## Regularity Preserving Relations

Ankit Kurani, Saurabh Awinashe

11th November 2021

### Contents

- Motivation
- 2 Introduction
- 3 Characterization as u.p. preserving relations
- 4 U.p. degenerating relations
- 5 Regularity Preserving Functions
- 6 Applications

### Contents

- Motivation
- 2 Introduction
- 3 Characterization as u.p. preserving relations
- 4 U.p. degenerating relations
- 5 Regularity Preserving Functions
- 6 Applications

## Prefix removals of regular languages

 Languages that consist of prefixes of strings from another language can be constructed.

## Prefix removals of regular languages

- Languages that consist of prefixes of strings from another language can be constructed.
- Examples :
  - **1** FIRST-HALF(L) = { $x \mid \exists y (|y| = |x| \& xy \in L)$ }
  - ② SQUARE-ROOT(L) =  $\{x \mid \exists y (|xy| = |x|^2 \& xy \in L)\}$

## Prefix removals of regular languages

- Languages that consist of prefixes of strings from another language can be constructed.
- Examples :
  - **1** FIRST-HALF(L) = { $x \mid \exists y (|y| = |x| \& xy \in L)$ }
  - **2** SQUARE-ROOT(*L*) =  $\{x \mid \exists y (|xy| = |x|^2 \& xy \in L)\}$
- We need a characterization which can tell us whether a given prefix removal of a regular language is regular.

### Contents

- Motivation
- 2 Introduction
- 3 Characterization as u.p. preserving relations
- 4 U.p. degenerating relations
- 5 Regularity Preserving Functions
- 6 Applications

### Definition 1

For each binary relation r on N and each language L,

$$P(r, L) = \{x \mid \exists y (r(|x|, |y|) \& xy \in L)\}$$

#### Definition 1

For each binary relation r on N and each language L,  $P(r, L) = \{x \mid \exists y (r(|x|, |y|) \& xy \in L)\}$ 

#### Definition 2

A relation r is regularity preserving if, P(r, L) is regular for every regular language L.

#### Definition 1

For each binary relation r on N and each language L,  $P(r, L) = \{x \mid \exists y (r(|x|, |y|) \& xy \in L)\}$ 

#### Definition 2

A relation r is regularity preserving if, P(r, L) is regular for every regular language L.

• We can define regularity preserving functions by expressing a function  $f: N \to N$  as a relation  $\{(n, f(n)) | n \in N\}$ 

#### Definition 1

For each binary relation r on N and each language L,  $P(r, L) = \{x \mid \exists y (r(|x|, |y|) \& xy \in L)\}$ 

#### Definition 2

A relation r is regularity preserving if, P(r, L) is regular for every regular language L.

- We can define regularity preserving functions by expressing a function  $f: N \to N$  as a relation  $\{(n, f(n)) | n \in N\}$
- 2 Example, FIRST-HALF(L)

#### Definition 1

For each binary relation r on N and each language L,  $P(r, L) = \{x \mid \exists y (r(|x|, |y|) \& xy \in L)\}$ 

#### Definition 2

A relation r is regularity preserving if, P(r, L) is regular for every regular language L.

- We can define regularity preserving functions by expressing a function  $f: N \to N$  as a relation  $\{(n, f(n)) | n \in N\}$
- 2 Example, FIRST-HALF(L)
  - Use the function f(n) = n

#### Definition 1

For each binary relation r on N and each language L,  $P(r, L) = \{x \mid \exists y (r(|x|, |y|) \& xy \in L)\}$ 

#### Definition 2

A relation r is regularity preserving if, P(r, L) is regular for every regular language L.

- We can define regularity preserving functions by expressing a function  $f: N \to N$  as a relation  $\{(n, f(n)) | n \in N\}$
- 2 Example, FIRST-HALF(L)
  - Use the function f(n) = n
  - $P(f, L) = \{x \mid \exists y (|y| = f(|x|) \& xy \in L)\}$



### Recall

A set  $A\subseteq N$  is ultimately periodic(u.p.) if there exists  $p\geq 1$  and  $n_o\geq 0$  such that

$$n \in A \Leftrightarrow n + p \in A$$

#### Recall

A set  $A\subseteq N$  is ultimately periodic(u.p.) if there exists  $p\geq 1$  and  $n_o\geq 0$  such that

$$n \in A \Leftrightarrow n + p \in A$$

### Definition 3

A relation r is u.p. preserving if,

$$r^{-1}(A) = \{i \mid (\exists j \in A) \ r(i,j)\}$$
 is u.p. for every u.p. set  $A$ .

