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Introduction

Till now:
L1 = {anbncn | n > 0 } is this a CFL?
can be shown not CFL using pumping lemma.
Solution: To deal with problems like this one, we need to
strengthen our grammars. The key is to remove the constraint of
being “context-free.”
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Chomsky Hierarchy

Level Language type Grammars
Accepting
Automaton

3 Regular
X → ϵ,X → Y ,
X → aY
(regular)

Finite State A

2 Context-free X → β Pushdown A

1 Context-Sensitive
αAβ → αγβ
where γ ̸= ϵ

Linear
Bounded A

0
Recursively
enumerable

α → β
(unrestricted)

Turing Machine
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Definition

Formal Definition

Context Sensitive Grammar (CSG) is a 4-tuple G =
(N,Σ,P,S), where

N is a non empty set of non-terminal symbols.
Σ is a non empty set of terminal symbols.
S is the start symbol and S ∈ N.
P is the non empty set of productions of the form:

αAβ → αγβ

where A ∈ N, α, β ∈ (N ∪ Σ)∗ and γ ∈ (N ∪ Σ)+



Introduction Chomsky Hierarchy Formal Definition Context Sensitive Language Closure Properties

Definition

Formal Definition

Identify which of the following are a CSG production:
1 aAb → aBb
2 aAb → bBa
3 aABb → aBBb
4 Bc → cB
5 AB → BA (swapping)
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Definition

Formal Definition

Identify which of the following are a CSG production:
1 aAb → aBb ✓
2 aAb → bBa ✗
3 aABb → aBBb ✓
4 Bc → cB ✗
5 AB → BA (swapping) ✗
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Context Sensitive Language

A language L is said to be context-sensitive if there exists a
context-sensitive grammar G, such that L = L(G).
If G is context-sensitive Grammar then,

L(G ) =

{
w | (w ∈ Σ∗) ∧ (S

+
=⇒
G

w)

}
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Context Sensitive Language: Example 1

Example

L1 = {anbncn | n > 0 }

The set of Production rules of Context Sensitive Grammar G for
L1:

S → aBC

S → aSBC

CB → CZ

CZ → BZ

BZ → BC

aB → ab

bB → bb

bC → bc

cC → cc
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definition

Non-Contracting Grammar

Context Sensitive

Given a production: αAβ → αγβ where γ ̸= ϵ. During derivation
non-terminal A will be changed to γ only when it is present in
context of α and β.

An alternative characterization of context-sensitive languages using
non-contracting grammars.

Non-contracting grammar

As a consequence of γ ̸= ϵ. We have
A formal grammar where production rules are of the form

α → β,where | α |≤| β |
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definition

Non-Contracting ≡ Context Sensitive

Theorem

A language is context sensitive if and only if it can be generated by
a non-contracting grammar.

CSG to NCG:
That every production of context-sensitive Grammar can be
generated by non-contracting grammar is immediate, since
context-sensitive grammars are, by defnition, noncontracting.
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definition

Non-Contracting ≡ Context Sensitive

NCG to CSG:
steps:

1 for every terminal symbol a ∈ Σ, add new non terminal [ a]
and add new rule [ a] → a .

2 replace every terminal symbol by its non terminal symbol.
3 Replace each rule X1...Xm → Y1...Yn with following

X1X2...Xm−1Xm → Z1X2...Xm−1Xm

Z1X2...Xm−1Xm → Z1Z2...Xm−1Xm

:
Z1Z2...Xm−1Xm → Z1Z2...Zm−1Xm

Z1Z2...Zm−1Xm → Z1Z2...Zm−1ZmYm+1...Yn

Z1Z2...Zm−1ZmYm+1...Yn → Y1Z2...Zm−1ZmYm+1...Yn

Y1Z2...Zm−1ZmYm+1...Yn → Y1Y2...Zm−1ZmYm+1...Yn

:
Y1Y2...Zm−1ZmYm+1...Yn → Y1Y2...Ym−1ZmYm+1...Yn

Y1Y2...Ym−1ZmYm+1...Yn → Y1Y2...Ym−1YmYm+1...Yn
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definition

New Definition

Context Sensitive Grammar

A context-sensitive grammar (CSG) is an unrestricted grammar in
which every production has the form α → β with | α |≤| β |
(where α and β are strings of nonterminals and terminals).
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Example 1:

Context Sensitive Language: Example 1 (redefined)

Example

L1 = {anbncn | n > 0 }

The set of Production rules of Non-Contracting grammar G for L1:

S → abc

S → aSBc

cB → Bc

bB → bb

Example

Derive: a3b3c3
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Example 1:

