
Introduction Chomsky Hierarchy

Context Sensitive Grammars and Linear Bounded
Automata

Rajesh Verma, Mayank Sati, Himanshu Kumar

Computer Science & Automation
Indian Institute of Science, Bangalore

December 6,2021

Introduction Chomsky Hierarchy

Overview

1 Introduction

2 Chomsky Hierarchy

3 Formal Definition

4 Context Sensitive Language

5 Closure Properties

6 Recursive v/s Context Sensitive

7 Expressive Power of CSL

8 Linear Bounded Automata

9 Results about LBA

10 References

Introduction Chomsky Hierarchy Formal Definition Context Sensitive Language Closure Properties

Introduction

Till now:
L1 = {anbncn | n > 0 } is this a CFL?
can be shown not CFL using pumping lemma.
Solution: To deal with problems like this one, we need to
strengthen our grammars. The key is to remove the constraint of
being “context-free.”

Introduction Chomsky Hierarchy Formal Definition Context Sensitive Language Closure Properties

Chomsky Hierarchy

Level Language type Grammars
Accepting
Automaton

3 Regular
X → ϵ,X → Y ,
X → aY
(regular)

Finite State A

2 Context-free X → β Pushdown A

1 Context-Sensitive
αAβ → αγβ
where γ ̸= ϵ

Linear
Bounded A

0
Recursively
enumerable

α → β
(unrestricted)

Turing Machine

Introduction Chomsky Hierarchy Formal Definition Context Sensitive Language Closure Properties

Definition

Formal Definition

Context Sensitive Grammar (CSG) is a 4-tuple G =
(N,Σ,P,S), where

N is a non empty set of non-terminal symbols.
Σ is a non empty set of terminal symbols.
S is the start symbol and S ∈ N.
P is the non empty set of productions of the form:

αAβ → αγβ

where A ∈ N, α, β ∈ (N ∪ Σ)∗ and γ ∈ (N ∪ Σ)+

Introduction Chomsky Hierarchy Formal Definition Context Sensitive Language Closure Properties

Definition

Formal Definition

Identify which of the following are a CSG production:
1 aAb → aBb
2 aAb → bBa
3 aABb → aBBb
4 Bc → cB
5 AB → BA (swapping)

Introduction Chomsky Hierarchy Formal Definition Context Sensitive Language Closure Properties

Definition

Formal Definition

Identify which of the following are a CSG production:
1 aAb → aBb ✓
2 aAb → bBa ✗
3 aABb → aBBb ✓
4 Bc → cB ✗
5 AB → BA (swapping) ✗

Chomsky Hierarchy Formal Definition Context Sensitive Language Closure Properties Recursive v/s Context Sensitive

Context Sensitive Language

A language L is said to be context-sensitive if there exists a
context-sensitive grammar G, such that L = L(G).
If G is context-sensitive Grammar then,

L(G) =

{
w | (w ∈ Σ∗) ∧ (S

+
=⇒
G

w)

}

Chomsky Hierarchy Formal Definition Context Sensitive Language Closure Properties Recursive v/s Context Sensitive

Context Sensitive Language: Example 1

Example

L1 = {anbncn | n > 0 }

The set of Production rules of Context Sensitive Grammar G for
L1:

S → aBC

S → aSBC

CB → CZ

CZ → BZ

BZ → BC

aB → ab

bB → bb

bC → bc

cC → cc

Chomsky Hierarchy Formal Definition Context Sensitive Language Closure Properties Recursive v/s Context Sensitive

definition

Non-Contracting Grammar

Context Sensitive

Given a production: αAβ → αγβ where γ ̸= ϵ. During derivation
non-terminal A will be changed to γ only when it is present in
context of α and β.

An alternative characterization of context-sensitive languages using
non-contracting grammars.

Non-contracting grammar

As a consequence of γ ̸= ϵ. We have
A formal grammar where production rules are of the form

α → β,where | α |≤| β |

Chomsky Hierarchy Formal Definition Context Sensitive Language Closure Properties Recursive v/s Context Sensitive

definition

Non-Contracting ≡ Context Sensitive

Theorem

A language is context sensitive if and only if it can be generated by
a non-contracting grammar.

CSG to NCG:
That every production of context-sensitive Grammar can be
generated by non-contracting grammar is immediate, since
context-sensitive grammars are, by defnition, noncontracting.

Chomsky Hierarchy Formal Definition Context Sensitive Language Closure Properties Recursive v/s Context Sensitive

definition

Non-Contracting ≡ Context Sensitive

NCG to CSG:
steps:

1 for every terminal symbol a ∈ Σ, add new non terminal [a]
and add new rule [a] → a .

