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Preliminaries: Star-Free Languages

» A language that can be described by a regular expression of
the alphabet letters, the empty set symbols and Boolean
operators is known as a star-free language

» Concatenation is allowed but Kleene Star is not (hence,
Star-Free)

P> As is the point of this presentation we'll see later that
Star-Free languages can be characterized as those having
aperiodic syntactic monoids.



Monoids

Definition 1
A monoid is a set M with a binary operation -

the following properties
» Associativity: (a-b)-b=a-(b-c) Va,b,ce M

> Identity element: Je €
M (called the identity) such thate-m=m-e=m Vme M

c M x M — M with

The monoid as a whole is represented as the triplet (M, -, e)



Monoid Examples

» All groups are also monoids (with the extra group structure).
Eg. (Z,+,0),(R,-,1) (Since monoids don’t require inverses, 0
can be included with R)

» (A*, - €), where A is an alphabet, - is the concatentation
operation and € is the empty string.

> (2A, N, A), where A is a set, 24 is its power set and N is the
intersection operation



|dempotents

An element m € M is called idempotent if m> .= m-m=m

Proposition 2

If M is a finite monoid, then Vm € M, 3k € N such that mk is
idempotent

Proof: Let m &€ M. Then Vn € N,m" € M. But theres only
finitely many elements in M. So, there must exist p, g € N such
that mPT9 = mP.

Then, mP+t9 . md = mp+a

mP124 = mPt9 = mP. Clearly, this holds for all multiples of g.
(Seen by induction)



|dempotents

Take b such that bg > p,
Thus, mP9 is idempotent.

Corollary 3
Jw € N such that m* is idempotent Vm € M,

Proof: Since there are only finitely many m € M, take all the
elements, take the powers for which each element in idempotent,
and take the LCM of all the powers.

This w is called the exponent of M



Green's Relations

Let M be a monoid. We define the following four relations on M
1. s<gp tiff s=tuforsomeuec M
2. s <y tiff s = ut for some u e M
3. s <, tiff s = vut for some u,v € M
4. s<y tiff s<gtands <, t
Equivalently
1. s<gp tift sM C tM
2. s <y tiff Ms C Mt
3. s <y tiff MsM C MtM
4, s<ytiff s<g tands <, t



Green's Relations

We'll also proceed to define the following equivalence relations
1. sRt iff sM =tM

sLt iff Ms = Mt

sJt iff MsM = MtM

sHt iff SRt and sLt

sDt iff Ju € M such that sRu and ult
or dv € M such that sLv and vRt

A A



Green's Relations

Theorem 4
We claim that in a finite monoid, the relations J and D are equal.
Additionally,

1. s <;sm = sR(sm)

s <yms = sL(ms)

sJtAs<gpt — sRt

sTtAs <t = sLt

Ju,v € M such that (s = usv) = (us)HsH(sv)

AR



Green's Lemma

Theorem 5
Let the elements s,t € M such that sRt. Let s =tp and t = sq.
Then, the following holds:

1. The map x — xp is a bijection from L(t) onto L(s)
2. The map x — xq is a bijection from L(s) onto L(t)
3. The above two maps are inverses of each other

4. H classes are preserved by these maps



Ordered Monoids

Definition 6
An ordered monoid (M, <) is a monoid along with an order
relation leq, such that x <y = uxv < uyv, Yu,v e M

Definition 7
A subset P of an ordered monoid M is called an upper set if u € P
andu<v — veP

Definition 8
Given an upper set P define the syntantic order relation on
(M;<)as, u<pviffxuyec P = xvy € PV¥x,y e M



Examples of Ordered Monoids

» The monoid (24,N, A, C) is an ordered monoid with the
subset relation

> We can equip all monoids with the order relation '=" to
obtain an ordered monoid (M, =)

» (N, x,1,<) is an ordered relation with the usual definitions of
x and <



Homomorphisms

Definition 9
A homomorphism (sometimes called a 'morphism’) is a map
between two monoids (M, -, idp) and (N, X, idy), ¢ : M — N such
that
o(my - my) = p(m1) x p(m2) Ymy,my € M
It is easy to make the two following observations :