Context Sensitive Language: Example 1

Example

Derive: a3b3c3

S =⇒ aSBc

=⇒ aaSBcBc

=⇒ aaabcBcBc

=⇒ aaabBccBc

=⇒ aaabbccBc

=⇒ aaabbcBccc

=⇒ aaabbBccc

=⇒ aaabbbccc
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Example 2:

Context Sensitive Language: Example 2

Example

L2 = {x ∈ {a, b, c}∗ | #ax = #bx = #cx } - {ϵ}

The set of Production rules of non-contracting grammar G for L2:

S → SABC / ABC

XY → YX for all X,Y ∈ {A,B,C}
A → a

B → b

C → c

Note that the blue production is critical here, that is not allowed in
context free grammar.
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Closure Properties

Context Sensitive Languages are closed under

Union

Intersection

Complement

Concatenation

Kleene Closure

Reversal
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Closure Properties

Union

The class of context-sensitive languages is closed with respect to
union.

Let G1 = (N1,Σ1,P1,S1) and G2 = (N2,Σ2,P2,S2) be two
CSG s.t L(G1) = L1 and L(G2) = L2, W.L.O.G assume
N1 ∩ N2 = ϕ

Construct
G=({S} ∪N1 ∪N2,Σ1 ∪Σ2, {S → S1,S → S2} ∪ P1 ∪ P2,S)

G is a CSG and any derivation in G is of the form:

S
1
=⇒ S1

∗
==⇒
G1

w ∈ L1 or S
1
=⇒ S2

∗
==⇒
G2

w ∈ L2

The strings derived by G is exactly the strings derived by
L1 ∪ L2. Thus L(G ) = L1 ∪ L2
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Closure Properties

Concatenation

The class of context-sensitive languages is closed with respect to
concatenation.

Let G1 = (N1,Σ,P1, S1) and G2 = (N2,Σ,P2, S2) be two
CSG s.t L(G1) = L1 and L(G2) = L2, W.L.O.G assume
N1 ∩ N2 = ϕ

Construct G=({S} ∪ N1 ∪ N2,Σ, {S → S1S2} ∪ P1 ∪ P2,S)

G is a CSG and any derivation in G is of the form:

S
1
=⇒ S1S2

∗
==⇒
G1

w1S2
∗
==⇒
G2

w1w2

There are derivations for w1 and w2 from S1 and S2
respectively. =⇒ Applying these derivations to S1S2 we must
get w=w1w2.

Conversely, if w∈ L(G) then the rule S → S1S2 ensures
w = w1w2 where w1 ∈ L1 and w2 ∈ L2.
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Recursive v/s Context Sensitive

Theorem

Every context-sensitive language is recursive.

Consider CSL L with an associated CSG G, and look at the
derivation of w.
S =⇒ x1 =⇒ x2 =⇒ ... =⇒ xn =⇒ w

Number of steps in any derivation is a bounded function of
|w |. Since |xj | ≤ |xj + 1| (non contracting G)

There exist some index m=f(G,w) such that |xj | < |xj +m|,∀j
where m is bounded on |N ∪ Σ|and |w |
Therefore, the length of a derivation of w∈ L is atmost
|w |.m(|w |).
Check all derivations of length up to |w |.m(|w |). If any of
them give w, then w ∈ L, otherwise not.
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Recursive v/s Context Sensitive

Theorem

There exists a recursive language that is not context sensitive.

Code each CSG G on input alphabet {a,b} using its
production αi → βi , i ∈ 1,2,..m using # as a separator as a
binary string.

String that code a CSG can be placed in an order. If a binary
string wi represents a CSG, call it Gi .

Define a new Language L = {wi : wi defines Gi and
wi /∈ L(Gi )}
Claim: L is recursive and not Context Sensitive
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Recursive v/s Context Sensitive

Claim

L is recursive and not Context Sensitive

L = {wi : wi defines Gi and wi /∈ L(Gi )}
L is Recursive:

Given wi , verify whether it defines a CSG Gi .

If wi does not define a CSG, then wi /∈ L. If wi defines a CSG,
use Membership Algorithm defined to find out if wi ∈ L(Gi ).
If wi /∈ L(Gi ), then wi ∈ L.

L is well defined and is recursive
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Recursive v/s Context Sensitive

Theorem

There exists a recursive language that is not context sensitive.

L = {wi : wi defines Gi and wi /∈ L(Gi )}
L is not Context Senstive

Proof by contradiction, assume that L is a CSL.Then there
exists some CSG wk such that L=L(Gk) for some k.