2 replace every terminal symbol by its non terminal symbol.
3 Replace each rule X1...Xm → Y1...Yn with following

X1X2...Xm−1Xm → Z1X2...Xm−1Xm

Z1X2...Xm−1Xm → Z1Z2...Xm−1Xm

:
Z1Z2...Xm−1Xm → Z1Z2...Zm−1Xm

Z1Z2...Zm−1Xm → Z1Z2...Zm−1ZmYm+1...Yn

Z1Z2...Zm−1ZmYm+1...Yn → Y1Z2...Zm−1ZmYm+1...Yn

Y1Z2...Zm−1ZmYm+1...Yn → Y1Y2...Zm−1ZmYm+1...Yn

:
Y1Y2...Zm−1ZmYm+1...Yn → Y1Y2...Ym−1ZmYm+1...Yn

Y1Y2...Ym−1ZmYm+1...Yn → Y1Y2...Ym−1YmYm+1...Yn

Chomsky Hierarchy Formal Definition Context Sensitive Language Closure Properties Recursive v/s Context Sensitive

definition

New Definition

Context Sensitive Grammar

A context-sensitive grammar (CSG) is an unrestricted grammar in
which every production has the form α → β with | α |≤| β |
(where α and β are strings of nonterminals and terminals).

Chomsky Hierarchy Formal Definition Context Sensitive Language Closure Properties Recursive v/s Context Sensitive

Example 1:

Context Sensitive Language: Example 1 (redefined)

Example

L1 = {anbncn | n > 0 }

The set of Production rules of Non-Contracting grammar G for L1:

S → abc

S → aSBc

cB → Bc

bB → bb

Example

Derive: a3b3c3

Chomsky Hierarchy Formal Definition Context Sensitive Language Closure Properties Recursive v/s Context Sensitive

Example 1:

Context Sensitive Language: Example 1

Example

Derive: a3b3c3

S =⇒ aSBc

=⇒ aaSBcBc

=⇒ aaabcBcBc

=⇒ aaabBccBc

=⇒ aaabbccBc

=⇒ aaabbcBccc

=⇒ aaabbBccc

=⇒ aaabbbccc

Chomsky Hierarchy Formal Definition Context Sensitive Language Closure Properties Recursive v/s Context Sensitive

Example 2:

Context Sensitive Language: Example 2

Example

L2 = {x ∈ {a, b, c}∗ | #ax = #bx = #cx } - {ϵ}

The set of Production rules of non-contracting grammar G for L2:

S → SABC / ABC

XY → YX for all X,Y ∈ {A,B,C}
A → a

B → b

C → c

Note that the blue production is critical here, that is not allowed in
context free grammar.

Formal Definition Context Sensitive Language Closure Properties Recursive v/s Context Sensitive Expressive Power of CSL

Closure Properties

Context Sensitive Languages are closed under

Union

Intersection

Complement

Concatenation

Kleene Closure

Reversal

Formal Definition Context Sensitive Language Closure Properties Recursive v/s Context Sensitive Expressive Power of CSL

Closure Properties

Union

The class of context-sensitive languages is closed with respect to
union.

Let G1 = (N1,Σ1,P1,S1) and G2 = (N2,Σ2,P2,S2) be two
CSG s.t L(G1) = L1 and L(G2) = L2, W.L.O.G assume
N1 ∩ N2 = ϕ

Construct
G=({S} ∪N1 ∪N2,Σ1 ∪Σ2, {S → S1,S → S2} ∪ P1 ∪ P2,S)

G is a CSG and any derivation in G is of the form:

S
1
=⇒ S1

∗
==⇒
G1

w ∈ L1 or S
1
=⇒ S2

∗
==⇒
G2

w ∈ L2

The strings derived by G is exactly the strings derived by
L1 ∪ L2. Thus L(G) = L1 ∪ L2

Formal Definition Context Sensitive Language Closure Properties Recursive v/s Context Sensitive Expressive Power of CSL

Closure Properties

Concatenation

The class of context-sensitive languages is closed with respect to
concatenation.

Let G1 = (N1,Σ,P1, S1) and G2 = (N2,Σ,P2, S2) be two
CSG s.t L(G1) = L1 and L(G2) = L2, W.L.O.G assume
N1 ∩ N2 = ϕ

Construct G=({S} ∪ N1 ∪ N2,Σ, {S → S1S2} ∪ P1 ∪ P2,S)

G is a CSG and any derivation in G is of the form:

S
1
=⇒ S1S2

∗
==⇒
G1

w1S2
∗
==⇒
G2

w1w2

There are derivations for w1 and w2 from S1 and S2
respectively. =⇒ Applying these derivations to S1S2 we must
get w=w1w2.

Conversely, if w∈ L(G) then the rule S → S1S2 ensures
w = w1w2 where w1 ∈ L1 and w2 ∈ L2.

