

Algebraic Approach to Automata Theory

Kamal Lodaya, adding to slides by Deepak D'Souza

Department of Computer Science and Automation
Indian Institute of Science, Bangalore.

September 2021

Outline

1 Recognition via monoid morphisms

2 Transition monoid

3 Syntactic Monoid

4 Applications

Algebraic approach to automata: Overview

An **algebra** is a set with some operations on it, satisfying some properties.

E.g. a **group** is a nonempty set with a **unit** 1, a binary operation satisfying **associativity** $(x \circ (y \circ z)) = ((x \circ y) \circ z)$ and a unary operation satisfying an **inverse** property $(x \circ \text{inv}(x) = 1)$

- Define language recognition via morphisms into a monoid
- Analogous result to canonical automaton (Myhill-Nerode)
- Helps in characterising class of FO-definable languages
- Helps in automaton constructions

Monoids

- A **monoid** is an algebra $(M, \circ, 1)$, where
 - M is a set containing the element 1,
 - \circ is an associative binary operation on M , and
 - 1 is the **unit** element (sometimes called identity) with respect to \circ , so for every $m \in M$, $m \circ 1 = m = 1 \circ m$
 - Sometimes a monoid may have a **zero** element 0 (if so, unique), such that for every $m \in M$, $m \circ 0 = 0 = 0 \circ m$
- Examples: (\mathbb{N}, \times) , $(\mathbb{N}^{\geq 1}, \times)$, $(\mathbb{N}, +)$, (A^*, \cdot) . First three are **commutative** monoids (operation is commutative), first one has a zero, others do not
- Nonexample: $(\mathbb{N}^{\geq 1}, +) = \{1, 2, 3, \dots\}$ with addition (why?)

Monoids

- A **monoid** is an algebra $(M, \circ, 1)$, where
 - M is a set containing the element 1,
 - \circ is an associative binary operation on M , and
 - 1 is the **unit** element (sometimes called identity) with respect to \circ , so for every $m \in M$, $m \circ 1 = m = 1 \circ m$
 - Sometimes a monoid may have a **zero** element 0 (if so, unique), such that for every $m \in M$, $m \circ 0 = 0 = 0 \circ m$
- Examples: (\mathbb{N}, \times) , $(\mathbb{N}^{\geq 1}, \times)$, $(\mathbb{N}, +)$, (A^*, \cdot) . First three are **commutative** monoids (operation is commutative), first one has a zero, others do not
- Nonexample: $(\mathbb{N}^{\geq 1}, +) = \{1, 2, 3, \dots\}$ with addition (why?)
- More noncommutative examples: $Fun(X) = (X \rightarrow X, \circ, id)$, $Rel(X) = (2^{X \times X}, \circ, id)$ where
 - $X \rightarrow X$ is the set of all **functions** from a set X to itself
 - $2^{X \times X}$ is the set of subsets of $X \times X$, that is, all **relations** on X
 - $f \circ g$ is function composition, $R \circ S$ is relation composition, both are not commutative

Monoid morphisms

- A **morphism** from a monoid $(M, \circ_M, 1_M)$ to a monoid $(N, \circ_N, 1_N)$ is a map $h : M \rightarrow N$, satisfying
 - $h(1_M) = 1_N$, and,
 - $h(m \circ_M m') = h(m) \circ_N h(m')$.
- Example: $h : A^* \rightarrow \mathbb{N}$, given by

$$h(w) = |w|$$

is a morphism from (A^*, \cdot, ϵ) to $(\mathbb{N}, +, 0)$.

Language recognition via monoid morphisms

- A language $L \subseteq A^*$ is said to be **recognized** by monoid $(M, \circ, 1)$ if there is a morphism h from (A^*, \cdot, ϵ) to $(M, \circ, 1)$, and a **recognizing subset** X of M such that

$$L = h^{-1}(X)$$

Exercise: Show that $L = h^{-1}(h(L))$.

- If L is recognized by some **finite** M , we say that L is **recognizable**
- Finite monoids are **finitely generated**, that is, there is a finite set of elements (which we can take to be the alphabet) such that every element is a multiplication described by words over the alphabet

Example of language recognition via monoid morphisms

Monoid $M = (\{1, m\}, \circ, 1)$ generated by m
Multiplication table shown

○	1	m
1	1	m
m	m	m

- Consider $h : A^* \rightarrow M$ given by $h(w) = m$ iff $w \neq \epsilon$ (why morphism?)
- Then M recognizes A^+ , since $h^{-1}(\{m\}) = A^+$.
- M also recognizes $\{\epsilon\}$ (taking $X = \{1\}$), A^* (taking $X = \{1, m\}$), and \emptyset (taking $X = \{\}$).