If wk ∈ L(Gk), then wk /∈L (by def. of L). But L=L(Gk). =⇒
Contradiction.

If wk /∈ L(Gk) =⇒ wk ∈ L. But L=L(Gk). =⇒
Contradiction

So L is not context sensitive.
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Expressive Power of CSL

Every Context sensitive language is recursive and there exists
a recursive language that is not context sensitive. Thus, CSL
has less expressive power than Recursive languages.

Figure: Chomsky Hierarchy
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Linear Bounded Automata

A non-deterministic single tape Turing machine that uses only the
tape space occupied by the input is called a linear-bounded
automaton (LBA).

⊢ a1 a2 . ... . an ⊣

where,a1, a2, ..., an ∈ A
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Equivalent Definition

An equivalent definition of an LBA is that it uses only
constant (c) times the amount of space occupied by the input
string, where c is a constant fixed for the particular machine.

The machine therefore has just linear amount of memory,
bounded by the length of the input string. We call this a
linear bounded automaton.
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Formal definition

Formal definition

A Linear Bounded Automaton is a non-deterministic Turing
Machine,

M = (Q,A, Γ, s, δ,⊢,⊣,B, t, r)

1 Q is a finite non empty set of states.
2 A is the finite non empty set of input alphabet.
3 Γ is the finite tape alphabet which contains A.
4 s ∈ Q is the start state.
5 δ is the set of transitions.
6 ⊢∈ Γ is the left-end marker
7 ⊣∈ Γ is the right-end marker.
8 B ∈ Γ is the blank tape symbol.
9 t ∈ Q is the accept state.
10 r ∈ Q is the reject state and r ̸= t.
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Formal definition

Formal Definition

The Transition should satisfy the following conditions:

It should not replace the marker symbols by any other symbol.
The tape head should not move left of ⊢ and right of ⊣.

Thus, the initial configuration on input x will be:

(s,⊢ x ⊣, 0)

The linear-bounded M accept w. if,{
(s,⊢ w ⊣, 0) ∗

=⇒
M

(t,⊢ α ⊣, i), for some α and i

}
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Number of Configurations

Let a given LBA M has

q states.
m characters in the tape alphabet.
and the input length is n.

Then M can be in at most

α(n) = mn × q × n

configurations.
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Results about LBA

Theorem

On an input of length n, if the LBA M does not halt after mnnq
steps, then M cannot accept the input.

Proof.

The computation of M begins with the start configuration. When
M performs a step, it goes from one configuration to another. If M
does not halt after mnnq steps, some configuration has repeated.
Then M will repeat this configuration over and over. =⇒
Loop.
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Halting Problem

Results about LBA

Halting Problem

HALTLBA = {< M,w >| M is a LBA and M halts on input w
∈ A∗}
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Halting Problem

Results about LBA

Halting Problem

The halting problem is solvable for linear bounded automata.

HALTLBA = {< M,w >| M is a LBA and M halts on input w
∈ A∗} is decidable.

An LBA that stops on input w must stop in at most α(| w |)
steps.
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Membership Problem

Results about LBA

Membership Problem

ALBA = {< M,w >| M is an LBA and M accepts w ∈ A∗ }
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Membership Problem

Results about LBA

Membership Problem

The membership problem is decidable for linear bounded automata.

ALBA = {< M,w >| M is an LBA and M accepts w ∈ A∗ } is
decidable

Proof.

Simulate M on w for mnnq steps (n = | w |) or until it halts.
If M halts and accepts w, Accepted!
else, Rejected!
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LBA

Language accepted by LBA

The language accepted by LBA M is denoted L(M ) and is the
set of strings accepted by M.

A language L ⊆ A∗ is called Context Sensitive Language
(CSL) if it is accepted by some Linear Bounded Automaton M.
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LBA

Intersection closure of CSL

Given CSL L1 and CSL L2 we can have a LBA( M1 ) and
LBA(M2) for it.
We can construct a new LBA for L1 ∩ L2 by using a 2-track tape.
One track will simualate M1 and other will simulate M2.
If both of them accepts then string is accepted by intersection.
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LBA

Curiosity

At the bottom level of the Chomsky hierarchy, it makes no
difference: every NFA can be simulated by a DFA.

At the top level, the same happens. Any nondeterministic
Turing machine can be simulated by a deterministic one.

At the context-free level, there is a difference: we need
NPDAs to account for all context-free languages.

What about the context-sensitive level? Are NLBAs strictly
more powerful than DLBAs? Asked in 1964, and still open!!
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Thank You!
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