> o(idy) = idy

> (o(M), x,¢(idm))



Recognisable Subsets and Languages

Definition 10

A subset L of a monoid M is said to be recognisable if there exists
a finite monoid N and a morphism ¢ : M — N and a subset

X C N such that L = p~1(X)

We say that (¢, X) recognises L

Definition 11
A language L under an alphabet A is said to be recognisable if it is

a recognisable subset of the monoid (A*, -, €) (where - is the
concatenation operator)



Transition Monoids

Definition 12

Given a DFA A = (Q, A, 4, s, F) (the same terminology used in
class), we define its transition monoid as follows:

Given a word w € A*, we define the map £, : @ — Q as

fu(q) = 0(q, w)

Then, the set F4 = {fy|w € A*} is a monoid with the composition
operation and the identity map as the identity, i.e
(F4,0,id) is a monoid called the transition monoid.



Transition Monoids

Given a DFA A, the language L(.A) is recognised by the
morphism-set pair (¢, ¢(L(A))), where ¢ is the map that sends w
to f,, as defined in the last slide.

Given a recognisable language L C A*, recognised by the finite
monoid M via the morphism-set pair (¢, X), we can define the
following DFA, A := (M, A, ¢, id, X), where

d(m,a) :=m-p(a), Yme Mac A

It can be easily seen that L = L(.A)

Thus, the set of regular languages over an alphabet A is same as
the set of recognisable languages over A



Syntactic Monoid

Definition 13

Given a subset X of a monoid M, we say that u is syntactically
congruent to v over X, denoted as u Zx v iff

xuy € X <= xvy € XVx,y e M

=y is an equivalence relation on M

Definition 14

The syntactic monoid of X C M is the monoid M/ =, i.e its the
monoid with the same operation as M, but the elements and
identity of M/ =x are the equivalence classes of M under the
equivalence relation =x.

The ordered syntactic monoid is the ordered monoid (M/ =x, <x)
(with <x being the syntactic order)



Syntactic Monoid of a Language

Definition 15

A morphism between two monoids M and N is said to be an
isomorphism if it is bijective.

Two monoids M and N are said to be isomorphic if there exists an
isomorphism between the two.

Proposition 16

The syntactic morphism of a recognisable language under an
alphabet is isomorphic to the transition monoid of its minimal DFA



Aperiodic Monoid

Definition 17
We say that a finite monoid is aperiodic if dn € N such that
m'=mtlVme M

Proposition 18

A finite ordered monoid is aperiodic iff Ym € M, dn € N such that
mn+1 < m"

Proof:

If M is aperiodic, then 3n € N such that

mtl=mVmeM — m"tl<m"

Now, if Ym € M, 3m, € N such that m"*1 < m", take a multiple
w of the exponent w’ that is greater than all the m,'s. So, we get,
VYmeM, mY=m% < m* 1< m2 motl<me

So, we have m* < m¥t1l < m°me82 3nd so, m* = m¥+1

Thus, the monoid is aperiodic.



Some Lemmas on Aperiodic Monoids

We'll state some lemmas (without proof) that we will be using in
the proof later.

Lemma 19
If L1, Ly C A* are recognisable languages recognised by the

aperiodic monoids M; and M,, then let L = L1L, be recognised by
M

Then, M is aperiodic.

Lemma 20
If a finite monoid M is aperiodic then it is H-trivial

Lemma 21
Let m be an element of an aperiodic monoid M. Then,
{m} = (mM N Mm)\Jp,, with Jp, :=={s € M : m ¢ MsM}



Simplification Lemma

Lemma 22
If M is an aperiodic monoid and pgr = g for some p,q,r € M,

then pg =q = gr

Proof:

par=q = p(pqr)r =q = p’qr* =g

Extending this via induction, we get p"qr" = g Vn e N
Since M is aperiodic, this holds for the ng € N such that

So, p™*igr™ = p(p™qr™) = pq
Similarly, we get gr = g (Using r™ = rho+1)



Star Free Languages

Definition 23
Given an alphabet A, the set of star-free languages R is the
smallest subset of 24" such that:

> pc R, {e} R, {a} €R, Vac A

> STER = A\SER, SUTER, S-TeER

Notation
We will, later on, for brevity use + to denote U, 0 to denote ¢, 1

to denote {¢}, a to denote {a} Va € A, L to denote
complementation and Lj Ly to denote L - L,



Examples of Star Free Languages

> All finite languages are Star-Free
> A* is star-free, since A* = ¢ = 0

» More examples in the proof



Schitzenberger's Theorem

Theorem (Schiitzenberger)
A language is star-free iff its syntactic monoid is aperiodic.