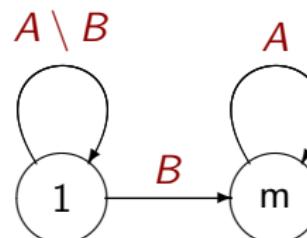
Exercise

Show that the language of words with an odd number of a 's over the alphabet $A = \{a, b\}$ is recognizable.

Finitely generated monoid to deterministic automaton

 M generated by m

o	1	m
1	1	m
m	m	m

Let $B = h^{-1}(m) \cap A$, $h(A \setminus B) = 1$ 

- Let $L \subseteq A^*$ a language recognized by a monoid $(M, \circ, 1)$.
- That is, a morphism $h : A^* \rightarrow M$ and $X \subseteq M$ and the morphism maps subset L to subset X , $L = h^{-1}(X)$.
- Define a DA $\mathcal{A}(M) = (M, \delta, 1, X)$, where

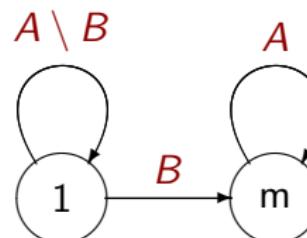
$$\delta(m, a) = m \circ h(a).$$

- To prove that: $\mathcal{A}(M)$ accepts L .

Finitely generated monoid to deterministic automaton

 M generated by m

o	1	m
1	1	m
m	m	m

Let $B = h^{-1}(m) \cap A$, $h(A \setminus B) = 1$ 

- Let $L \subseteq A^*$ a language recognized by a monoid $(M, \circ, 1)$.
- That is, a morphism $h : A^* \rightarrow M$ and $X \subseteq M$ and the morphism maps subset L to subset X , $L = h^{-1}(X)$.
- Define a DA $\mathcal{A}(M) = (M, \delta, 1, X)$, where

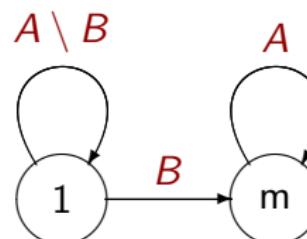
$$\delta(m, a) = m \circ h(a).$$

- To prove that: $\mathcal{A}(M)$ accepts L .
- Lemma: $\widehat{\delta}(1, w) = h(w)$. Proof by induction on $|w|$.

Finitely generated monoid to deterministic automaton

 M generated by m

o	1	m
1	1	m
m	m	m

Let $B = h^{-1}(m) \cap A$, $h(A \setminus B) = 1$ 

- Let $L \subseteq A^*$ a language recognized by a monoid $(M, \circ, 1)$.
- That is, a morphism $h : A^* \rightarrow M$ and $X \subseteq M$ and the morphism maps subset L to subset X , $L = h^{-1}(X)$.
- Define a DA $\mathcal{A}(M) = (M, \delta, 1, X)$, where

$$\delta(m, a) = m \circ h(a).$$

- To prove that: $\mathcal{A}(M)$ accepts L .
- Lemma: $\widehat{\delta}(1, w) = h(w)$. Proof by induction on $|w|$.
- Main proof: $\mathcal{A}(M)$ accepts exactly the w such that $h(w) \in X$. So $\mathcal{A}(M)$ accepts $h^{-1}(X) = L$.

Transition Monoid of a DA

Let $\mathcal{A} = (Q, \delta, s)$ be a deterministic transition system.

- For $w \in A^*$, define $f_w : Q \rightarrow Q$ by

$$f_w(q) = \widehat{\delta}(q, w).$$

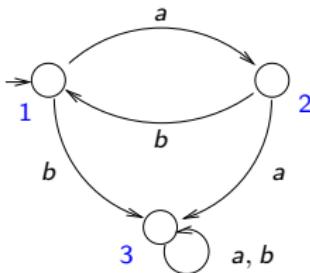
- Consider the monoid

$$M(\mathcal{A}) = (\{f_w \mid w \in A^*\}, \circ, f_\epsilon).$$

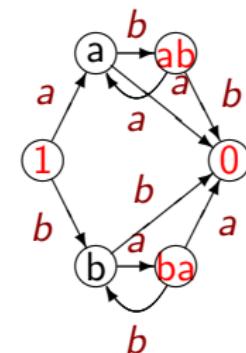
with the morphism $h(w) = f_w$.