#### Recall

A set  $A\subseteq N$  is ultimately periodic(u.p.) if there exists  $p\geq 1$  and  $n_o\geq 0$  such that

$$n \in A \Leftrightarrow n + p \in A$$

#### Definition 3

A relation r is u.p. preserving if,

$$r^{-1}(A) = \{i \mid (\exists j \in A) \ r(i,j)\}$$
 is u.p. for every u.p. set  $A$ .

**①** Consider the relation  $r = \{(n, n) \mid n \in N\}$ 

#### Recall

A set  $A\subseteq N$  is ultimately periodic(u.p.) if there exists  $p\geq 1$  and  $n_o\geq 0$  such that

$$n \in A \Leftrightarrow n + p \in A$$

### Definition 3

A relation r is u.p. preserving if,

$$r^{-1}(A) = \{i \mid (\exists j \in A) \ r(i,j)\}$$
 is u.p. for every u.p. set  $A$ .

- Consider the relation  $r = \{(n, n) \mid n \in N\}$
- 2 Take any u.p set  $A \subseteq N$ .

#### Recall

A set  $A\subseteq N$  is ultimately periodic(u.p.) if there exists  $p\geq 1$  and  $n_o\geq 0$  such that

# $n \in A \Leftrightarrow n + p \in A$

### Definition 3

A relation r is u.p. preserving if,

$$r^{-1}(A) = \{i \mid (\exists j \in A) \ r(i,j)\}$$
 is u.p. for every u.p. set  $A$ .

- **①** Consider the relation  $r = \{(n, n) \mid n \in N\}$
- 2 Take any u.p set  $A \subseteq N$ .
- $r^{-1}(A) = A$



### Contents

- Motivation
- 2 Introduction
- 3 Characterization as u.p. preserving relations
- 4 U.p. degenerating relations
- 5 Regularity Preserving Functions
- 6 Applications

### Lemma 1

If L is regular, then  $\{|x| \mid x \in L\}$  is u.p.

### Lemma 1

If L is regular, then  $\{|x| \mid x \in L\}$  is u.p.

#### Lemma 2

If A is u.p., then  $\{x \in \Sigma^* \mid |x| \in A\}$  is regular for every finite  $\Sigma$ 

#### Theorem 1

A relation is regularity preserving iff it is u.p. preserving

#### Theorem 1

A relation is regularity preserving iff it is u.p. preserving

## Proof $(\rightarrow)$

Suppose r is regularity preserving. Let A be any u.p.

#### Theorem 1

A relation is regularity preserving iff it is u.p. preserving

## Proof $(\rightarrow)$

Suppose r is regularity preserving. Let A be any u.p.

#### Theorem 1

A relation is regularity preserving iff it is u.p. preserving

## Proof $(\rightarrow)$

Suppose r is regularity preserving. Let A be any u.p.

- ②  $M = 0*1 \cap P(r, 0*1L)$  is regular.
- $M = \{x \mid \exists y (r(|x|,|y|) \& x \in 0^*1 \& y \in L)\}$
- **4** Since M is regular,  $\{|x| \mid x \in M\}$  is u.p.

#### Theorem 1

A relation is regularity preserving iff it is u.p. preserving

## Proof $(\rightarrow)$

Suppose r is regularity preserving. Let A be any u.p.

- ②  $M = 0*1 \cap P(r, 0*1L)$  is regular.
- $M = \{x \mid \exists y (r(|x|, |y|) \& x \in 0^*1 \& y \in L)\}$
- Since M is regular,  $\{|x| \mid x \in M\}$  is u.p.
- **5**  $r^{-1}(A) = \{|x| \mid x \in M\} \cup \{0\} \text{ is u.p.}$

#### Theorem 1

A relation is regularity preserving iff it is u.p. preserving

## Proof $(\leftarrow)$

Assume r is u.p. preserving. Suppose L is regular. From the MN relation for L, we get finitely many regular sets  $L_1, ..., L_k$ . Define  $R_i$  such that  $\{y \mid xy \in L \ \& \ x \in L_i\}$ 

#### Theorem 1

A relation is regularity preserving iff it is u.p. preserving

## Proof $(\leftarrow)$

Assume r is u.p. preserving. Suppose L is regular. From the MN relation for L, we get finitely many regular sets  $L_1, ..., L_k$ . Define  $R_i$  such that  $\{y \mid xy \in L \ \& \ x \in L_i\}$ 

- **1**  $\Sigma^* = L_1 \cup L_2 \cup ... \cup L_k$
- $P(r,L) = (P(r,L) \cap L_1) \cup (P(r,L) \cap L_2) \cup ... \cup (P(r,L) \cap L_k)$

