Context Sensitive Grammars and Linear Bounded
Automata

Rajesh Verma, Mayank Sati, Himanshu Kumar

Computer Science & Automation
Indian Institute of Science, Bangalore

December 6,2021

Overview

@ Introduction

© Chomsky Hierarchy

© Formal Definition

@ Context Sensitive Language

© Closure Properties

@ Recursive v/s Context Sensitive
@ Expressive Power of CSL

© Linear Bounded Automata

© Results about LBA

@ References

Introduction

Introduction

Till now:

Ly = {a"b"c" | n >0 } is this a CFL?

can be shown not CFL using pumping lemma.

Solution: To deal with problems like this one, we need to
strengthen our grammars. The key is to remove the constraint of
being “context-free.”

Chomsky Hierarchy

Chomsky Hierarchy

Accepting
Level | Language type Grammars Automaton
X—=eX=>Y,
3 Regular X —aYy Finite State A
(regular)
2 Context-free X —=p Pushdown A
.. aAB — avyp Linear
1 Context-Sensitive where £ ¢ Bounded A
0 Recursively o= f . Turing Machine
enumerable (unrestricted)

Formal Definition
®00

Definition

Formal Definition

o Context Sensitive Grammar (CSG) is a 4-tuple G =
(N,X,P,S), where
e N is a non empty set of non-terminal symbols.
e Y is a non empty set of terminal symbols.
e S is the start symbol and S € N.
e P is the non empty set of productions of the form:

aAB — ayf

where A€ N,a,f € (NUX)* and vy € (NUX)"

Formal Definition
oeo

Definition

Formal Definition

o Identify which of the following are a CSG production:

@ aAb — aBb

@ aAb — bBa

© aABb — aBBb

Q@ Bc— cB

© AB — BA (swapping)

Formal Definition
ooe

Definition

Formal Definition

o Identify which of the following are a CSG production:

@ aAb — aBb v

@ a2Ab — bBa X

© aABb — aBBb v

Q@ Bc —+ cBX

Q@ AB — BA (swapping) X

Context Sensitive Language

Context Sensitive Language

@ A language L is said to be context-sensitive if there exists a
context-sensitive grammar G, such that L = £(G).

@ If G is context-sensitive Grammar then,

£6) = {w | wez)A(s 2w}

Context Sensitive Language

Context Sensitive Language: Example 1

Ly ={a"b"c"|n>0}

The set of Production rules of Context Sensitive Grammar G for
Lli

S — aBC
S — aSBC
CB — CZ
CZ - BZ
BZ — BC
aB — ab
bB — bb
bC — bc
cC — cc

Context Sensitive Language
®000

definition

Non-Contracting Grammar

Context Sensitive

Given a production: aAfS — ay where v # €. During derivation
non-terminal A will be changed to v only when it is present in
context of v and f.

An alternative characterization of context-sensitive languages using
non-contracting grammars.

Non-contracting grammar

As a consequence of v # €. We have
A formal grammar where production rules are of the form

a — 3, where | a |<]| B |

Context Sensitive Language
oe00

definition

Non-Contracting = Context Sensitive

A language is context sensitive if and only if it can be generated by
a non-contracting grammar.

CSG to NCG:

That every production of context-sensitive Grammar can be
generated by non-contracting grammar is immediate, since
context-sensitive grammars are, by defnition, noncontracting.

definition

Context Sensitive Language
coeo

Non-Contracting = Context Sensitive

NCG to CSG:
steps:
@ for eve
and ad

ry terminal symbol a € ¥, add new non terminal [a]
dnew rule [a] — a.

@ replace every terminal symbol by its non terminal symbol.
© Replace each rule X;...X,, = Y7...Y, with following

X1 Xo...

Z1X;...

21 7.
21 2.
21 2..
Y1 2..

YiYo...
YiYs..

Xm_le — 21X2...Xm_1Xm
Xm_1Xm — ZlZQ...Xm_le

X1 Xm — Z12>..0 -1 Xm

L1 Xm — le2~~~melszm+1~~-Yn
~Zm—lzmym+1~-~yn — Y122~-~Zm—1zmym+1~-~yn
.Zm_lszm+1...Yn — Yl Y2---Zm—lzmym+l---yn

melzm Ym+1...Y,, — Yl Y2~~-melzmym+1~~yn

~melzmym+1~~~yn = Y1Y2..Ymo1 YmYm+1...Yn

Context Sensitive Language
ocooe

definition

New Definition

Context Sensitive Grammar

A context-sensitive grammar (CSG) is an unrestricted grammar in
which every production has the form oo — S with | a |<| § |
(where o and f3 are strings of nonterminals and terminals).

