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Introduction

Introduction

Till now:

Ly = {a"b"c" | n >0 } is this a CFL?

can be shown not CFL using pumping lemma.

Solution: To deal with problems like this one, we need to
strengthen our grammars. The key is to remove the constraint of
being “context-free.”



Chomsky Hierarchy

Chomsky Hierarchy

Accepting
Level | Language type Grammars Automaton
X—=eX=>Y,
3 Regular X —aYy Finite State A
(regular)
2 Context-free X —=p Pushdown A
.. aAB — avyp Linear
1 Context-Sensitive where £ ¢ Bounded A
0 Recursively o= f . Turing Machine
enumerable (unrestricted)
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Definition

Formal Definition

o Context Sensitive Grammar (CSG) is a 4-tuple G =
(N,X,P,S), where
e N is a non empty set of non-terminal symbols.
e Y is a non empty set of terminal symbols.
e S is the start symbol and S € N.
e P is the non empty set of productions of the form:

aAB — ayf

where A€ N,a,f € (NUX)* and vy € (NUX)"
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Definition

Formal Definition

o Identify which of the following are a CSG production:

@ aAb — aBb

@ aAb — bBa

© aABb — aBBb

Q@ Bc— cB

© AB — BA (swapping)
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Definition

Formal Definition

o Identify which of the following are a CSG production:

@ aAb — aBb v

@ a2Ab — bBa X

© aABb — aBBb v

Q@ Bc —+ cBX

Q@ AB — BA (swapping) X



Context Sensitive Language

Context Sensitive Language

@ A language L is said to be context-sensitive if there exists a
context-sensitive grammar G, such that L = £(G).

@ If G is context-sensitive Grammar then,

£6) = {w | wez)A(s 2w}



Context Sensitive Language

Context Sensitive Language: Example 1

Ly ={a"b"c"|n>0}

The set of Production rules of Context Sensitive Grammar G for
Lli

S — aBC
S — aSBC
CB — CZ
CZ - BZ
BZ — BC
aB — ab
bB — bb
bC — bc
cC — cc
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Non-Contracting Grammar

Context Sensitive

Given a production: aAfS — ay where v # €. During derivation
non-terminal A will be changed to v only when it is present in
context of v and f.

An alternative characterization of context-sensitive languages using
non-contracting grammars.

Non-contracting grammar

As a consequence of v # €. We have
A formal grammar where production rules are of the form

a — 3, where | a |<]| B |
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Non-Contracting = Context Sensitive

A language is context sensitive if and only if it can be generated by
a non-contracting grammar.

CSG to NCG:

That every production of context-sensitive Grammar can be
generated by non-contracting grammar is immediate, since
context-sensitive grammars are, by defnition, noncontracting.
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Context Sensitive Language
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Non-Contracting = Context Sensitive

NCG to CSG:
steps:
@ for eve
and ad

ry terminal symbol a € ¥, add new non terminal [a]
dnew rule [a] — a.

@ replace every terminal symbol by its non terminal symbol.
© Replace each rule X;...X,, = Y7...Y, with following

X1 Xo...

Z1X;...

21 7.
21 2.
21 2..
Y1 2..

YiYo...
YiYs..

Xm_le — 21X2...Xm_1Xm
Xm_1Xm — ZlZQ...Xm_le

X1 Xm — Z12>..0 -1 Xm

L1 Xm — le2~~~melszm+1~~-Yn
~Zm—lzmym+1~-~yn — Y122~-~Zm—1zmym+1~-~yn
.Zm_lszm+1...Yn — Yl Y2---Zm—lzmym+l---yn

melzm Ym+1...Y,, — Yl Y2~~-melzmym+1~~yn

~melzmym+1~~~yn = Y1Y2..Ymo1 YmYm+1...Yn
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New Definition

Context Sensitive Grammar

A context-sensitive grammar (CSG) is an unrestricted grammar in
which every production has the form oo — S with | a |<| § |
(where o and f3 are strings of nonterminals and terminals).
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Example 1:

Context Sensitive Language: Example 1 (redefined)

Ly ={a"b"c" |n>0}

The set of Production rules of Non-Contracting grammar G for Li:

e S — abc
e S — aSBc
e cB — Bc
e bB — bb

Derive: a3b3c3
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Example 1:

Context Sensitive Language: Example 1

Derive: a3b3¢3

aSBc
aaSBcBc
aaabcBcBc
aaabBccBc

aaabbccBc

aaabbcBccc

aaabbBccc

el rill

aaabbbccc



Context Sensitive Language
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Example 2:

Context Sensitive Language: Example 2

Ly = {x € {a,b,c}* | #ax = #px = #cx } - {€}

The set of Production rules of non-contracting grammar G for Ly:
e S — SABC / ABC
o XY — YX for all X,Y € {A,B,C}
e A—a
eB—b
e C—c

Note that the blue production is critical here, that is not allowed in
context free grammar.