#### Theorem 1

A relation is regularity preserving iff it is u.p. preserving

## Proof $(\leftarrow)$

Assume r is u.p. preserving. Suppose L is regular. From the MN relation for L, we get finitely many regular sets  $L_1, ..., L_k$ . Define  $R_i$  such that  $\{y \mid xy \in L \ \& \ x \in L_i\}$ 

- $P(r,L) = (P(r,L) \cap L_1) \cup (P(r,L) \cap L_2) \cup ... \cup (P(r,L) \cap L_k)$
- **4 P**(r, L) ∩  $L_i = \{x \mid \exists y (r(|x|, |y|) \& xy \in L\} \cap L_i\}$
- $P(r,L) \cap L_i = \{x \mid |x| \in r^{-1}(\{|y| \mid y \in R_i\}) \cap L_i$

### Contents

- Motivation
- 2 Introduction
- 3 Characterization as u.p. preserving relations
- 4 U.p. degenerating relations
- 5 Regularity Preserving Functions
- 6 Applications

#### **Definition**

If a binary relation r is U.P. degenerating then,  $r^{-1}(A)$  is **finite** if A is **finite** and  $r^{-1}(A)$  is **cofinite** if A is **infinite** 

**Note** :- A is a Up set in above definition

## Examples of degenerating relations

Consider relation  $r = \{(n, n) | n \in N\}$ 

### Examples of degenerating relations

Consider relation  $r = \{(n, n) | n \in N\}$ 

pairs which will be in relations  $r = \{ (1,1), (2,2), (3,3), (4,4), (5,5), .... \}$ 

## Examples of degenerating relations

Consider relation  $r = \{(n, n) | n \in N\}$ 

pairs which will be in relations  $r = \{ (1,1), (2,2), (3,3), (4,4), (5,5), .... \}$ 

A is a range of relation r, i.e all possible outputs of relation r

### Examples of degenerating relations

Consider relation  $r = \{(n, n) | n \in N\}$ 

pairs which will be in relations  $r = \{ (1,1), (2,2), (3,3), (4,4), (5,5), .... \}$ 

A is a range of relation r, i.e all possible outputs of relation r

 $r^{-1}(A)$  is the domain of the relation r, i.e all possible inputs of relation r

### Examples of degenerating relations

Consider relation  $r = \{(n, n) | n \in N\}$  pairs which will be in relations  $r = \{(1,1), (2,2), (3,3), (4,4), (5,5), ....\}$  A is a range of relation r, i.e all possible outputs of relation r  $r^{-1}(A)$  is the domain of the relation r, i.e all possible inputs of relation r ls set A a up set? If it is a U.P set then is the relation r U.P. degenerating relation?

### Examples of degenerating relations

Consider relation  $r = \{(n, n) | n \in N\}$ 

pairs which will be in relations  $r = \{ (1,1), (2,2), (3,3), (4,4), (5,5), .... \}$ 

Set A is a UP set

For each i, it can be seen that r(i,j) holds for every j such that i=j

It can be seen that set A is infinite set and also it can be seen that  $r^{-1}(A)$  is also cofinite.

It is also easy to argue that if set A would have been finite then by the condition on i and j,  $r^{-1}(A)$  would also be finite

### Examples of degenerating relations

Consider relation  $r = \{(|n^{\frac{1}{2}}|, n - |n^{\frac{1}{2}}|)| n \in N\}$ pairs which will be in relations  $r = \{ ....(3,12), (4,12), (4,13), (4,14), ... \}$ (4,15) ...... (4,20), (5,20), (5,21) .. (5,30), (6,30)..

A is a range of relation r, i.e all possible outputs of relation r  $r^{-1}(A)$  is the domain of the relation r, i.e all possible inputs of relation r Is set A a up set? Is relation r UP degenerating relation?

### Examples of degenerating relations

Consider relation  $r = \{(\lfloor n^{\frac{1}{2}} \rfloor, n - \lfloor n^{\frac{1}{2}} \rfloor) | n \in N\}$ 

pairs which will be in relations  $r = \{ .....(3,12), (4,12), (4,13), (4,14), (4,15) ...... (4,20), (5,20), (5,21) ... (5,30), (6,30)... \}$ 

Set A is a UP set

For each i, it can be seen that r(i,j) holds for every j with  $i^2 - i \le j \le i^2 + i$ 

Lets take i = 4, range for j will be  $12 \le j \le 20$ 

It can be seen that set A is infinite set and also it can be seen that  $r^{-1}(A)$  is also cofinite.