Context Sensitive Language
(1]

Example 1:

Context Sensitive Language: Example 1 (redefined)

Ly ={a"b"c" |n>0}

The set of Production rules of Non-Contracting grammar G for Li:

e S — abc
e S — aSBc
e cB — Bc
e bB — bb

Derive: a3b3c3

Context Sensitive Language
oe

Example 1:

Context Sensitive Language: Example 1

Derive: a3b3¢3

aSBc
aaSBcBc
aaabcBcBc
aaabBccBc

aaabbccBc

aaabbcBccc

aaabbBccc

el rill

aaabbbccc

Context Sensitive Language
.

Example 2:

Context Sensitive Language: Example 2

Ly = {x € {a,b,c}* | #ax = #px = #cx } - {€}

The set of Production rules of non-contracting grammar G for Ly:
e S — SABC / ABC
o XY — YX for all X,Y € {A,B,C}
e A—a
eB—b
e C—c

Note that the blue production is critical here, that is not allowed in
context free grammar.

Closure Properties

Closure Properties

Context Sensitive Languages are closed under
e Union
Intersection
Complement

o

o

@ Concatenation
@ Kleene Closure
o

Reversal

Closure Properties

Closure Properties

The class of context-sensitive languages is closed with respect to
union.

o Let Gl = (/\/1,21, P1,51) and G2 = (N2,z2, PQ,SQ) be two
CSG s.t L(Gy) = L and L(Gy) = Ly, W.L.O.G assume
Ny Ny =¢
@ Construct
G:({S} UNITUN2, X1 U3, {S — 5,5 — 52} UPiU PQ,S)
@ Gis a CSG and any derivation in G is of the form:
sésl%wehorsész%waz
1 2

@ The strings derived by G is exactly the strings derived by
L1 ULy. Thus L(G) =L1ULy

Closure Properties

Closure Properties

Concatenation

The class of context-sensitive languages is closed with respect to
concatenation.

o Let G = (Nl,Z, P1, 51) and G = (Nz, >, P, 52) be two
CSG s.t L(Gy) = Ly and L(Gp) = Ly, W.L.O.G assume
NinNo=¢

e Construct G=({S}UNIUN2, L, {S — $1S}UPLUP,,S)

@ Gis a CSG and any derivation in G is of the form:

) 1: 5152 é W152 é> w1 wWo
G1 Gy

@ There are derivations for wy; and w, from S; and S,
respectively. = Applying these derivations to 515, we must
get w=wyws.

e Conversely, if we L(G) then the rule S — 515, ensures
w = wiws where wy € L; and wy € L.

Recursive v/s Context Sensitive

Recursive v/s Context Sensitive

Every context-sensitive language is recursive.

@ Consider CSL L with an associated CSG G, and look at the
derivation of w.
S —= X1 = X = ... = X — W

@ Number of steps in any derivation is a bounded function of
|w|. Since |x;| < |x; 4+ 1| (non contracting G)

@ There exist some index m=f(G,w) such that |x;| < |x; + m|,V;
where m is bounded on |N U X|and|w|

@ Therefore, the length of a derivation of we L is atmost
wl.m(|wl).

@ Check all derivations of length up to |w|.m(Jw|). If any of
them give w, then w € L, otherwise not.

Recursive v/s Context Sensitive

Recursive v/s Context Sensitive

There exists a recursive language that is not context sensitive.

@ Code each CSG G on input alphabet {a,b} using its
production a; — (3, i € 1,2,..m using # as a separator as a
binary string.

@ String that code a CSG can be placed in an order. If a binary
string w; represents a CSG, call it G;.

@ Define a new Language L = {w; : w; defines G; and
w; ¢ L(G;)}

@ Claim: L is recursive and not Context Sensitive

Recursive v/s Context Sensitive

Recursive v/s Context Sensitive

L is recursive and not Context Sensitive

L = {w; : w; defines G; and w; ¢ L(G;)}
L is Recursive:

o Given w;, verify whether it defines a CSG G,;.

@ If w; does not define a CSG, then w; ¢ L. If w; defines a CSG,
use Membership Algorithm defined to find out if w; € L(G;).
If w; ¢ L(G;), then w; € L.

@ L is well defined and is recursive

Recursive v/s Context Sensitive

Recursive v/s Context Sensitive

There exists a recursive language that is not context sensitive.

L = {w; : w; defines G; and w; ¢ L(G;)}
L is not Context Senstive

@ Proof by contradiction, assume that L is a CSL.Then there
exists some CSG wy such that L=L(Gg) for some k.

o If wy € L(Gk), then wy €L (by def. of L). But L=L(Gy). =
Contradiction.

o If wy ¢ L(Gx) = wy € L. But L=L(Gx). =
Contradiction

@ So L is not context sensitive.

Expressive Power of CSL

Expressive Power of CSL

@ Every Context sensitive language is recursive and there exists
a recursive language that is not context sensitive. Thus, CSL
has less expressive power than Recursive languages.

recursively enumerable

context-sensitive

context-free

Figure: Chomsky Hierarchy

Linear Bounded Automata

Linear Bounded Automata

A non-deterministic single tape Turing machine that uses only the
tape space occupied by the input is called a linear-bounded
automaton (LBA).

