
Recognition via monoid morphisms Transition monoid Syntactic Monoid Applications

Algebraic Approach to Automata Theory

Kamal Lodaya, adding to slides by Deepak D’Souza

Department of Computer Science and Automation
Indian Institute of Science, Bangalore.

September 2021

Recognition via monoid morphisms Transition monoid Syntactic Monoid Applications

Outline

1 Recognition via monoid morphisms

2 Transition monoid

3 Syntactic Monoid

4 Applications

Recognition via monoid morphisms Transition monoid Syntactic Monoid Applications

Algebraic approach to automata: Overview

An algebra is a set with some operations on it, satisfying some
properties.
E.g. a group is a nonempty set with a unit 1, a binary operation
satisfying associativity (x ◦ (y ◦ z) = (x ◦ y) ◦ z) and a unary
operation satisfying an inverse property (x ◦ inv(x) = 1)

Define language recognition via morphisms into a monoid

Analogous result to canonical automaton (Myhill-Nerode)

Helps in characterising class of FO-definable languages

Helps in automaton constructions

Recognition via monoid morphisms Transition monoid Syntactic Monoid Applications

Monoids

A monoid is an algebra (M, ◦, 1), where
M is a set containing the element 1,
◦ is an associative binary operation on M, and
1 is the unit element (sometimes called identity) with respect
to ◦, so for every m ∈ M, m ◦ 1 = m = 1 ◦m
Sometimes a monoid may have a zero element 0 (if so,
unique), such that for every m ∈ M, m ◦ 0 = 0 = 0 ◦m

Examples: (N,×), (N≥1,×), (N,+), (A∗, ·). First three are
commutative monoids (operation is commutative), first one
has a zero, others do not
Nonexample: (N≥1,+) = {1, 2, 3, . . . } with addition (why?)

More noncommutative examples: Fun(X) = (X → X , ◦, id),
Rel(X) = (2X×X , ◦, id) where

X → X is the set of all functions from a set X to itself
2X×X is the set of subsets of X × X , that is, all relations on X
f ◦ g is function composition, R ◦ S is relation composition,
both are not commutative

(f ◦ g)(x) = g(f (x)), x (R ◦ S) y ⇐⇒ ∃z(x R z ∧ z S y)

Recognition via monoid morphisms Transition monoid Syntactic Monoid Applications

Monoids

A monoid is an algebra (M, ◦, 1), where
M is a set containing the element 1,
◦ is an associative binary operation on M, and
1 is the unit element (sometimes called identity) with respect
to ◦, so for every m ∈ M, m ◦ 1 = m = 1 ◦m
Sometimes a monoid may have a zero element 0 (if so,
unique), such that for every m ∈ M, m ◦ 0 = 0 = 0 ◦m

Examples: (N,×), (N≥1,×), (N,+), (A∗, ·). First three are
commutative monoids (operation is commutative), first one
has a zero, others do not
Nonexample: (N≥1,+) = {1, 2, 3, . . . } with addition (why?)
More noncommutative examples: Fun(X) = (X → X , ◦, id),
Rel(X) = (2X×X , ◦, id) where

X → X is the set of all functions from a set X to itself
2X×X is the set of subsets of X × X , that is, all relations on X
f ◦ g is function composition, R ◦ S is relation composition,
both are not commutative

(f ◦ g)(x) = g(f (x)), x (R ◦ S) y ⇐⇒ ∃z(x R z ∧ z S y)

Recognition via monoid morphisms Transition monoid Syntactic Monoid Applications

Monoid morphisms

A morphism from a monoid (M, ◦M , 1M) to a monoid
(N, ◦N , 1N) is a map h : M → N, satisfying

h(1M) = 1N , and,
h(m ◦M m′) = h(m) ◦N h(m′).

Example: h : A∗ → N, given by

h(w) = |w |

is a morphism from (A∗, ·, ε) to (N,+, 0).

Recognition via monoid morphisms Transition monoid Syntactic Monoid Applications

Language recognition via monoid morphisms

A language L ⊆ A∗ is said to be recognized by monoid
(M, ◦, 1) if there is a morphism h from (A∗, ·, ε) to (M, ◦, 1),
and a recognizing subset X of M such that

L = h−1(X)

Exercise: Show that L = h−1(h(L)).