It is also easy to argue that if set A would have been finite then by the condition on i and j,  $r^{-1}(A)$  would also be finite

#### Theorem 2

If r1 and r2 are U.P. degenerating relations, then P(r1, L) - P(r2, L) is finite for every regular Language L.

#### Theorem 2

If r1 and r2 are U.P. degenerating relations, then P(r1, L) - P(r2, L) is finite for every regular Language L.

#### Proof

Let L be any regular language over  $\sum$ 

In proving Theorem 1, we found that regular sets  $L_1, L_2, ...., L_k$  and  $R_1, R_2, ...., R_k$  over  $\sum$  such that, for any relation r on N

$$P(r,L) = (P(r,L) \cap L_1) \cup (P(r,L) \cap L_2) \cup ... \cup (P(r,L) \cap L_k)$$
 .. (defined earlier)

$$P(r,L) = \bigcup_{i=1}^{k} (\{x \in \sum^{*} ||x| \in r^{-1}(\{|y|, y \in R_i\})\} \cap L_i)$$

#### Theorem 2

If r1 and r2 are U.P. degenerating relations, then P(r1, L) - P(r2, L) is finite for every regular Language L.

- For r1 and r2 u.p degenerating relations, we define
- **2**  $L_{i,j} = \{x \in \sum^* ||x| \in r_j^{-1}(|y|, y \in R_i\})\}$  ..  $(1 \le i \le k, 1 \le j \le 2)$

#### Theorem 2

If r1 and r2 are U.P. degenerating relations, then P(r1, L) - P(r2, L) is finite for every regular Language L.

- For r1 and r2 u.p degenerating relations, we define
- **2**  $L_{i,j} = \{x \in \sum^* ||x| \in r_j^{-1}(|y|, y \in R_i\})\}$  ..  $(1 \le i \le k, 1 \le j \le 2)$
- $P(r1,L) P(r2,L) = \bigcup_{i=1}^{k} (L_{i,1} \cap L_i) \bigcup_{i=1}^{k} (L_{i,2} \cap L_i)$

#### Theorem 2

If r1 and r2 are U.P. degenerating relations, then P(r1, L) - P(r2, L) is finite for every regular Language L.

- For r1 and r2 u.p degenerating relations, we define
- $P(r1,L) P(r2,L) = \bigcup_{i=1}^k (L_{i,1} \cap L_i) \bigcup_{i=1}^k (L_{i,2} \cap L_i)$
- $P(r1,L) P(r2,L) = \bigcup_{i=1}^{k} ((L_{i,1} L_{i,2}) \cap L_i)$

#### Theorem 2

If r1 and r2 are U.P. degenerating relations, then P(r1, L) - P(r2, L) is finite for every regular Language L.

- For r1 and r2 u.p degenerating relations, we define
- **2**  $L_{i,j} = \{x \in \sum^* ||x| \in r_j^{-1}(|y|, y \in R_i\})\}$  ..  $(1 \le i \le k, 1 \le j \le 2)$
- $P(r1,L) P(r2,L) = \bigcup_{i=1}^k (L_{i,1} \cap L_i) \bigcup_{i=1}^k (L_{i,2} \cap L_i)$
- $P(r1,L) P(r2,L) = \bigcup_{i=1}^k ((L_{i,1} L_{i,2}) \cap L_i)$
- $P(r1,L) P(r2,L) = \bigcup_{i=1}^{k} ((L_{i,1} \cap (L_{i,2})^c) \cap L_i)$

#### Theorem 2

If r1 and r2 are U.P. degenerating relations, then P(r1, L) - P(r2, L) is finite for every regular Language L.

- For r1 and r2 u.p degenerating relations, we define
- **2**  $L_{i,j} = \{x \in \sum^* ||x| \in r_j^{-1}(|y|, y \in R_i\})\}$  ..  $(1 \le i \le k, 1 \le j \le 2)$
- $P(r1,L) P(r2,L) = \bigcup_{i=1}^k (L_{i,1} \cap L_i) \bigcup_{i=1}^k (L_{i,2} \cap L_i)$
- $P(r1,L) P(r2,L) = \bigcup_{i=1}^k ((L_{i,1} L_{i,2}) \cap L_i)$
- $P(r1,L) P(r2,L) = \bigcup_{i=1}^k ((L_{i,1} \cap (L_{i,2})^c) \cap L_i)$
- **1** Now if  $R_i$  is finite, then  $L_{i,1}$  will be finite and  $(L_{i,2})^c$  will be co-finite and intersection of these two will be finite. Similarly we can observe the case when  $R_i$  will be infinite.