Closure Properties

Closure Properties

Context Sensitive Languages are closed under
e Union
Intersection
Complement

o

o

@ Concatenation
@ Kleene Closure
o

Reversal



Closure Properties

Closure Properties

The class of context-sensitive languages is closed with respect to
union.

o Let Gl = (/\/1,21, P1,51) and G2 = (N2,z2, PQ,SQ) be two
CSG s.t L(Gy) = L and L(Gy) = Ly, W.L.O.G assume
Ny Ny =¢
@ Construct
G:({S} UNITUN2, X1 U3, {S — 5,5 — 52} UPiU PQ,S)
@ Gis a CSG and any derivation in G is of the form:
sésl%wehorsész%waz
1 2

@ The strings derived by G is exactly the strings derived by
L1 ULy. Thus L(G) =L1ULy



Closure Properties

Closure Properties

Concatenation

The class of context-sensitive languages is closed with respect to
concatenation.

o Let G = (Nl,Z, P1, 51) and G = (Nz, >, P, 52) be two
CSG s.t L(Gy) = Ly and L(Gp) = Ly, W.L.O.G assume
NinNo=¢

e Construct G=({S}UNIUN2, L, {S — $1S}UPLUP,,S)

@ Gis a CSG and any derivation in G is of the form:

) 1: 5152 é W152 é> w1 wWo
G1 Gy

@ There are derivations for wy; and w, from S; and S,
respectively. = Applying these derivations to 515, we must
get w=wyws.

e Conversely, if we L(G) then the rule S — 515, ensures
w = wiws where wy € L; and wy € L.



Recursive v/s Context Sensitive

Recursive v/s Context Sensitive

Every context-sensitive language is recursive.

@ Consider CSL L with an associated CSG G, and look at the
derivation of w.
S —= X1 = X = ... = X — W

@ Number of steps in any derivation is a bounded function of
|w|. Since |x;| < |x; 4+ 1| (non contracting G)

@ There exist some index m=f(G,w) such that |x;| < |x; + m|,V;
where m is bounded on |N U X|and|w|

@ Therefore, the length of a derivation of we L is atmost
wl.m(|wl).

@ Check all derivations of length up to |w|.m(Jw|). If any of
them give w, then w € L, otherwise not.



Recursive v/s Context Sensitive

Recursive v/s Context Sensitive

There exists a recursive language that is not context sensitive.

@ Code each CSG G on input alphabet {a,b} using its
production a; — (3, i € 1,2,..m using # as a separator as a
binary string.

@ String that code a CSG can be placed in an order. If a binary
string w; represents a CSG, call it G;.

@ Define a new Language L = {w; : w; defines G; and
w; ¢ L(G;)}

@ Claim: L is recursive and not Context Sensitive



Recursive v/s Context Sensitive

Recursive v/s Context Sensitive

L is recursive and not Context Sensitive

L = {w; : w; defines G; and w; ¢ L(G;)}
L is Recursive:

o Given w;, verify whether it defines a CSG G,;.

@ If w; does not define a CSG, then w; ¢ L. If w; defines a CSG,
use Membership Algorithm defined to find out if w; € L(G;).
If w; ¢ L(G;), then w; € L.

@ L is well defined and is recursive



Recursive v/s Context Sensitive

Recursive v/s Context Sensitive

There exists a recursive language that is not context sensitive.

L = {w; : w; defines G; and w; ¢ L(G;)}
L is not Context Senstive

@ Proof by contradiction, assume that L is a CSL.Then there
exists some CSG wy such that L=L(Gg) for some k.

o If wy € L(Gk), then wy €L (by def. of L). But L=L(Gy). =
Contradiction.

o If wy ¢ L(Gx) = wy € L. But L=L(Gx). =
Contradiction

@ So L is not context sensitive.