- $M(\mathcal{A})$ is a submonoid of $Fun(Q) = (Q \rightarrow Q, \circ, id)$, it is called the **transition monoid** of \mathcal{A} .

Example: DFA to Transition Monoid to DFA



○	1	a	b	ab	ba	0
1	1	a	b	ab	ba	0
a	a	0	ab	0	a	0
b	b	ba	0	b	0	0
ab	ab	a	0	ab	0	0
ba	ba	0	b	0	ba	0
0	0	0	0	0	0	0



Distinct elements of $M(\mathcal{A})$ are

$$\{f_\epsilon = 1, f_a, f_b, f_{ab}, f_{ba}, f_{aa} = f_{bb} = 0\}.$$

Multiplication table as shown. **Idempotents e** satisfy $ee = e$.

Right-multiplication by generators a, b is **coloured**.

Write f_a as $\begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 3 \end{pmatrix}$, or (233) . $f_b = (313)$, $f_{ab} = (133)$, $f_{ba} = (323)$, $0 = (333)$.

Question: If Q is finite, how many elements can $M(\mathcal{A})$ have?

Homework

Problem (McNaughton-Papert 1971)

Find transition monoids for two DFA with states $\{s, p, q\}$, initial state s . Also construct the automata from the monoids and compare what you get.

- ① $\delta_1 = s \xrightarrow{a} p, p \xrightarrow{a} s, q \xrightarrow{a} q, s \xrightarrow{b} s, p \xrightarrow{b} q, q \xrightarrow{b} p$
- ② $\delta_2 = s \xrightarrow{a} p, p \xrightarrow{a} q, q \xrightarrow{a} q, s \xrightarrow{b} s, p \xrightarrow{b} s, q \xrightarrow{b} p$

- Two automata look similar
- First monoid has 6 elements, second monoid has 8 elements. Using them can say something about languages they recognize
- There is a language recognized by first monoid which is **not definable** in first-order logic with $<$. All languages recognized by second one are defined by first-order logic sentences

Syntactic Monoid of a language

- Let $\mathcal{A}_{\equiv_L} = (Q, s, \delta, F)$ be the canonical automaton for a language $L \subseteq A^*$.
- The transition monoid of \mathcal{A}_{\equiv_L} is called the **syntactic monoid** of L , we write $M(L)$ rather than $M(\mathcal{A}_{\equiv_L})$.
- The surjective morphism $h_L : A^* \rightarrow M(L)$ is called the **syntactic morphism** of L .

Syntactic Congruence of a language

- Define an equivalence relation \cong_L on A^* , induced by L , as

$$u \cong_L v \text{ iff } \forall x, y \in A^* : xuy \in L \text{ iff } xvy \in L.$$

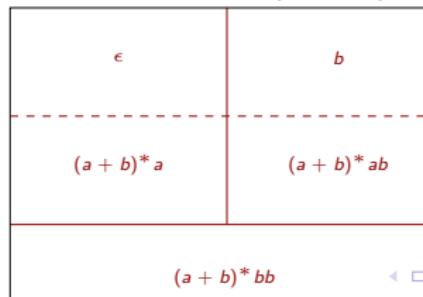
- \cong_L is called the **syntactic congruence** of L .
- Check that \cong_L is a **two-sided congruence**:
 - That is, \cong_L is both a **left-congruence** (i.e $u \cong_L v$ implies $wu \cong_L wv$, for each $w \in A^*$) and a **right-congruence** (i.e $u \cong_L v$ implies $uw \cong_L vw$).
 - Equivalently, $u \cong_L u'$ and $v \cong_L v'$ implies $uv \cong_L u'v'$.
- \cong_L refines the canonical MN relation, \equiv_L , for L .
- Example?

Syntactic Congruence of a language

- Define an equivalence relation \cong_L on A^* , induced by L , as

$$u \cong_L v \text{ iff } \forall x, y \in A^* : xuy \in L \text{ iff } xvy \in L.$$

- \cong_L is called the **syntactic congruence** of L .
- Check that \cong_L is a **two-sided congruence**:
 - That is, \cong_L is both a **left-congruence** (i.e $u \cong_L v$ implies $wu \cong_L wv$, for each $w \in A^*$) and a **right-congruence** (i.e $u \cong_L v$ implies $uw \cong_L vw$).
 - Equivalently, $u \cong_L u'$ and $v \cong_L v'$ implies $uv \cong_L u'v'$.
- \cong_L refines the canonical MN relation, \equiv_L , for L .
- Example? Consider the language $(a + b)^*bb$:



Characterization of the syntactic monoid

Claim

For a canonical DA $\mathcal{A} = (Q, \delta, s, F)$,

$$f_u = f_v \text{ iff } u \cong_L v.$$

Proof: (\Rightarrow) By definition the element f_w of the transition monoid of the canonical DA is $\widehat{\delta}(_, w)$.

