f = agb, with a, b ∈ A
and g ∈ A∗. Now let n = φ(g).
By the minimal length definition of f, this implies that
m ∈ Mφ(a)nM and m ∈ Mnφ(b)M.
But this would imply that (a, n, b) ∈ G and thus f ∈ W , which is
a contradiction.

(Recall, G := {(a, n, b) ∈ A×M × A :

m ∈ (Mφ(a)nM ∩Mnφ(b)M) \Mφ(a)nφ(b)M}

and W :=
∑

(a,n,b)∈G

aφ−1(n)b)



Proof of Schützenberger’s Theorem

This proves Claim 2.
Now it is enough to show that all the languages involved in the
definition of L are star-free.
A∗CA∗ is star-free by definition.
Let (n, a) ∈ E . Then nφ(a)M = mM, MmM ⊆ MnM, and hence
r(n) ≤ r(m).
If r(n) = r(m), then MmM = MnM. Since m ≤R n, this along
with Theorem 1 would imply that nRm, which is a contradiction
since by definition n ̸ mM.
Thus r(n) < r(m) and U is star free, by Claim 2.



Proof of Schützenberger’s Theorem

This proves Claim 2.
Now it is enough to show that all the languages involved in the
definition of L are star-free.
A∗CA∗ is star-free by definition.
Let (n, a) ∈ E . Then nφ(a)M = mM, MmM ⊆ MnM, and hence
r(n) ≤ r(m).
If r(n) = r(m), then MmM = MnM. Since m ≤R n, this along
with Theorem 4 would imply that nRm, which is a contradiction
since by definition n /∈ mM.
Thus r(n) < r(m) and U is star free, by the induction step.



Proof of Schützenberger’s Theorem

We can similarly argue that V is star-free.
Now let (a, n, b) ∈ G .

(Recall, G := {(a, n, b) ∈ A×M × A :

m ∈ (Mφ(a)nM ∩Mnφ(b)M) \Mφ(a)nφ(b)M})



Proof of Schützenberger’s Theorem

Then r(n) ≤ r(m) since m ∈ MnM.So MmM ⊆ MnM. Suppose
MmM = MnM. Then n ∈ MmM. We also have m ∈ Mφ(a)nM
and m ∈ Mnφ(b)M.
Thus n ∈ Mφ(a)nM and n ∈ Mnφ(b)M as well. It follows that
nLφ(a)n and nRnφ(b).



Proof of Schützenberger’s Theorem

So we have nφ(b)Lφ(a)nφ(b), φ(a)nRφ(a)nφ(b) and
m ∈ (Mφ(a)nM ∩Mnφ(b)M) which by Green’s Lemma gives
m ∈ Mφ(a)nφ(b)M, which is a contradiction as (a, n, b) ∈ G .



Proof of Schützenberger’s Theorem

Thus r(n) < r(m) and it follows that the W is a star-free language
by the induction step.
This completes the proof of the theorem.
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