Proof of Schiitzenberger's Theorem

Proof: [Sch65; Kum; ]
Let A be the alphabet. For one direction, Define A(A) as the set
of recognisable languages over A, whose syntactic monoids are
aperiodic. Then,
> o,{e},{a} € A(A),Va € A (Using the trivial monoid and the
unique aperiodic monoid of cardinality 2 in different ways,
with the natural homomorphisms)
» A(A) is closed under complementation.
» A(A) is closed under finite intersection, which along with the
previous property gives that it is closed under finite union.
» A(A) is closed under finite product.

Thus A(A) contains all the star-free languages over A.



Proof of Schiitzenberger's Theorem

In the other direction, we must prove that the set of all star-free
languages over A contains A(A).

Let M be an aperiodic monoid, and let ¢ : A* — M be any monoid
morphism over it. It is enough to show that p~1(P) is star-free
VP C M.

Since M is finite, P is finite and ¢ 1(P) =Y, cp ¢ *(m), so
WLOG we may assume that P is a singleton set.



Proof of Schiitzenberger's Theorem

Claim 1 ¢~1(m) is a star-free language, Ym € M.

Proof: The proof will proceed by induction over

r(m) = |M\ MmM]|

For the base case, r(m) =0 = M = MmM. Thus Ju,v e M
s.t. umv = 1. Multiplying by 1, (um)1(v) =1 and (u)1(mv) = 1.
Using the simplification lemma this gives u = v =1 and thus
m=1.



Proof of Schiitzenberger's Theorem

Let B:={ac A: p(a) =1}. Then Vu € B*,

uepH(l) = B*C e (1)

u € ¢~1(1) implies that ¢(b) = 1 for each letter b in u, by using
the simplification lemma.

Thus p~1(1) C B* = ¢ 1(1) = B*, which is star-free since

B = (ZaeA\B A*aA*>C-



Proof of Schiitzenberger's Theorem

Now for the induction step, let r(m) > 0 and let ¢—*(s) be
star-free for all s with r(s) < r(m).
Claim 2

¢ (m) = L, where
L=(UA"NA"V)\ (A*CA* U A*WA"), with
U:= Z 0 (n)a,
(n,a)€E

E:={(n,a)e M x A:np(a)RmAn¢ mM}



Proof of Schiitzenberger's Theorem

V= Z ap~1(n),

(a,n)eF
F:={(a,n) e Ax M: p(a)nLm A n¢ Mm}
C:={acA:m¢ Mp(a)M}

W= Z ap~t(n)b,
(a,n,b)eG
G :={(a,n,b) c AxMxA:

m € (Mea(a)nM 1 Mag(b)M) \ Mep(a)np(b) M}



Proof of Schiitzenberger's Theorem

Proof of Claim 2: Given any u € ¢~1(m), let p be the shortest
prefix of u s.t. p(p)Rm. We can assume p # ¢, as this would
imply that mMR1 = m =1 (By the simplification lemma), and
we would be done.

So we can write p = ra, with r € A* and a € A. Let n = ¢(r). By
construction, (n, a) € E, explained next.

np(a) = ¢(r)e(a) = ¢(p). and p(p)Rm.

Also since m <g ¢(p) and p(p) = np(a) <g n, n ¢ mM as
otherwise this would imply that "Rm, a contradiction.

(Recall, E :={(n,a) € M x A: np(a)Rm A n ¢ mM})



Proof of Schiitzenberger's Theorem

Thus p € ¢~ 1(n)a and u € UA*

Similarly it can be proven that u € A*V.

If ue A*CA*,Ja € C s.t. m= p(u) € Mp(a)M, a contradiction
since a € C.

