

Context Sensitive Grammars and Linear Bounded Automata

Rajesh Verma, Mayank Sati, Himanshu Kumar

Computer Science & Automation
Indian Institute of Science, Bangalore

December 6, 2021

Overview

- 1 Introduction
- 2 Chomsky Hierarchy
- 3 Formal Definition
- 4 Context Sensitive Language
- 5 Closure Properties
- 6 Recursive v/s Context Sensitive
- 7 Expressive Power of CSL
- 8 Linear Bounded Automata
- 9 Results about LBA
- 10 References

Introduction

Till now:

$L_1 = \{a^n b^n c^n \mid n > 0\}$ is this a CFL?

can be shown **not CFL** using pumping lemma.

Solution: To deal with problems like this one, we need to strengthen our grammars. The key is to remove the constraint of being “context-free.”

Chomsky Hierarchy

Level	Language type	Grammars	Accepting Automaton
3	Regular	$X \rightarrow \epsilon, X \rightarrow Y,$ $X \rightarrow aY$ (regular)	Finite State A
2	Context-free	$X \rightarrow \beta$	Pushdown A
1	Context-Sensitive	$\alpha A \beta \rightarrow \alpha \gamma \beta$ where $\gamma \neq \epsilon$	Linear Bounded A
0	Recursively enumerable	$\alpha \rightarrow \beta$ (unrestricted)	Turing Machine

Formal Definition

- Context Sensitive Grammar (CSG) is a 4-tuple $G = (N, \Sigma, P, S)$, where
 - N is a non empty set of non-terminal symbols.
 - Σ is a non empty set of terminal symbols.
 - S is the start symbol and $S \in N$.
 - P is the non empty set of productions of the form:

$$\alpha \underline{A} \beta \rightarrow \alpha \underline{\gamma} \beta$$

where $A \in N, \alpha, \beta \in (N \cup \Sigma)^*$ and $\gamma \in (N \cup \Sigma)^+$

Formal Definition

- Identify which of the following are a CSG production:

- 1 $aAb \rightarrow aBb$
- 2 $aAb \rightarrow bBa$
- 3 $aABb \rightarrow aBBb$
- 4 $Bc \rightarrow cB$
- 5 $AB \rightarrow BA$ (swapping)

Definition

Formal Definition

- Identify which of the following are a CSG production:

- 1 $aAb \rightarrow aBb$ ✓
- 2 $aAb \rightarrow bBa$ ✗
- 3 $aABb \rightarrow aBBb$ ✓
- 4 $Bc \rightarrow cB$ ✗
- 5 $AB \rightarrow BA$ (swapping) ✗

Context Sensitive Language

- A language L is said to be context-sensitive if there exists a context-sensitive grammar G , such that $L = \mathcal{L}(G)$.
- If G is context-sensitive Grammar then,

$$\mathcal{L}(G) = \left\{ w \mid (w \in \Sigma^*) \wedge (S \xrightarrow[G]^+ w) \right\}$$

Context Sensitive Language: Example 1

Example

$$L_1 = \{a^n b^n c^n \mid n > 0\}$$

The set of Production rules of **Context Sensitive Grammar G** for L_1 :

- $S \rightarrow aBC$
- $S \rightarrow aSBC$
- $CB \rightarrow CZ$
- $CZ \rightarrow BZ$
- $BZ \rightarrow BC$
- $aB \rightarrow ab$
- $bB \rightarrow bb$
- $bC \rightarrow bc$
- $cC \rightarrow cc$

definition

Non-Contracting Grammar

Context Sensitive

Given a production: $\alpha A \beta \rightarrow \alpha \gamma \beta$ where $\gamma \neq \epsilon$. During derivation non-terminal A will be changed to γ only when it is present in context of α and β .

An alternative characterization of **context-sensitive languages** using **non-contracting grammars**.

Non-contracting grammar

As a consequence of $\gamma \neq \epsilon$. We have

A formal grammar where production rules are of the form

$$\alpha \rightarrow \beta, \text{ where } |\alpha| \leq |\beta|$$

Non-Contracting \equiv Context Sensitive

Theorem

A language is context sensitive if and only if it can be generated by a non-contracting grammar.

CSG to NCG:

That every production of context-sensitive Grammar can be generated by non-contracting grammar is immediate, since context-sensitive grammars are, by definition, noncontracting.