[Flafa [[.] [an]d]

where, a1, az, ...,a, € A

Linear Bounded Automata

Equivalent Definition

@ An equivalent definition of an LBA is that it uses only
constant (c) times the amount of space occupied by the input
string, where c is a constant fixed for the particular machine.

@ The machine therefore has just linear amount of memory,
bounded by the length of the input string. We call this a
linear bounded automaton.

Linear Bounded Automata
[I}

Formal definition

Formal definition

A Linear Bounded Automaton is a non-deterministic Turing
Machine,

60000000 O0CO

M = (Q7A? r7575’ l_’ _17 B? t’ r)

Q is a finite non empty set of states.

A is the finite non empty set of input alphabet.
I is the finite tape alphabet which contains A.
s € @ is the start state.

0 is the set of transitions.

Fe I is the left-end marker

e I is the right-end marker.

B € T is the blank tape symbol.

t € @ is the accept state.

r € Q is the reject state and r # t.

Linear Bounded Automata
oce

Formal definition

Formal Definition

@ The Transition should satisfy the following conditions:

e It should not replace the marker symbols by any other symbol.
e The tape head should not move left of - and right of .

@ Thus, the initial configuration on input x will be:
(s,Fx,0)

@ The linear-bounded M accept w. if,

{(s,l— w H,0) 7 (t,F a H, 1), for some a and i}

Results about LBA

Number of Configurations

o Let a given LBA M has

e (states.
e m characters in the tape alphabet.
e and the input length is n.

@ Then M can be in at most
a(n)=m" xgxn

configurations.

Results about LBA

Results about LBA

On an input of length n, if the LBA M does not halt after m"nq
steps, then M cannot accept the input.

.

The computation of M begins with the start configuration. When
M performs a step, it goes from one configuration to another. If M
does not halt after m"nq steps, some configuration has repeated.
Then M will repeat this configuration over and over. —

Loop.]

v

Results about LBA
[I}

Halting Problem

Results about LBA

Halting Problem

HALT;ga = {< M,w >| M is a LBA and M halts on input w
€ A*}

Results about LBA
oce

Halting Problem

Results about LBA

Halting Problem
The halting problem is solvable for linear bounded automata.

@ HALT;ga = {< M, w >| M is a LBA and M halts on input w
€ A*} is decidable.

@ An LBA that stops on input w must stop in at most (| w |)
steps.

Results about LBA
[I}

Membership Problem

Results about LBA

Membership Problem
Arga = {< M,w >| M is an LBA and M accepts w € A* }

Results about LBA
oce

Membership Problem

Results about LBA

Membership Problem

The membership problem is decidable for linear bounded automata.

® Aiga = {< M,w >| Mis an LBA and M accepts w € A* } is
decidable

Simulate M on w for m"ngq steps (n = | w |) or until it halts.
If M halts and accepts w, Accepted!
else, Rejected! [

Results about LBA
®00

LBA

Language accepted by LBA

@ The language accepted by LBA M is denoted L(M) and is the
set of strings accepted by M.

o A language L C A* is called Context Sensitive Language
(CSL) if it is accepted by some Linear Bounded Automaton M.

Results about LBA
oeo

LBA

Intersection closure of CSL

Given CSL L1 and CSL L2 we can have a LBA(M1) and
LBA(M2) for it.

We can construct a new LBA for L1 N L2 by using a 2-track tape.
One track will simualate M1 and other will simulate M2.

If both of them accepts then string is accepted by intersection.

Results about LBA
ooe

LBA

Curiosity

@ At the bottom level of the Chomsky hierarchy, it makes no
difference: every NFA can be simulated by a DFA.

@ At the top level, the same happens. Any nondeterministic
Turing machine can be simulated by a deterministic one.

@ At the context-free level, there is a difference: we need
NPDAs to account for all context-free languages.

@ What about the context-sensitive level? Are NLBAs strictly
more powerful than DLBAs? Asked in 1964, and still open!!

References

References

John Myhill (June 1960). Linear Bounded Automata
Linear Bounded Automata by Forbes D. Lewis
https://en.wikipedia.org/wiki/Context-sensitive_language

https://www.cs.cmu.edu/ sutner/CDM /notes/70-cont-
sens.pdf

e John E. Hopcroft; Jeffrey D. Ullman (1979). Introduction to
Automata Theory, Languages, and Computation

@ An Introduction to Formal Languages and Automata by Peter
Linz

@ and old seminars.

References

Thank You!

	Introduction
	Chomsky Hierarchy
	Formal Definition
	Definition

	Context Sensitive Language
	definition
	Example 1:
	Example 2:

	Closure Properties
	Recursive v/s Context Sensitive
	Expressive Power of CSL
	Linear Bounded Automata
	Formal definition

	Results about LBA
	Halting Problem
	Membership Problem
	LBA

	References