If L is recognized by some finite M, we say that L is
recognizable

Finite monoids are finitely generated, that is, there is a finite
set of elements (which we can take to be the alphabet) such
that every element is a multiplication described by words over
the alphabet

Recognition via monoid morphisms Transition monoid Syntactic Monoid Applications

Example of language recognition via monoid morphisms

Monoid M = ({1,m}, ◦, 1) generated by m
Multiplication table shown

◦ 1 m

1 1 m

m m m

Consider h : A∗ → M given by h(w) = m iff w 6= ε
(why morphism?)

Then M recognizes A+, since h−1({m}) = A+.

M also recognizes {ε} (taking X = {1}), A∗ (taking
X = {1,m}), and ∅ (taking X = {}).

Recognition via monoid morphisms Transition monoid Syntactic Monoid Applications

Exercise

Show that the language of words with an odd number of a’s over
the alphabet A = {a, b} is recognizable.

Recognition via monoid morphisms Transition monoid Syntactic Monoid Applications

Finitely generated monoid to deterministic automaton

M generated by m

◦ 1 m

1 1 m

m m m

Let B = h−1(m) ∩ A, h(A \ B) = 1

1��
��

m��
���

A \ B

-B �

A

Let L ⊆ A∗ a language recognized by a monoid (M, ◦, 1).

That is, a morphism h : A∗ → M and X ⊆ M and the
morphism maps subset L to subset X , L = h−1(X).

Define a DA A(M) = (M, δ, 1,X), where

δ(m, a) = m ◦ h(a).

To prove that: A(M) accepts L.

Lemma: δ̂(1,w) = h(w). Proof by induction on |w |.
Main proof: A(M) accepts exactly the w such that
h(w) ∈ X . So A(M) accepts h−1(X) = L.

Recognition via monoid morphisms Transition monoid Syntactic Monoid Applications

Finitely generated monoid to deterministic automaton

M generated by m

◦ 1 m

1 1 m

m m m

Let B = h−1(m) ∩ A, h(A \ B) = 1

1��
��

m��
���

A \ B

-B �

A

Let L ⊆ A∗ a language recognized by a monoid (M, ◦, 1).

That is, a morphism h : A∗ → M and X ⊆ M and the
morphism maps subset L to subset X , L = h−1(X).

Define a DA A(M) = (M, δ, 1,X), where

δ(m, a) = m ◦ h(a).

To prove that: A(M) accepts L.

Lemma: δ̂(1,w) = h(w). Proof by induction on |w |.

Main proof: A(M) accepts exactly the w such that
h(w) ∈ X . So A(M) accepts h−1(X) = L.

Recognition via monoid morphisms Transition monoid Syntactic Monoid Applications

Finitely generated monoid to deterministic automaton

M generated by m

◦ 1 m

1 1 m

m m m

Let B = h−1(m) ∩ A, h(A \ B) = 1

1��
��

m��
���

A \ B

-B �

A

Let L ⊆ A∗ a language recognized by a monoid (M, ◦, 1).

That is, a morphism h : A∗ → M and X ⊆ M and the
morphism maps subset L to subset X , L = h−1(X).

Define a DA A(M) = (M, δ, 1,X), where

δ(m, a) = m ◦ h(a).

To prove that: A(M) accepts L.

Lemma: δ̂(1,w) = h(w). Proof by induction on |w |.
Main proof: A(M) accepts exactly the w such that
h(w) ∈ X . So A(M) accepts h−1(X) = L.

Recognition via monoid morphisms Transition monoid Syntactic Monoid Applications

Transition Monoid of a DA

Let A = (Q, δ, s) be a deterministic transition system.

For w ∈ A∗, define fw : Q → Q by

fw (q) = δ̂(q,w).

Consider the monoid

M(A) = ({fw | w ∈ A∗}, ◦, fε).

with the morphism h(w) = fw .

M(A) is a submonoid of Fun(Q) = (Q → Q, ◦, id), it is called
the transition monoid of A.

