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Parikh map of a string

Let A = {a1, . . . , an} be a finite alphabet.

The Parikh map of a string w ∈ A∗ is a vector in Nn given by:

ψ(w) = (#a1(w),#a2(w), . . . ,#an(w)).

For example if A = {a, b}, then ψ(baabb) = (2, 3).

Parikh map is also called the “letter-count” of a string.

Extend the map to languages L over A:

ψ(L) = {ψ(w) | w ∈ L}.

What is ψ({anbn | n ≥ 0})?

{(n, n) | n ≥ 0}.
What is ψ({w ∈ {a, b}∗ | #a(w) ≤ #b(w)})?

{(m, n) | m ≤ n}.
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Semi-linear sets of vectors

The set of vectors generated by a set of vectors u1, . . . , uk in Nn,
denoted 〈〈u1, . . . , uk〉〉, is the set

{d1 · u1 + d2 · u2 + · · ·+ dk · uk | di ∈ N}.

A subset X of Nn is called
linear if there exist vectors
u0, u1, . . . , uk such that

X = u0 + 〈〈u1, u2, . . . , uk〉〉. 〈〈(1, 1), (1, 2)〉〉

A set of vectors is called semi-linear if it is a finite union of linear
sets.
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Parikh’s Theorem for CFL’s

Theorem (Parikh)

The Parikh map of a CFL is a semi-linear set. That is, if L is a
CFL then ψ(L) is semi-linear.

Some corollaries:

Every CFL is “letter-equivalent” to a regular language.

For example: ψ({anbn | n ≥ 0})

= ψ((ab)∗).

Lengths of a CFL forms an ultimately periodic set.

CFL’s over a single-letter alphabet are regular.

Is Parikh’s theorem a sufficient condition for context-freeness as
well?

No, since ψ({anbncn | n ≥ 0}) = {(n, n, n) | n ≥ 0} is
semi-linear.
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Running example

CFG G1

S → XC | AY
X → aXb | ab
Y → bYc | bc
A → aA | a
C → cC | c

What is the language generated?

What is the Parikh image of this language?

Write it as a semi-linear set.
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Idea of proof

Group parse trees of G into a finite number of buckets

Each bucket is represented by a “minimal” parse tree and
associated “basic pumps”.

Argue that the set of strings derived in each bucket gives rise
to a linear set.
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Proof: Pumps

Let us fix a CFG G = (N,A, S ,P) in CNF form.

A pump is a derivation tree s which has at least two nodes,
and yield(s) = x · root(s) · y , for some terminal strings x , y .

X

X

Example pumps for grammar S → aSb | SS | ε:
S

Sa b S

Sa b

S

a b
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Growing and shrinking with pumps
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Growing and shrinking with pumps
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Basic Pumps

A pump is basic if it is /-minimal. Thus a pump s is a basic pump
if it cannot be shrunk by some pump and still remain a pump.

S

Sa b S

Sa b

S

a b

First pump is basic but second is not.

How many pumps are there?

Infinitely many.

How many basic pumps are there? Finitely many since their
height is bounded by 2|N| (See argument on next slide).

Let p be the number of basic pumps.
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Basic pumps height bounded by 2N

Consider the longest path from root to leaf in a basic pump.
The number of nodes on it is bounded by 2|N|+ 1.
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≤ relation on parse trees

Let s and t be derivation trees of terminal strings starting
from start symbol S .

Then we say s ≤ t iff t can be grown from s by basic pumps
whose non-terminals are contained in those of s (thus the
pumps do not introduce any new non-terminals, and s and t
have the same set of non-terminal nodes).

A parse tree s is thus ≤-minimal if it does not contain a basic
pump that can be cut out without reducing the set of
non-terminals that occur in s.

≤-minimal trees can be seen to be finite in number: their
height is bounded by (p + 1)(|N|+ 1).

Ex: What are the ≤-minimal parse trees for grammar G1?
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Overall strategy of Proof

Begin with the ≤-minimal derivation trees, say s1, . . . , sk .

Associate with each si the set of basic pumps whose
non-terminals are contained in that of si .

Argue that the set of derivation trees obtained by starting
with si and growing using the associated basic pumps, (let us
call this the “bucket” of parse trees associated with si ) gives
rise to a set of strings whose Parikh map is a linear set.

Exercise

Describe the “buckets” for G1, and the corresponding linear sets.
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