#### **Examples**

Examples of degenerating relations are

$$r1 = \{(\lfloor n^{\frac{1}{2}} \rfloor, n - \lfloor n^{\frac{1}{2}} \rfloor) | n \in N \}$$

$$r2 = \{(\lfloor n^{\frac{1}{3}} \rfloor, n - \lfloor n^{\frac{1}{3}} \rfloor) | n \in N \}$$

$$r3 = \{(\lfloor \log_2(n) \rfloor, n - \lfloor \log_2(n) \rfloor) | n \in N \}$$

If we take any of the the above two relations, lets say  $r_1$  and  $r_3$  and a regular language L then  $P(r_1, L) - P(r_3, L)$  will be finite.

For sufficiently long string x,

$$x \in P(r1, L) \Longleftrightarrow x \in P(r3, L) \Longleftrightarrow x \in P(r2, L)$$

### Contents

- Motivation
- 2 Introduction
- 3 Characterization as u.p. preserving relations
- 4 U.p. degenerating relations
- 5 Regularity Preserving Functions
- 6 Applications

#### Definition 1

#### Definition 1

A function  $f: N \to N$  is u.p. reducible if, for every modulus m, there exists a period p such that  $f(n) \equiv f(n+p) \mod m$  for all but finitely many  $n \in N$ .

•  $f(n) = n^2$  is u.p. reducible.

#### Definition 1

- $f(n) = n^2$  is u.p. reducible.
  - For any m,  $\exists p(n^2 \equiv (n+p)^2 \mod m)$

#### Definition 1

- $f(n) = n^2$  is u.p. reducible.
  - For any m,  $\exists p(n^2 \equiv (n+p)^2 \mod m)$
  - ②  $(n+p)^2 \mod m = (n^2 \mod m + p(2n+p) \mod m) \mod m$

#### Definition 1

- $f(n) = n^2$  is u.p. reducible.
  - For any m,  $\exists p(n^2 \equiv (n+p)^2 \mod m)$
  - ②  $(n+p)^2 \mod m = (n^2 \mod m + p(2n+p) \mod m) \mod m$
  - **3** If we take p = m then,  $n^2 \equiv n^2 \mod m$  which holds for all n.

#### Definition 1

A function  $f: N \to N$  is u.p. reducible if, for every modulus m, there exists a period p such that  $f(n) \equiv f(n+p) \mod m$  for all but finitely many  $n \in N$ .

- $f(n) = n^2$  is u.p. reducible.
  - For any m,  $\exists p(n^2 \equiv (n+p)^2 \mod m)$
  - ②  $(n+p)^2 \mod m = (n^2 \mod m + p(2n+p) \mod m) \mod m$
  - 3 If we take p = m then,  $n^2 \equiv n^2 \mod m$  which holds for all n.

2

$$f(n) = \begin{cases} 0 & \text{if } n \text{ is even} \\ n! & \text{if } n \text{ is odd} \end{cases}$$



#### Definition 1

A function  $f: N \to N$  is u.p. reducible if, for every modulus m, there exists a period p such that  $f(n) \equiv f(n+p) \mod m$  for all but finitely many  $n \in N$ .

- $f(n) = n^2$  is u.p. reducible.
  - For any m,  $\exists p(n^2 \equiv (n+p)^2 \mod m)$
  - ②  $(n+p)^2 \mod m = (n^2 \mod m + p(2n+p) \mod m) \mod m$
  - § If we take p = m then,  $n^2 \equiv n^2 \mod m$  which holds for all n.

2

$$f(n) = \begin{cases} 0 & \text{if } n \text{ is even} \\ n! & \text{if } n \text{ is odd} \end{cases}$$

**1** u.p. reducible  $\forall n \geq m$ 



#### Definition 2

A function  $f: N \to N$  is essentially increasing if, for every k,  $f(n) \ge k$  for all but finitely many  $n \in N$ .

#### Definition 2

A function  $f: N \to N$  is essentially increasing if, for every k,  $f(n) \ge k$  for all but finitely many  $n \in N$ .

#### Definition 2

A function  $f: N \to N$  is essentially increasing if, for every k,  $f(n) \ge k$  for all but finitely many  $n \in N$ .

- - For any and every k,  $f(n) \ge k$  for  $n \ge k$

#### Definition 2

A function  $f: N \to N$  is essentially increasing if, for every k,  $f(n) \ge k$  for all but finitely many  $n \in N$ .

- - For any and every k,  $f(n) \ge k$  for  $n \ge k$
- 2

$$f(n) = \begin{cases} 0 & \text{if } n \text{ is even} \\ n! & \text{if } n \text{ is odd} \end{cases}$$

#### Definition 2

A function  $f: N \to N$  is essentially increasing if, for every k,  $f(n) \ge k$  for all but finitely many  $n \in N$ .