$xuy \in L$ iff $(f_x \circ f_u \circ f_y)(s) \in F$ in the canonical DA

(in other words, $\widehat{\delta}(s, xuy) \in F$) in the canonical DA

iff $(f_x \circ f_v \circ f_y)(s) \in F$ in the canonical DA

(in other words, $\widehat{\delta}(s, xvy) \in F$) in the canonical DA

iff $xvy \in L$

Exercise: Prove the (\Leftarrow) direction.

Thus the syntactic congruence $u \cong_L v$ matches the equality $f_u = f_v$ derived from the canonical DA.

Syntactic monoid via syntactic congruence

For a language $L \subseteq A^*$, consider the monoid A^*/\cong_L :

- elements are congruence classes under \cong_L ,
- take the unit to be $[\epsilon]$,
- multiply two congruences by defining:

$$[u] \circ [v] = [uv].$$

Claim

The monoids $M(L)$ and A^*/\cong_L are isomorphic.

(Use the morphism $f_w \mapsto [w]$.)

Algebraic definition of regular languages

Theorem (Myhill-Nerode)

Let $L \subseteq A^*$. Then the following are equivalent:

- ① L is regular
- ② The syntactic monoid of L , i.e. $M(L)$, is finite
- ③ L is recognizable

Proof:

Algebraic definition of regular languages

Theorem (Myhill-Nerode)

Let $L \subseteq A^*$. Then the following are equivalent:

- ① L is regular
- ② The syntactic monoid of L , i.e. $M(L)$, is finite
- ③ L is recognizable

Proof:

(1) \implies (2): since \mathcal{A}_{\equiv_L} is finite, and hence so is $M(L)$.

Algebraic definition of regular languages

Theorem (Myhill-Nerode)

Let $L \subseteq A^*$. Then the following are equivalent:

- ① L is regular
- ② The syntactic monoid of L , i.e. $M(L)$, is finite
- ③ L is recognizable

Proof:

(1) \implies (2): since \mathcal{A}_{\equiv_L} is finite, and hence so is $M(L)$.

(2) \implies (3): Syntactic morphism $h_L : A^* \rightarrow M(L)$, given by $w \mapsto f_w$, recognizes L .

Algebraic definition of regular languages

Theorem (Myhill-Nerode)

Let $L \subseteq A^*$. Then the following are equivalent:

- ① L is regular
- ② The syntactic monoid of L , i.e. $M(L)$, is finite
- ③ L is recognizable

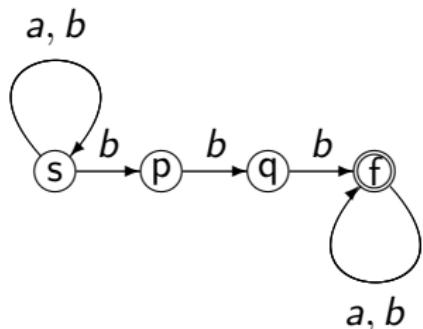
Proof:

- (1) \implies (2): since \mathcal{A}_{\equiv_L} is finite, and hence so is $M(L)$.
- (2) \implies (3): Syntactic morphism $h_L : A^* \rightarrow M(L)$, given by $w \mapsto f_w$, recognizes L .
- (3) \implies (1): Given finite M recognizing L , finite $\mathcal{A}(M)$ accepts L .

Corollary (Rabin-Scott, Shepherdson-Sturgis)

Nondeterministic and two-way automata accept regular languages

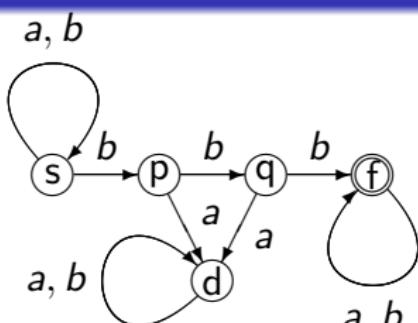
NFA to monoid of relations



$$\begin{aligned}\Delta(a) &= \{(s, s), (f, f)\} \\ \Delta(b) &= \{(s, s), (s, p), (p, q), (q, f), (f, f)\} \\ \widehat{\Delta}(\epsilon) &= id = \{(s, s), (p, p), (q, q), (f, f)\} \\ \widehat{\Delta}(bb) &= \{(s, s), (s, p), (s, q), (p, f), (f, f)\} \\ \widehat{\Delta}(bbb) &= \{(s, s), (s, p), (s, q), (s, f), (f, f)\} \\ \widehat{\Delta}(ab) &= \{(s, s), (s, p), (f, f)\} \\ \widehat{\Delta}(abb) &= \{(s, s), (s, p), (s, q), (f, f)\}\end{aligned}$$