Recognition via monoid morphisms Transition monoid Syntactic Monoid Applications

Example: DFA to Transition Monoid to DFA

b

a

ab

a, b

1

3

2

◦ 1 a b ab ba 0
1 1 a b ab ba 0
a a 0 ab 0 a 0
b b ba 0 b 0 0
ab ab a 0 ab 0 0
ba ba 0 b 0 ba 0
0 0 0 0 0 0 0

1j
aj

bj

abj

baj
0j�

��a

A
AUb

-b

-a

]a

]
b

A
AU
b

�
��a

c
c
c~

a

#
#
#>b

Distinct elements of M(A) are
{fε = 1, fa, fb, fab, fba, faa = fbb = 0}.
Multiplication table as shown. Idempotents e satisfy ee = e.
Right-multiplication by generators a, b is coloured.

Write fa as

(
1 2 3
2 3 3

)
, or (233).

fb = (313), fab = (133),
fba = (323), 0 = (333).

Question: If Q is finite, how many elements can M(A) have?

Recognition via monoid morphisms Transition monoid Syntactic Monoid Applications

Homework

Problem (McNaughton-Papert 1971)

Find transition monoids for two DFA with states {s, p, q}, initial
state s. Also construct the automata from the monoids and
compare what you get.

1 δ1 = s
a→ p, p

a→ s, q
a→ q, s

b→ s, p
b→ q, q

b→ p

2 δ2 = s
a→ p, p

a→ q, q
a→ q, s

b→ s, p
b→ s, q

b→ p

Two automata look similar

First monoid has 6 elements, second monoid has 8 elements.
Using them can say something about languages they recognize

There is a language recognized by first monoid which is not
definable in first-order logic with <. All languages recognized
by second one are defined by first-order logic sentences

Recognition via monoid morphisms Transition monoid Syntactic Monoid Applications

Syntactic Monoid of a language

Let A≡L
= (Q, s, δ,F) be the canonical automaton for a

language L ⊆ A∗.

The transition monoid of A≡L
is called the syntactic monoid

of L, we write M(L) rather than M(A≡L
).

The surjective morphism hL : A∗ → M(L) is called the
syntactic morphism of L.

Recognition via monoid morphisms Transition monoid Syntactic Monoid Applications

Syntactic Congruence of a language

Define an equivalence relation ∼=L on A∗, induced by L, as

u ∼=L v iff ∀x , y ∈ A∗ : xuy ∈ L iff xvy ∈ L.

∼=L is called the syntactic congruence of L.
Check that ∼=L is a two-sided congruence:

That is, ∼=L is both a left-congruence (i.e u ∼=L v implies
wu ∼=L wv , for each w ∈ A∗) and a right-congruence (i.e
u ∼=L v implies uw ∼=L vw).
Equivalently, u ∼=L u′ and v ∼=L v ′ imples uv ∼=L u′v ′.

∼=L refines the canonical MN relation, ≡L, for L.
Example?

Consider the language (a + b)∗bb:

ε

(a + b)∗a

(a + b)∗bb

(a + b)∗ab

b

Recognition via monoid morphisms Transition monoid Syntactic Monoid Applications

Syntactic Congruence of a language

Define an equivalence relation ∼=L on A∗, induced by L, as

u ∼=L v iff ∀x , y ∈ A∗ : xuy ∈ L iff xvy ∈ L.

∼=L is called the syntactic congruence of L.
Check that ∼=L is a two-sided congruence:

That is, ∼=L is both a left-congruence (i.e u ∼=L v implies
wu ∼=L wv , for each w ∈ A∗) and a right-congruence (i.e
u ∼=L v implies uw ∼=L vw).
Equivalently, u ∼=L u′ and v ∼=L v ′ imples uv ∼=L u′v ′.

∼=L refines the canonical MN relation, ≡L, for L.
Example? Consider the language (a + b)∗bb:

ε

(a + b)∗a

(a + b)∗bb

(a + b)∗ab

b

Recognition via monoid morphisms Transition monoid Syntactic Monoid Applications

Characterization of the syntactic monoid

Claim

For a canonical DA A = (Q, δ, s,F),

fu = fv iff u ∼=L v .