- - For any and every k,  $f(n) \ge k$  for  $n \ge k$
- 2

$$f(n) = \begin{cases} 0 & \text{if } n \text{ is even} \\ n! & \text{if } n \text{ is odd} \end{cases}$$

Not essentially increasing



#### Definition 1

 $F = \{f \mid f \text{ is essentially increasing and u.p. reducible}\}$ 

#### Definition 1

 $F = \{f \mid f \text{ is essentially increasing and u.p. reducible}\}$ 

### Definition 2

 $G = \{f \mid f \text{ is u.p. preserving}\}$ 

#### Definition 1

 $F = \{f \mid f \text{ is essentially increasing and u.p. reducible}\}$ 

### Definition 2

 $G = \{f \mid f \text{ is u.p. preserving}\}$ 

#### Definition 3

 $H = \{f \mid f \text{ is u.p. reducible}\}$ 

### Theorem 3



### Theorem 3

 $F\subset G$ 

## Proof ( $\subseteq$ )

### Theorem 3

 $F\subset G$ 

## Proof $(\subseteq)$

#### Theorem 3

 $F\subset G$ 

## Proof $(\subseteq)$

#### Theorem 3

 $F \subset G$ 

## Proof (⊆)

- **3** Since  $f \in F$ , f is u.p. reducible for  $n \ge n'_o$ .

#### Theorem 3

 $F\subset G$ 

## Proof $(\subseteq)$

- **3** Since  $f \in F$ , f is u.p. reducible for  $n \ge n'_o$ .

#### Theorem 3

 $F\subset G$ 

## Proof (⊆)

- **3** Since  $f \in F$ , f is u.p. reducible for  $n \ge n'_o$ .
  - $\bullet \quad n \geq n'_o \Rightarrow f(n), f(n+p) \geq n'_o \& f(n) \equiv f(n+p) \bmod m$

#### Theorem 3

 $F \subset G$ 

## Proof $(\subseteq)$

Assume  $f \in F$ . Suppose A with  $n_o, m$  is u.p.

- **3** Since  $f \in F$ , f is u.p. reducible for  $n \ge n'_o$ .
  - $\bullet \quad n \geq n'_o \Rightarrow f(n), f(n+p) \geq n'_o \& f(n) \equiv f(n+p) \bmod m$

  - **3**  $f^{-1}(A)$  is u.p.

## Proof $(\neq)$

Recall a  $f \notin F$ . However,  $f^{-1}(A)$  is u.p. so  $f \in G$ 

#### Theorem 3

 $F \subset G$ 

• f(n) = n.  $f \in F \Rightarrow f \in G$ . Therefore, f is u.p. preserving. Using Theorem 1, f is also regularity preserving.

#### Theorem 3

 $F \subset G$ 

- f(n) = n.  $f \in F \Rightarrow f \in G$ . Therefore, f is u.p. preserving. Using Theorem 1, f is also regularity preserving.
  - **1** P(f, L) is regular for any regular language L.

#### Theorem 3

 $F \subset G$ 

- f(n) = n.  $f \in F \Rightarrow f \in G$ . Therefore, f is u.p. preserving. Using Theorem 1, f is also regularity preserving.
  - **1** P(f, L) is regular for any regular language L.
  - **2** P(f, L) is FIRST-HALF(L). Therefore, FIRST-HALF(L) for a regular language L is regular.

#### Theorem 3

 $F \subset G$ 

- f(n) = n.  $f \in F \Rightarrow f \in G$ . Therefore, f is u.p. preserving. Using Theorem 1, f is also regularity preserving.
  - **1** P(f, L) is regular for any regular language L.
  - **2** P(f, L) is FIRST-HALF(L). Therefore, FIRST-HALF(L) for a regular language L is regular.
- ②  $f(n) = n^2 n$ ?

#### Theorem 4

 $G\subset H$ 

#### Theorem 4

 $G\subset H$ 

# Proof (⊆)

Assume  $f \in G$ . Let m be any positive integer.

#### Theorem 4

 $G \subset H$ 

## Proof $(\subseteq)$

Assume  $f \in G$ . Let m be any positive integer.

#### Theorem 4

 $G\subset H$ 

# $Proof(\subseteq)$

Assume  $f \in G$ . Let m be any positive integer.

- **1**  $f^{-1}(j \mid j \equiv n \mod m)$  is u.p. for  $0 \le n \le m-1$
- ② We have m u.p. sets. If p is a common period for these sets,  $f(n) \equiv f(n+p) \mod m$  for all but finitely many n.