Expressive Power of CSL

Expressive Power of CSL

@ Every Context sensitive language is recursive and there exists
a recursive language that is not context sensitive. Thus, CSL
has less expressive power than Recursive languages.

recursively enumerable

context-sensitive

context-free

Figure: Chomsky Hierarchy



Linear Bounded Automata

Linear Bounded Automata

A non-deterministic single tape Turing machine that uses only the
tape space occupied by the input is called a linear-bounded
automaton (LBA).

[Flafa [ [.] [an]d]

where, a1, az, ...,a, € A



Linear Bounded Automata

Equivalent Definition

@ An equivalent definition of an LBA is that it uses only
constant (c) times the amount of space occupied by the input
string, where c is a constant fixed for the particular machine.

@ The machine therefore has just linear amount of memory,
bounded by the length of the input string. We call this a
linear bounded automaton.



Linear Bounded Automata
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Formal definition

Formal definition

A Linear Bounded Automaton is a non-deterministic Turing
Machine,

60000000 O0CO

M = (Q7A? r7575’ l_’ _17 B? t’ r)

Q is a finite non empty set of states.

A is the finite non empty set of input alphabet.
I is the finite tape alphabet which contains A.
s € @ is the start state.

0 is the set of transitions.

Fe I is the left-end marker

e I is the right-end marker.

B € T is the blank tape symbol.

t € @ is the accept state.

r € Q is the reject state and r # t.
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Formal definition

Formal Definition

@ The Transition should satisfy the following conditions:

e It should not replace the marker symbols by any other symbol.
e The tape head should not move left of - and right of .

@ Thus, the initial configuration on input x will be:
(s,Fx,0)

@ The linear-bounded M accept w. if,

{(s,l— w H,0) 7 (t,F a H, 1), for some a and i}



Results about LBA

Number of Configurations

o Let a given LBA M has

e ( states.
e m characters in the tape alphabet.
e and the input length is n.

@ Then M can be in at most
a(n)=m" xgxn

configurations.



Results about LBA

Results about LBA

On an input of length n, if the LBA M does not halt after m"nq
steps, then M cannot accept the input.

.

The computation of M begins with the start configuration. When
M performs a step, it goes from one configuration to another. If M
does not halt after m"nq steps, some configuration has repeated.
Then M will repeat this configuration over and over. —

Loop. ]

v




Results about LBA
[ I}

Halting Problem

Results about LBA

Halting Problem

HALT;ga = {< M,w >| M is a LBA and M halts on input w
€ A*}
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Halting Problem

Results about LBA

Halting Problem
The halting problem is solvable for linear bounded automata.

@ HALT;ga = {< M, w >| M is a LBA and M halts on input w
€ A*} is decidable.

@ An LBA that stops on input w must stop in at most (| w |)
steps.
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Membership Problem

Results about LBA

Membership Problem
Arga = {< M,w >| M is an LBA and M accepts w € A* }
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Membership Problem

Results about LBA

Membership Problem

The membership problem is decidable for linear bounded automata.

® Aiga = {< M,w >| Mis an LBA and M accepts w € A* } is
decidable

Simulate M on w for m"ngq steps (n = | w |) or until it halts.
If M halts and accepts w, Accepted!
else, Rejected! [
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LBA

Language accepted by LBA

@ The language accepted by LBA M is denoted L(M ) and is the
set of strings accepted by M.

o A language L C A* is called Context Sensitive Language
(CSL) if it is accepted by some Linear Bounded Automaton M.
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LBA

Intersection closure of CSL

Given CSL L1 and CSL L2 we can have a LBA( M1 ) and
LBA(M2) for it.

We can construct a new LBA for L1 N L2 by using a 2-track tape.
One track will simualate M1 and other will simulate M2.

If both of them accepts then string is accepted by intersection.



Results about LBA
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LBA

Curiosity

@ At the bottom level of the Chomsky hierarchy, it makes no
difference: every NFA can be simulated by a DFA.

@ At the top level, the same happens. Any nondeterministic
Turing machine can be simulated by a deterministic one.

@ At the context-free level, there is a difference: we need
NPDAs to account for all context-free languages.

@ What about the context-sensitive level? Are NLBAs strictly
more powerful than DLBAs? Asked in 1964, and still open!!
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