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Parikh map of a string

Let A={a1,...,an} be a finite alphabet.
The Parikh map of a string w € A* is a vector in N” given by:

Y(w) = (#a, (W), #a, (W), ..., #a,(W)).
For example if A= {a, b}, then (baabb) = (2, 3).

Parikh map is also called the “letter-count” of a string.

Extend the map to languages L over A:

(L) = {(w) | w e L}.
What is ({a"b" | n > 0})?
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Parikh map of a string

Let A={a1,...,an} be a finite alphabet.

The Parikh map of a string w € A* is a vector in N” given by:

Y(w) = (#a, (W), #a, (W), ..., #a,(W)).
For example if A= {a, b}, then (baabb) = (2, 3).

Parikh map is also called the “letter-count” of a string.

Extend the map to languages L over A:

(L) ={¢(w) | w e L}.
What is ({a"b" | n > 0})?
o {(n,n)| n>0}.
What is ¢({w € {a, b}" | #a(w) < #5(w)})?

o {(m,n) | m< n}.



Parikh map
oce

Semi-linear sets of vectors

@ The set of vectors generated by a set of vectors vy, ..., ux in N7,
denoted {(uq, ..., ux)), is the set

{d1~u1—|—d2-uz+~-~+dk-uk\d,-EN}.

@ A subset X of N is called 1
linear if there exist vectors
ug, U1, . .., U such that ]

X = ug + <<U1, Uy, ..., Uk>>. 7 (L1, (1,2))
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Semi-linear sets of vectors

@ The set of vectors generated by a set of vectors vy, ..., ux in N7,

denoted {(uq, ..., ux)), is the set

{d1~u1—|—d2-uz+~-~+dk-uk\d,-EN}.

@ A subset X of N is called 1
linear if there exist vectors
ug, U1, . .., U such that ]

X:U0+<<U1,U2,...,Uk>>. 1

((,1),(1,2)

@ A set of vectors is called semi-linear if it is a finite
sets.

union of linear
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Parikh's Theorem for CFL's

Theorem (Parikh)

The Parikh map of a CFL is a semi-linear set. That is, if L is a
CFL then v(L) is semi-linear.

Some corollaries:

o Every CFL is “letter-equivalent” to a regular language.
o For example: ¢({a"b" |n > 0})
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Parikh's Theorem for CFL's

Theorem (Parikh)

The Parikh map of a CFL is a semi-linear set. That is, if L is a
CFL then v(L) is semi-linear.

Some corollaries:
o Every CFL is “letter-equivalent” to a regular language.
o For example: ¢({a"b" |n > 0}) = ((ab)*).
@ Lengths of a CFL forms an ultimately periodic set.
o CFL's over a single-letter alphabet are regular.

Is Parikh's theorem a sufficient condition for context-freeness as
well?

@ No, since ¢({a"b"c" | n>0}) = {(n,n,n) | n>0}is

semi-linear.
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Running example

CFG G;

XC | AY
aXb | ab
bYc | be
aA | a
cClc

AXx <X XWn0n
144111

@ What is the language generated?
@ What is the Parikh image of this language?

@ Write it as a semi-linear set.



|dea of proof

@ Group parse trees of G into a finite number of buckets

@ Each bucket is represented by a “minimal” parse tree and
associated “basic pumps”.

@ Argue that the set of strings derived in each bucket gives rise
to a linear set.

S

A X
A
A




Proof: Pumps

Let us fix a CFG G = (N, A, S, P) in CNF form.

@ A pump is a derivation tree s which has at least two nodes,

and yield(s) = x - root(s) - y, for some terminal strings x, y.
X

A

e Example pumps for grammar S — aSb | SS | e
s s

N /IN

a S b a S b

/TN

a S b
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Basic Pumps

A pump is basic if it is <-minimal. Thus a pump s is a basic pump
if it cannot be shrunk by some pump and still remain a pump.

@ First pump is basic but second is not.

@ How many pumps are there?
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Basic Pumps

A pump is basic if it is <-minimal. Thus a pump s is a basic pump
if it cannot be shrunk by some pump and still remain a pump.

First pump is basic but second is not.

How many pumps are there? Infinitely many.

How many basic pumps are there? Finitely many since their
height is bounded by 2|N| (See argument on next slide).

Let p be the number of basic pumps.



Basic pumps height bounded by 2N

Consider the longest path from root to leaf in a basic pump.
The number of nodes on it is bounded by 2|N| + 1.




< relation on parse trees

@ Let s and t be derivation trees of terminal strings starting
from start symbol S.

@ Then we say s < t iff t can be grown from s by basic pumps
whose non-terminals are contained in those of s (thus the
pumps do not introduce any new non-terminals, and s and ¢t
have the same set of non-terminal nodes).

@ A parse tree s is thus <-minimal if it does not contain a basic
pump that can be cut out without reducing the set of
non-terminals that occur in s.

@ <-minimal trees can be seen to be finite in number: their
height is bounded by (p + 1)(|N| + 1).

@ Ex: What are the <-minimal parse trees for grammar G;?



Overall strategy of Proof

@ Begin with the <-minimal derivation trees, say si,..., Sk.
@ Associate with each s; the set of basic pumps whose
non-terminals are contained in that of s;.

@ Argue that the set of derivation trees obtained by starting
with s; and growing using the associated basic pumps, (let us
call this the “bucket” of parse trees associated with s;) gives
rise to a set of strings whose Parikh map is a linear set.

Describe the “buckets” for Gi, and the corresponding linear sets.
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