#### Theorem 4

 $G \subset H$ 

## Proof $(\neq)$

Let A be a set which is not u.p. Let

$$f(n) = \begin{cases} 0 & \text{if } n \in A \\ n! & \text{if } n \notin A \end{cases}$$

#### Theorem 4

 $G \subset H$ 

### Proof $(\neq)$

• Let A be a set which is not u.p. Let

$$f(n) = \begin{cases} 0 & \text{if } n \in A \\ n! & \text{if } n \notin A \end{cases}$$

②  $\forall m \text{ and } \forall n \geq m, \ f(n) \equiv f(n+1) \equiv 0 \text{ mod } m.$ 

#### Theorem 4

 $G \subset H$ 

### Proof $(\neq)$

● Let A be a set which is not u.p. Let

$$f(n) = \begin{cases} 0 & \text{if } n \in A \\ n! & \text{if } n \notin A \end{cases}$$

- ②  $\forall m \text{ and } \forall n \geq m, \ f(n) \equiv f(n+1) \equiv 0 \text{ mod } m.$
- **3**  $f \in H$ .  $f^{-1}(\{0\}) = A$ . So,  $f \notin G$

#### Theorem 5

 $H = \{f | P(f, L) \text{ is regular for every regular } L \subseteq \{1\}^*\}$ 

### Proof $\supseteq$

Let f be a function. Define an essentially increasing function g(n) = n + f(n)

• Let us assume P(f, L) is regular for every regular  $L \subseteq \{1\}^*$ . Suppose A is U.P.

#### Theorem 5

 $H = \{f | P(f, L) \text{ is regular for every regular } L \subseteq \{1\}^*\}$ 

### Proof ⊇

- Let us assume P(f, L) is regular for every regular  $L \subseteq \{1\}^*$ . Suppose A is U.P.
- $g^{-1}(A) = \{i | g(i) \in A\}$

#### Theorem 5

 $H = \{f | P(f, L) \text{ is regular for every regular } L \subseteq \{1\}^*\}$ 

## $\mathsf{Proof} \supseteq$

- Let us assume P(f, L) is regular for every regular  $L \subseteq \{1\}^*$ . Suppose A is U.P.
- $g^{-1}(A) = \{i | g(i) \in A\}$
- $g^{-1}(A) = \{i | i + f(i) \in A\}$

#### Theorem 5

 $H = \{f | P(f, L) \text{ is regular for every regular } L \subseteq \{1\}^*\}$ 

### $\mathsf{Proof} \supseteq$

- Let us assume P(f, L) is regular for every regular  $L \subseteq \{1\}^*$ . Suppose A is U.P.
- $g^{-1}(A) = \{i | g(i) \in A\}$
- $g^{-1}(A) = \{i | i + f(i) \in A\}$
- $g^{-1}(A) = \{|x||x \in P(f, \{z \in \{1\}^* | |z| \in A\})\}$  .. (by definition explained for P(f, L) )

#### Theorem 5

 $H = \{f | P(f, L) \text{ is regular for every regular } L \subseteq \{1\}^*\}$ 

### $\mathsf{Proof} \supseteq$

- Let us assume P(f, L) is regular for every regular  $L \subseteq \{1\}^*$ . Suppose A is U.P.
- $g^{-1}(A) = \{i | g(i) \in A\}$
- $g^{-1}(A) = \{i | i + f(i) \in A\}$
- $g^{-1}(A) = \{|x||x \in P(f, \{z \in \{1\}^* | |z| \in A\})\}$  .. (by definition explained for P(f, L) )
- Now we can observe that A and  $g^{-1}(A)$  both are u.p sets, therefore g is u.p preserving and thus  $g \in G \subset H$  from theorem 4

#### Theorem 5

 $H = \{f | P(f, L) \text{ is regular for every regular } L \subseteq \{1\}^*\}$ 

### Proof ⊇

- Let us assume P(f, L) is regular for every regular  $L \subseteq \{1\}^*$ . Suppose A is U.P.
- $g^{-1}(A) = \{i | g(i) \in A\}$
- $g^{-1}(A) = \{i | i + f(i) \in A\}$
- $g^{-1}(A) = \{|x||x \in P(f, \{z \in \{1\}^* | |z| \in A\})\}$  .. (by definition explained for P(f, L) )
- Now we can observe that A and  $g^{-1}(A)$  both are u.p sets, therefore g is u.p preserving and thus  $g \in G \subset H$  from theorem 4
- Now, f(n) = g(n) n, therefore  $f \in H$

#### Theorem 5

 $H = \{f | P(f, L) \text{ is regular for every regular } L \subseteq \{1\}^*\}$ 

### $\mathsf{Proof} \subseteq$

Assume f is u.p reducible and g be an essentially increasing function g(n) = n + f(n)

• Now  $g \in F$  as it is always increasing and u.p reducible.