Context Sensitive Language Closure Properties Recursive v/s Context Sensitive Expressive Power of CSL Linear Bounded Automata

Recursive v/s Context Sensitive

Theorem

Every context-sensitive language is recursive.

Consider CSL L with an associated CSG G, and look at the
derivation of w.
S =⇒ x1 =⇒ x2 =⇒ ... =⇒ xn =⇒ w

Number of steps in any derivation is a bounded function of
|w |. Since |xj | ≤ |xj + 1| (non contracting G)

There exist some index m=f(G,w) such that |xj | < |xj +m|,∀j
where m is bounded on |N ∪ Σ|and |w |
Therefore, the length of a derivation of w∈ L is atmost
|w |.m(|w |).
Check all derivations of length up to |w |.m(|w |). If any of
them give w, then w ∈ L, otherwise not.

Context Sensitive Language Closure Properties Recursive v/s Context Sensitive Expressive Power of CSL Linear Bounded Automata

Recursive v/s Context Sensitive

Theorem

There exists a recursive language that is not context sensitive.

Code each CSG G on input alphabet {a,b} using its
production αi → βi , i ∈ 1,2,..m using # as a separator as a
binary string.

String that code a CSG can be placed in an order. If a binary
string wi represents a CSG, call it Gi .

Define a new Language L = {wi : wi defines Gi and
wi /∈ L(Gi)}
Claim: L is recursive and not Context Sensitive

Context Sensitive Language Closure Properties Recursive v/s Context Sensitive Expressive Power of CSL Linear Bounded Automata

Recursive v/s Context Sensitive

Claim

L is recursive and not Context Sensitive

L = {wi : wi defines Gi and wi /∈ L(Gi)}
L is Recursive:

Given wi , verify whether it defines a CSG Gi .

If wi does not define a CSG, then wi /∈ L. If wi defines a CSG,
use Membership Algorithm defined to find out if wi ∈ L(Gi).
If wi /∈ L(Gi), then wi ∈ L.

L is well defined and is recursive

Context Sensitive Language Closure Properties Recursive v/s Context Sensitive Expressive Power of CSL Linear Bounded Automata

Recursive v/s Context Sensitive

Theorem

There exists a recursive language that is not context sensitive.

L = {wi : wi defines Gi and wi /∈ L(Gi)}
L is not Context Senstive

Proof by contradiction, assume that L is a CSL.Then there
exists some CSG wk such that L=L(Gk) for some k.

If wk ∈ L(Gk), then wk /∈L (by def. of L). But L=L(Gk). =⇒
Contradiction.

If wk /∈ L(Gk) =⇒ wk ∈ L. But L=L(Gk). =⇒
Contradiction

So L is not context sensitive.

Closure Properties Recursive v/s Context Sensitive Expressive Power of CSL Linear Bounded Automata Results about LBA

Expressive Power of CSL

Every Context sensitive language is recursive and there exists
a recursive language that is not context sensitive. Thus, CSL
has less expressive power than Recursive languages.

Figure: Chomsky Hierarchy

Recursive v/s Context Sensitive Expressive Power of CSL Linear Bounded Automata Results about LBA References

Linear Bounded Automata

A non-deterministic single tape Turing machine that uses only the
tape space occupied by the input is called a linear-bounded
automaton (LBA).

⊢ a1 a2 an ⊣

where,a1, a2, ..., an ∈ A

Recursive v/s Context Sensitive Expressive Power of CSL Linear Bounded Automata Results about LBA References

Equivalent Definition

An equivalent definition of an LBA is that it uses only
constant (c) times the amount of space occupied by the input
string, where c is a constant fixed for the particular machine.

The machine therefore has just linear amount of memory,
bounded by the length of the input string. We call this a
linear bounded automaton.

Recursive v/s Context Sensitive Expressive Power of CSL Linear Bounded Automata Results about LBA References

Formal definition

Formal definition

A Linear Bounded Automaton is a non-deterministic Turing
Machine,

M = (Q,A, Γ, s, δ,⊢,⊣,B, t, r)

1 Q is a finite non empty set of states.
2 A is the finite non empty set of input alphabet.
3 Γ is the finite tape alphabet which contains A.
4 s ∈ Q is the start state.
5 δ is the set of transitions.
6 ⊢∈ Γ is the left-end marker
7 ⊣∈ Γ is the right-end marker.
8 B ∈ Γ is the blank tape symbol.
9 t ∈ Q is the accept state.
10 r ∈ Q is the reject state and r ̸= t.

Recursive v/s Context Sensitive Expressive Power of CSL Linear Bounded Automata Results about LBA References

Formal definition

Formal Definition

The Transition should satisfy the following conditions:

It should not replace the marker symbols by any other symbol.
The tape head should not move left of ⊢ and right of ⊣.