Proof: (=⇒) By definition the element fw of the transition
monoid of the canonical DA is δ̂(,w).
xuy ∈ L iff (fx ◦ fu ◦ fy)(s) ∈ F in the canonical DA

(in other words, δ̂(s, xuy) ∈ F) in the canonical DA
iff (fx ◦ fv ◦ fy)(s) ∈ F in the canonical DA

(in other words, δ̂(s, xvy) ∈ F) in the canonical DA
iff xvy ∈ L

Exercise: Prove the (⇐=) direction.
Thus the syntactic congruence u ∼=L v matches the equality
fu = fv derived from the canonical DA.

Recognition via monoid morphisms Transition monoid Syntactic Monoid Applications

Syntactic monoid via syntactic congruence

For a language L ⊆ A∗, consider the monoid A∗/ ∼=L:

elements are congruence classes under ∼=L,

take the unit to be [ε],

multiply two congruences by defining:

[u] ◦ [v] = [uv].

Claim

The monoids M(L) and A∗/∼=L are isomorphic.

(Use the morphism fw 7→ [w].)

Recognition via monoid morphisms Transition monoid Syntactic Monoid Applications

Algebraic definition of regular languages

Theorem (Myhill-Nerode)

Let L ⊆ A∗. Then the following are equivalent:

1 L is regular

2 The syntactic monoid of L, i.e. M(L), is finite

3 L is recognizable

Proof:

(1) =⇒ (2): since A≡L
is finite, and hence so is M(L).

(2) =⇒ (3): Syntactic morphism hL : A∗ → M(L), given by
w 7→ fw , recognizes L.
(3) =⇒ (1): Given finite M recognizing L, finite A(M) accepts L.

Corollary (Rabin-Scott, Shepherdson-Sturgis)

Nondeterministic and two-way automata accept regular languages

Recognition via monoid morphisms Transition monoid Syntactic Monoid Applications

Algebraic definition of regular languages

Theorem (Myhill-Nerode)

Let L ⊆ A∗. Then the following are equivalent:

1 L is regular

2 The syntactic monoid of L, i.e. M(L), is finite

3 L is recognizable

Proof:
(1) =⇒ (2): since A≡L

is finite, and hence so is M(L).

(2) =⇒ (3): Syntactic morphism hL : A∗ → M(L), given by
w 7→ fw , recognizes L.
(3) =⇒ (1): Given finite M recognizing L, finite A(M) accepts L.

Corollary (Rabin-Scott, Shepherdson-Sturgis)

Nondeterministic and two-way automata accept regular languages

Recognition via monoid morphisms Transition monoid Syntactic Monoid Applications

Algebraic definition of regular languages

Theorem (Myhill-Nerode)

Let L ⊆ A∗. Then the following are equivalent:

1 L is regular

2 The syntactic monoid of L, i.e. M(L), is finite

3 L is recognizable

Proof:
(1) =⇒ (2): since A≡L

is finite, and hence so is M(L).
(2) =⇒ (3): Syntactic morphism hL : A∗ → M(L), given by
w 7→ fw , recognizes L.

(3) =⇒ (1): Given finite M recognizing L, finite A(M) accepts L.

Corollary (Rabin-Scott, Shepherdson-Sturgis)

Nondeterministic and two-way automata accept regular languages

Recognition via monoid morphisms Transition monoid Syntactic Monoid Applications

Algebraic definition of regular languages

Theorem (Myhill-Nerode)

Let L ⊆ A∗. Then the following are equivalent:

1 L is regular

2 The syntactic monoid of L, i.e. M(L), is finite

3 L is recognizable

Proof:
(1) =⇒ (2): since A≡L

is finite, and hence so is M(L).
(2) =⇒ (3): Syntactic morphism hL : A∗ → M(L), given by
w 7→ fw , recognizes L.
(3) =⇒ (1): Given finite M recognizing L, finite A(M) accepts L.