#### Theorem 5

 $H = \{f | P(f, L) \text{ is regular for every regular } L \subseteq \{1\}^*\}$ 

### $\mathsf{Proof} \subseteq$

- Now  $g \in F$  as it is always increasing and u.p reducible.
- g is also u.p. preserving by Theorem 3 Suppose  $L \subseteq \{1\}^*$  is regular.

#### Theorem 5

 $H = \{f | P(f, L) \text{ is regular for every regular } L \subseteq \{1\}^*\}$ 

### $\mathsf{Proof} \subseteq$

- Now  $g \in F$  as it is always increasing and u.p reducible.
- g is also u.p. preserving by Theorem 3 Suppose  $L \subseteq \{1\}^*$  is regular.
- $P(f, L) = \{x \mid \exists y (f(|x|) = |y| \& xy \in L)\}$

#### Theorem 5

 $H = \{f | P(f, L) \text{ is regular for every regular } L \subseteq \{1\}^*\}$ 

### $\mathsf{Proof} \subseteq$

- Now  $g \in F$  as it is always increasing and u.p reducible.
- g is also u.p. preserving by Theorem 3 Suppose  $L \subseteq \{1\}^*$  is regular.
- $P(f, L) = \{x \mid \exists y (f(|x|) = |y| \& xy \in L)\}$
- $P(f, L) = \{x \mid \exists y (g(|x|) = |xy| \& xy \in L)\} ... (g(n) = n + f(n))$

#### Theorem 5

 $H = \{f | P(f, L) \text{ is regular for every regular } L \subseteq \{1\}^*\}$ 

### Proof ⊆

- Now  $g \in F$  as it is always increasing and u.p reducible.
- g is also u.p. preserving by Theorem 3 Suppose  $L \subseteq \{1\}^*$  is regular.
- $P(f, L) = \{x \mid \exists y (f(|x|) = |y| \& xy \in L)\}$
- $P(f, L) = \{x \mid \exists y (g(|x|) = |xy| \& xy \in L)\} ... (g(n) = n + f(n))$
- $P(f, L) = \{x \in \{1\}^* | |x| = g^{-1}(\{|z||z \in L\})\}$ Now P(f, L) will be regular by Lemma 2

#### Theorem 6

 $G = \{ f \in H \mid f^{-1}(\{j\}) \text{ is u.p for every } j \}$ 

## Proof (⊆)

Assume  $f \in G$ . By Theorem 4,  $f \in H$ .

Since  $\{j\}$  is certainly u.p. for each j,  $f^{-1}(\{j\})$  is u.p. (By definition of u.p. preserving functions )

### Proof (⊇)

Assume  $f \in H$  and  $f^{-1}(\{j\})$  is u.p for every j. Suppose A is u.p with  $n_o, p$  such that

$$(\forall n \geq n_o)(n \in A \Leftrightarrow n+p \in A)$$

$${j \in A \mid j \ge n_o} = (\bigcup_{n \in A, n_o \le n < n_o + p} {j \mid j \equiv (n \mod p)}) - {j \mid j < n_o}$$

$$f^{-1}(A) = f^{-1}(\{j \in A | j < n_0\}) \cup f^{-1}(\{j \in A | j \ge n_0\})$$

$$f^{-1}(A) = (\bigcup_{j \in A, j < n_0} f^{-1}(\{j\})) \cup ((\bigcup_{n \in A, n_0 \le n < n_0 + p} \{i | f(i) \equiv (n \text{ mod } p)\}) - (\bigcup_{j < n_0} f^{-1}(\{j\})))$$

Since  $f \in H$ , each of the sets  $\{i \mid f(i) \equiv n \mod p\}$  is u.p. From the assumption,  $f^{-1}(\{j\})$  is u.p for every j. So,  $f^{-1}(A)$  is u.p.

### Contents

- Motivation
- 2 Introduction
- 3 Characterization as u.p. preserving relations
- 4 U.p. degenerating relations
- 5 Regularity Preserving Functions
- 6 Applications

## **Applications**

- Given a binary relation, we can characterize it as a regularity preserving relation. If we have a regular language, we know for sure that a finite state automaton exists for the set of strings that satisfy the given relation.
- 2 Can achieve performance enhancements on pattern matching.

#### References



J. I. Sieferas and R McNaughton.

Regularity-preserving relations.