Thus, the initial configuration on input x will be:

(s,⊢ x ⊣, 0)

The linear-bounded M accept w. if,{
(s,⊢ w ⊣, 0) ∗

=⇒
M

(t,⊢ α ⊣, i), for some α and i

}

Recursive v/s Context Sensitive Expressive Power of CSL Linear Bounded Automata Results about LBA References

Number of Configurations

Let a given LBA M has

q states.
m characters in the tape alphabet.
and the input length is n.

Then M can be in at most

α(n) = mn × q × n

configurations.

Recursive v/s Context Sensitive Expressive Power of CSL Linear Bounded Automata Results about LBA References

Results about LBA

Theorem

On an input of length n, if the LBA M does not halt after mnnq
steps, then M cannot accept the input.

Proof.

The computation of M begins with the start configuration. When
M performs a step, it goes from one configuration to another. If M
does not halt after mnnq steps, some configuration has repeated.
Then M will repeat this configuration over and over. =⇒
Loop.

Recursive v/s Context Sensitive Expressive Power of CSL Linear Bounded Automata Results about LBA References

Halting Problem

Results about LBA

Halting Problem

HALTLBA = {< M,w >| M is a LBA and M halts on input w
∈ A∗}

Recursive v/s Context Sensitive Expressive Power of CSL Linear Bounded Automata Results about LBA References

Halting Problem

Results about LBA

Halting Problem

The halting problem is solvable for linear bounded automata.

HALTLBA = {< M,w >| M is a LBA and M halts on input w
∈ A∗} is decidable.

An LBA that stops on input w must stop in at most α(| w |)
steps.

Recursive v/s Context Sensitive Expressive Power of CSL Linear Bounded Automata Results about LBA References

Membership Problem

Results about LBA

Membership Problem

ALBA = {< M,w >| M is an LBA and M accepts w ∈ A∗ }

Recursive v/s Context Sensitive Expressive Power of CSL Linear Bounded Automata Results about LBA References

Membership Problem

Results about LBA

Membership Problem

The membership problem is decidable for linear bounded automata.

ALBA = {< M,w >| M is an LBA and M accepts w ∈ A∗ } is
decidable

Proof.

Simulate M on w for mnnq steps (n = | w |) or until it halts.
If M halts and accepts w, Accepted!
else, Rejected!

Recursive v/s Context Sensitive Expressive Power of CSL Linear Bounded Automata Results about LBA References

LBA

Language accepted by LBA

The language accepted by LBA M is denoted L(M) and is the
set of strings accepted by M.

A language L ⊆ A∗ is called Context Sensitive Language
(CSL) if it is accepted by some Linear Bounded Automaton M.

Recursive v/s Context Sensitive Expressive Power of CSL Linear Bounded Automata Results about LBA References

LBA

Intersection closure of CSL

Given CSL L1 and CSL L2 we can have a LBA(M1) and
LBA(M2) for it.
We can construct a new LBA for L1 ∩ L2 by using a 2-track tape.
One track will simualate M1 and other will simulate M2.
If both of them accepts then string is accepted by intersection.

Recursive v/s Context Sensitive Expressive Power of CSL Linear Bounded Automata Results about LBA References

LBA

Curiosity

At the bottom level of the Chomsky hierarchy, it makes no
difference: every NFA can be simulated by a DFA.

At the top level, the same happens. Any nondeterministic
Turing machine can be simulated by a deterministic one.

At the context-free level, there is a difference: we need
NPDAs to account for all context-free languages.

What about the context-sensitive level? Are NLBAs strictly
more powerful than DLBAs? Asked in 1964, and still open!!

Recursive v/s Context Sensitive Expressive Power of CSL Linear Bounded Automata Results about LBA References

References

John Myhill (June 1960). Linear Bounded Automata

Linear Bounded Automata by Forbes D. Lewis

https://en.wikipedia.org/wiki/Context-sensitive language

https://www.cs.cmu.edu/ sutner/CDM/notes/70-cont-
sens.pdf

John E. Hopcroft; Jeffrey D. Ullman (1979). Introduction to
Automata Theory, Languages, and Computation

An Introduction to Formal Languages and Automata by Peter
Linz

and old seminars.

Recursive v/s Context Sensitive Expressive Power of CSL Linear Bounded Automata Results about LBA References

Thank You!

	Introduction
	Chomsky Hierarchy
	Formal Definition
	Definition

	Context Sensitive Language
	definition
	Example 1:
	Example 2:

	Closure Properties
	Recursive v/s Context Sensitive
	Expressive Power of CSL
	Linear Bounded Automata
	Formal definition

	Results about LBA
	Halting Problem
	Membership Problem
	LBA

	References