Corollary (Rabin-Scott, Shepherdson-Sturgis)

Nondeterministic and two-way automata accept regular languages

Recognition via monoid morphisms Transition monoid Syntactic Monoid Applications

NFA to monoid of relations

sj pj qj fjh	

a, b

-b -b -b

�

a, b

∆(a) = {(s, s), (f , f)}
∆(b) = {(s, s), (s, p), (p, q), (q, f), (f , f)}
∆̂(ε) = id = {(s, s), (p, p), (q, q), (f , f)}
∆̂(bb) = {(s, s), (s, p), (s, q), (p, f), (f , f)}
∆̂(bbb) = {(s, s), (s, p), (s, q), (s, f), (f , f)}
∆̂(ab) = {(s, s), (s, p), (f , f)}
∆̂(abb) = {(s, s), (s, p), (s, q), (f , f)}

Think of (Q,∆), where every letter of the alphabet defines a
transition relation ∆ : A→ 2Q×Q

∆̂ as mapping a word to a relation on states A∗ → 2Q×Q

∆̂(ε) = id , ∆̂(wa) = ∆̂(w) ◦∆(a)

That is, ∆̂ is a morphism into monoid of relations Rel(Q)

Recognition via monoid morphisms Transition monoid Syntactic Monoid Applications

Rabin-Scott construction as a monoid construction

sj pj qj fjh
dj

	

a, b

-b -b -b

�

a, b

R
a, b

A
AU
a �
�� a

◦ a b ab bb abb bbb
a a ab ab abb abb bbb
b a bb b bbb bb bbb
ab a abb b bbb bb bbb
bb a bbb b bbb bb bbb
abb a bbb b bbb bb bbb
bbb a bbb b bbb bb bbb

Complete the NFA to make it total, then take Rel(Q)

The monoid has 8 elements {1, a, b, ab, bb, abb, bbb, 0}
1,0 are not shown in the multiplication table

Follow abstractly how the monoid is calculated

Exercise: Which monoid elements correspond to initial and
final states of the automaton?

Recognition via monoid morphisms Transition monoid Syntactic Monoid Applications

Rabin-Scott construction as a monoid construction

sj pj qj fjh
dj

	

a, b

-b -b -b

�

a, b

R
a, b

A
AU
a �
�� a

◦ a b ab bb abb bbb
a a ab ab abb abb bbb
b a bb b bbb bb bbb
ab a abb b bbb bb bbb
bb a bbb b bbb bb bbb
abb a bbb b bbb bb bbb
bbb a bbb b bbb bb bbb

Complete the NFA to make it total, then take Rel(Q)

The monoid has 8 elements {1, a, b, ab, bb, abb, bbb, 0}
1,0 are not shown in the multiplication table

Follow abstractly how the monoid is calculated

Exercise: Which monoid elements correspond to initial and
final states of the automaton?

Recognition via monoid morphisms Transition monoid Syntactic Monoid Applications

Shepherdson construction for two-way automata

Left and right endmarkers .w/ in
alphabet A for input word w

Q is union of left-moving states
←−
Q

and right-moving states
−→
Q

Transition δ :
←−
Q × (A \ {.})→ Q

reads letter and moves left,
δ :
−→
Q × (A \ {/})→ Q reads letter

and moves right as usual

Partial functions (2DFA): moving left
of left endmarker and moving right of
right endmarker are undefined

→j
←j

→j
→j jh

	

a, b, c , d

R
/

I
a, c , d

�
b

JĴ
b

�

c

-d

Recognition via monoid morphisms Transition monoid Syntactic Monoid Applications

Birget monoids for two-way automata

Have to consider four types of morphic
extensions for δ:

Either h(→ w →) :
−→
Q →

−→
Q enters

from left exits from right

Or h(
→← w) :

−→
Q →

←−
Q enters from

left exits from left
Either h(← w ←) :

←−
Q →

←−
Q enters

from right exits from left

Or h(w
←→) :

←−
Q →

−→
Q enters from

right exits from right

→j
←j

→j
→j jh

	

a, b, c , d

R
/

I
a, c , d

�
b

JĴ
b

�

c

-d

Problem

Construct a monoid recognizing the language accepted by a 2DFA

(Warning: there are missing cases above)

	Recognition via monoid morphisms
	Transition monoid
	Syntactic Monoid
	Applications