Non-Contracting \equiv Context Sensitive

NCG to CSG:

steps:

- 1 for every terminal symbol $a \in \Sigma$, add new non terminal $[a]$ and add new rule $[a] \rightarrow a$.
- 2 replace every terminal symbol by its non terminal symbol.
- 3 Replace each rule $X_1 \dots X_m \rightarrow Y_1 \dots Y_n$ with following

$$X_1 X_2 \dots X_{m-1} X_m \rightarrow Z_1 X_2 \dots X_{m-1} X_m$$

$$Z_1 X_2 \dots X_{m-1} X_m \rightarrow Z_1 Z_2 \dots X_{m-1} X_m$$

:

$$Z_1 Z_2 \dots X_{m-1} X_m \rightarrow Z_1 Z_2 \dots Z_{m-1} X_m$$

$$Z_1 Z_2 \dots Z_{m-1} X_m \rightarrow Z_1 Z_2 \dots Z_{m-1} Z_m Y_{m+1} \dots Y_n$$

$$Z_1 Z_2 \dots Z_{m-1} Z_m Y_{m+1} \dots Y_n \rightarrow Y_1 Z_2 \dots Z_{m-1} Z_m Y_{m+1} \dots Y_n$$

$$Y_1 Z_2 \dots Z_{m-1} Z_m Y_{m+1} \dots Y_n \rightarrow Y_1 Y_2 \dots Z_{m-1} Z_m Y_{m+1} \dots Y_n$$

:

$$Y_1 Y_2 \dots Z_{m-1} Z_m Y_{m+1} \dots Y_n \rightarrow Y_1 Y_2 \dots Y_{m-1} Z_m Y_{m+1} \dots Y_n$$

$$Y_1 Y_2 \dots Y_{m-1} Z_m Y_{m+1} \dots Y_n \rightarrow Y_1 Y_2 \dots Y_{m-1} Y_m Y_{m+1} \dots Y_n$$

New Definition

Context Sensitive Grammar

A context-sensitive grammar (CSG) is an unrestricted grammar in which every production has the form $\alpha \rightarrow \beta$ with $|\alpha| \leq |\beta|$ (where α and β are strings of nonterminals and terminals).

Example 1:

Context Sensitive Language: Example 1 (redefined)

Example

$$L_1 = \{a^n b^n c^n \mid n > 0\}$$

The set of Production rules of **Non-Contracting grammar** G for L_1 :

- $S \rightarrow abc$
- $S \rightarrow aSBc$
- $cB \rightarrow Bc$
- $bB \rightarrow bb$

Example

Derive: $a^3 b^3 c^3$

Example 1:

Context Sensitive Language: Example 1

Example

Derive: $a^3b^3c^3$

$$\begin{aligned} S &\implies a\underline{S}Bc \\ &\implies aa\underline{S}BcBc \\ &\implies aaab\underline{c}BcBc \\ &\implies aaab\underline{B}ccBc \\ &\implies aaabb\underline{c}Bc \\ &\implies aaabb\underline{c}Bccc \\ &\implies aaabb\underline{B}ccc \\ &\implies aaabb\underline{B}ccc \end{aligned}$$

Example 2:

Context Sensitive Language: Example 2

Example

$$L_2 = \{x \in \{a, b, c\}^* \mid \#_a x = \#_b x = \#_c x\} - \{\epsilon\}$$

The set of Production rules of **non-contracting grammar** G for L_2 :

- $S \rightarrow SABC / ABC$
- $XY \rightarrow YX$ for all $X, Y \in \{A, B, C\}$
- $A \rightarrow a$
- $B \rightarrow b$
- $C \rightarrow c$

Note that the blue production is critical here, that is not allowed in context free grammar.

Closure Properties

Context Sensitive Languages are closed under

- Union
- Intersection
- Complement
- Concatenation
- Kleene Closure
- Reversal

Closure Properties

Union

The class of context-sensitive languages is closed with respect to union.

- Let $G_1 = (N_1, \Sigma_1, P_1, S_1)$ and $G_2 = (N_2, \Sigma_2, P_2, S_2)$ be two CSG s.t $L(G_1) = L_1$ and $L(G_2) = L_2$, W.L.O.G assume $N_1 \cap N_2 = \emptyset$
- Construct $G = (\{S\} \cup N_1 \cup N_2, \Sigma_1 \cup \Sigma_2, \{S \rightarrow S_1, S \rightarrow S_2\} \cup P_1 \cup P_2, S)$
- G is a CSG and any derivation in G is of the form:
$$S \xrightarrow{G_1} S_1 \xrightarrow{*} w \in L_1 \text{ or } S \xrightarrow{G_2} S_2 \xrightarrow{*} w \in L_2$$
- The strings derived by G is exactly the strings derived by $L_1 \cup L_2$. Thus $L(G) = L_1 \cup L_2$

Closure Properties

Concatenation

The class of context-sensitive languages is closed with respect to concatenation.