(Recall, C:={a€ A: m¢ My(a)M})



Proof of Schiitzenberger's Theorem

If ue A*WA*,3(a,n,b) € G s.t. me Myp(a)np(b)M, a
contradiction since (a, n, b) € G.

(Recall, G :={(a,n,b) c Ax M x A:

m € (Mg(a)nM 0y Mnp(b)M) \ Mp(a)np(b)M?})
Thus by definition of L, u € L = ¢ 1(m) C L



Proof of Schiitzenberger's Theorem

To prove the other direction, given any u € L, we must show that
uc o l(m). Let s = o(u)

Since u € UA*, we have u € p~1(n)aA*, for some (n,a) € E.
Thus s = p(u) € np(a)M.

Also (n,a) € E, np(a)M = mM implying s € mM.

(Recall, E :={(n,a) € M x A: np(a)Rm A n¢ mM})



Proof of Schiitzenberger's Theorem

A similar argument using u € A*V can be used to see that

s € Mm.

Thus, via the Lemma 21 about Aperiodic Monoids, s ¢ Jy, would
give that s = m. So it suffices to prove that m € MsM.

Assume otherwise, that m ¢ MsM. Then there exists a factor of
minimal length of u, fs.t. f # e and m ¢ Mp(f)M.



Proof of Schiitzenberger's Theorem

If f € Athen f € C and thus u € A*CA*, which is is a
contradiction.

(Recall, C:={a€ A: m¢ Myp(a)M})



Proof of Schiitzenberger's Theorem

So f contains more than one alphabet. Let f = agb, with a,b € A
and g € A*. Now let n = ¢(g).

By the minimal length definition of f, this implies that

m € My(a)nM and m € Mny(b)M.

But this would imply that (a, n, b) € G and thus f € W, which is

a contradiction.
(Recall, G :={(a,n,b) e Ax M x A:
m € (Mp(a)nM 0 Mnp(b)M) \ Mp(a)np(b)M}
and W := Z ap~(n)b)

(a,n,b)eG



Proof of Schiitzenberger's Theorem

This proves Claim 2.

Now it is enough to show that all the languages involved in the
definition of L are star-free.

A*CA* is star-free by definition.

Let (n,a) € E. Then ngp(a)M = mM, MmM C MnM, and hence
r(n) < r(m).

If r(n) = r(m), then MmM = MnM. Since m <g n, this along
with Theorem 1 would imply that "/Rm, which is a contradiction
since by definition n mM.

Thus r(n) < r(m) and U is star free, by Claim 2.



Proof of Schiitzenberger's Theorem

This proves Claim 2.

Now it is enough to show that all the languages involved in the
definition of L are star-free.

A*CA* is star-free by definition.

Let (n,a) € E. Then ngp(a)M = mM, MmM C MnM, and hence
r(n) < r(m).

If r(n) = r(m), then MmM = MnM. Since m <g n, this along
with Theorem 4 would imply that "/Rm, which is a contradiction
since by definition n ¢ mM.

Thus r(n) < r(m) and U is star free, by the induction step.



Proof of Schiitzenberger's Theorem

We can similarly argue that V is star-free.
Now let (a, n, b) € G.

(Recall, G :={(a,n,b) e AXx M x A:
m € (Mg(a)nM 0 Mnp(b)M) \ Mp(a)np(b)M?})



Proof of Schiitzenberger's Theorem

Then r(n) < r(m) since m € MnM.So MmM C MnM. Suppose
MmM = MnM. Then n € MmM. We also have m € Mp(a)nM
and m € Mnyp(b)M.

Thus n € My(a)nM and n € Mng(b)M as well. It follows that
nLe(a)n and nRnp(b).



Proof of Schiitzenberger's Theorem

So we have np(b)Ly(a)np(b), v(a)nRy(a)np(b) and
m € (My(a)nM N Mny(b)M) which by Green's Lemma gives
m € My(a)np(b)M, which is a contradiction as (a, n, b) € G.



Proof of Schiitzenberger's Theorem

Thus r(n) < r(m) and it follows that the W is a star-free language
by the induction step.
This completes the proof of the theorem.
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