- Let $G_1 = (N_1, \Sigma, P_1, S_1)$ and $G_2 = (N_2, \Sigma, P_2, S_2)$ be two CSG s.t $L(G_1) = L_1$ and $L(G_2) = L_2$, W.L.O.G assume $N_1 \cap N_2 = \emptyset$
- Construct $G = (\{S\} \cup N_1 \cup N_2, \Sigma, \{S \rightarrow S_1 S_2\} \cup P_1 \cup P_2, S)$
- G is a CSG and any derivation in G is of the form:
$$S \xrightarrow[1]{G_1} S_1 S_2 \xrightarrow[G_1]{*} w_1 S_2 \xrightarrow[G_2]{*} w_1 w_2$$
- There are derivations for w_1 and w_2 from S_1 and S_2 respectively. \implies Applying these derivations to $S_1 S_2$ we must get $w = w_1 w_2$.
- Conversely, if $w \in L(G)$ then the rule $S \rightarrow S_1 S_2$ ensures $w = w_1 w_2$ where $w_1 \in L_1$ and $w_2 \in L_2$.

Recursive v/s Context Sensitive

Theorem

Every context-sensitive language is recursive.

- Consider CSL L with an associated CSG G , and look at the derivation of w .

$$S \implies x_1 \implies x_2 \implies \dots \implies x_n \implies w$$

- Number of steps in any derivation is a bounded function of $|w|$. Since $|x_j| \leq |x_j + 1|$ (non contracting G)
- There exist some index $m = f(G, w)$ such that $|x_j| < |x_j + m|, \forall j$ where m is bounded on $|N \cup \Sigma|$ and $|w|$
- Therefore, the length of a derivation of $w \in L$ is atmost $|w|.m(|w|)$.
- Check all derivations of length up to $|w|.m(|w|)$. If any of them give w , then $w \in L$, otherwise not.

Recursive v/s Context Sensitive

Theorem

There exists a recursive language that is not context sensitive.

- Code each CSG G on input alphabet $\{a,b\}$ using its production $\alpha_i \rightarrow \beta_i$, $i \in 1,2,\dots,m$ using $\#$ as a separator as a binary string.
- String that code a CSG can be placed in an order. If a binary string w_i represents a CSG, call it G_i .
- Define a new Language $L = \{w_i : w_i \text{ defines } G_i \text{ and } w_i \notin L(G_i)\}$
- Claim: L is recursive and not Context Sensitive

Recursive v/s Context Sensitive

Claim

L is recursive and not Context Sensitive

$$L = \{w_i : w_i \text{ defines } G_i \text{ and } w_i \notin L(G_i)\}$$

L is Recursive:

- Given w_i , verify whether it defines a CSG G_i .
- If w_i does not define a CSG, then $w_i \notin L$. If w_i defines a CSG, use Membership Algorithm defined to find out if $w_i \in L(G_i)$. If $w_i \notin L(G_i)$, then $w_i \in L$.
- L is well defined and is recursive

Recursive v/s Context Sensitive

Theorem

There exists a recursive language that is not context sensitive.

$$L = \{w_i : w_i \text{ defines } G_i \text{ and } w_i \notin L(G_i)\}$$

L is not Context Sensitive

- Proof by contradiction, assume that L is a CSL. Then there exists some CSG w_k such that $L=L(G_k)$ for some k.
- If $w_k \in L(G_k)$, then $w_k \notin L$ (by def. of L). But $L=L(G_k)$. \Rightarrow Contradiction.
- If $w_k \notin L(G_k)$ \Rightarrow $w_k \in L$. But $L=L(G_k)$. \Rightarrow Contradiction
- So L is not context sensitive.

Expressive Power of CSL

- Every Context sensitive language is recursive and there exists a recursive language that is not context sensitive. Thus, CSL has less expressive power than Recursive languages.

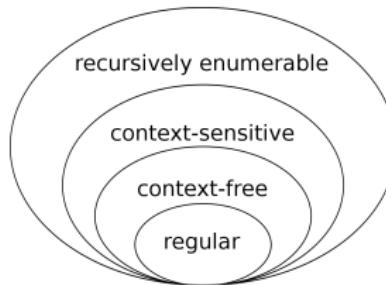
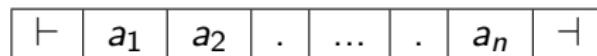


Figure: Chomsky Hierarchy

Linear Bounded Automata

A non-deterministic single tape Turing machine that uses only the tape space occupied by the input is called a **linear-bounded automaton (LBA)**.



where, $a_1, a_2, \dots, a_n \in A$

Equivalent Definition

- An equivalent definition of an LBA is that it uses only constant (c) times the amount of space occupied by the input string, where c is a constant fixed for the particular machine.
- The machine therefore has just linear amount of memory, bounded by the length of the input string. We call this a **linear bounded automaton**.

Formal definition

Formal definition

A Linear Bounded Automaton is a non-deterministic Turing Machine,

$$M = (Q, A, \Gamma, s, \delta, \vdash, \dashv, B, t, r)$$

- 1 Q is a finite non empty set of states.
- 2 A is the finite non empty set of input alphabet.
- 3 Γ is the finite tape alphabet which contains A .
- 4 $s \in Q$ is the start state.
- 5 δ is the set of transitions.
- 6 $\vdash \in \Gamma$ is the left-end marker
- 7 $\dashv \in \Gamma$ is the right-end marker.
- 8 $B \in \Gamma$ is the blank tape symbol.
- 9 $t \in Q$ is the accept state.
- 10 $r \in Q$ is the reject state and $r \neq t$.

Formal Definition

- The Transition should satisfy the following conditions:
 - It should not replace the marker symbols by any other symbol.
 - The tape head should not move left of \vdash and right of \dashv .
- Thus, the initial configuration on input x will be:

$$(s, \vdash x \dashv, 0)$$

- The linear-bounded M accept w . if,

$$\left\{ (s, \vdash w \dashv, 0) \xrightarrow{M}^* (t, \vdash \alpha \dashv, i), \text{ for some } \alpha \text{ and } i \right\}$$

Number of Configurations

- Let a given LBA M has
 - q states.
 - m characters in the tape alphabet.
 - and the input length is n.
- Then M can be in at most

$$\alpha(n) = m^n \times q \times n$$

configurations.

Results about LBA

Theorem

On an input of length n , if the LBA M does not halt after $m^n nq$ steps, then M cannot accept the input.

Proof.

The computation of M begins with the start configuration. When M performs a step, it goes from one configuration to another. If M does not halt after $m^n nq$ steps, some configuration has repeated. Then M will repeat this configuration over and over. \Rightarrow Loop.

Halting Problem

Results about LBA

Halting Problem

$$\text{HALT}_{LBA} = \{ \langle M, w \rangle \mid M \text{ is a LBA and } M \text{ halts on input } w \in A^* \}$$

Halting Problem

Results about LBA

Halting Problem

The halting problem is solvable for linear bounded automata.

- $\text{HALT}_{LBA} = \{ \langle M, w \rangle \mid M \text{ is a LBA and } M \text{ halts on input } w \in A^* \}$ is decidable.
- An LBA that stops on input w must stop in at most $\alpha(|w|)$ steps.

Membership Problem

Results about LBA

Membership Problem

$$A_{LBA} = \{ \langle M, w \rangle \mid M \text{ is an LBA and } M \text{ accepts } w \in A^* \}$$

Membership Problem

Results about LBA

Membership Problem

The membership problem is decidable for linear bounded automata.

- $A_{LBA} = \{ \langle M, w \rangle \mid M \text{ is an LBA and } M \text{ accepts } w \in A^* \}$ is decidable

Proof.

Simulate M on w for $m^n nq$ steps ($n = |w|$) or until it halts.

If M halts and accepts w, Accepted!

else, Rejected!

Language accepted by LBA

- The language accepted by LBA M is denoted $L(M)$ and is the set of strings accepted by M .
- A language $L \subseteq A^*$ is called **Context Sensitive Language (CSL)** if it is accepted by some Linear Bounded Automaton M .

Intersection closure of CSL

Given CSL L1 and CSL L2 we can have a LBA(M1) and LBA(M2) for it.

We can construct a new LBA for $L1 \cap L2$ by using a 2-track tape. One track will simulate M1 and other will simulate M2. If both of them accept then string is accepted by intersection.

Curiosity

- At the bottom level of the Chomsky hierarchy, it makes no difference: every NFA can be simulated by a DFA.
- At the top level, the same happens. Any nondeterministic Turing machine can be simulated by a deterministic one.
- At the context-free level, there is a difference: we need NPDAs to account for all context-free languages.
- What about the context-sensitive level? Are NLBAs strictly more powerful than DLBAs? Asked in 1964, and **still open!!**

References

- John Myhill (June 1960). Linear Bounded Automata
- Linear Bounded Automata by Forbes D. Lewis
- https://en.wikipedia.org/wiki/Context-sensitive_language
- <https://www.cs.cmu.edu/~sutner/CDM/notes/70-cont-sens.pdf>
- John E. Hopcroft; Jeffrey D. Ullman (1979). Introduction to Automata Theory, Languages, and Computation
- An Introduction to Formal Languages and Automata by Peter Linz
- and old seminars.

Thank You!