- Think of (Q, Δ) , where every **letter** of the alphabet defines a transition **relation** $\Delta : A \rightarrow 2^{Q \times Q}$
- $\widehat{\Delta}$ as mapping a **word** to a relation on states $A^* \rightarrow 2^{Q \times Q}$
- $\widehat{\Delta}(\epsilon) = id$, $\widehat{\Delta}(wa) = \widehat{\Delta}(w) \circ \Delta(a)$
- That is, $\widehat{\Delta}$ is a morphism into monoid of relations $Rel(Q)$

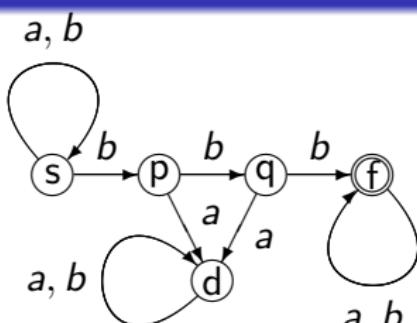
Rabin-Scott construction as a monoid construction



o	a	b	ab	bb	abb	bbb
a	a	ab	ab	abb	abb	bbb
b	a	bb	b	bbb	bb	bbb
ab	a	abb	b	bbb	bb	bbb
bb	a	bbb	b	bbb	bb	bbb
abb	a	bbb	b	bbb	bb	bbb
bbb	a	bbb	b	bbb	bb	bbb

- Complete the NFA to make it total, then take $Rel(Q)$
- The monoid has 8 elements $\{1, a, b, ab, bb, abb, bbb, 0\}$
- 1,0 are not shown in the multiplication table
- Follow abstractly how the monoid is calculated

Rabin-Scott construction as a monoid construction

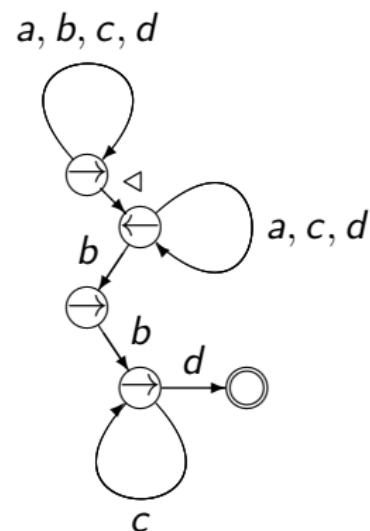


o	a	b	ab	bb	abb	bbb
a	a	ab	ab	abb	abb	bbb
b	a	bb	b	bbb	bb	bbb
ab	a	abb	b	bbb	bb	bbb
bb	a	bbb	b	bbb	bb	bbb
abb	a	bbb	b	bbb	bb	bbb
bbb	a	bbb	b	bbb	bb	bbb

- Complete the NFA to make it total, then take $Rel(Q)$
- The monoid has 8 elements $\{1, a, b, ab, bb, abb, bbb, 0\}$
- 1,0 are not shown in the multiplication table
- Follow abstractly how the monoid is calculated
- Exercise: Which monoid elements correspond to initial and final states of the automaton?

Shepherdson construction for two-way automata

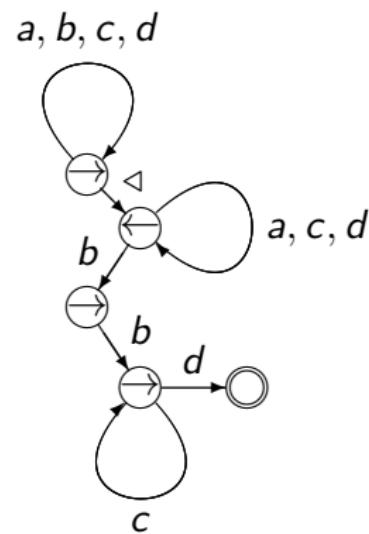
- Left and right **endmarkers** $\triangleright w \triangleleft$ in alphabet A for input word w
- Q is union of **left-moving** states \overleftarrow{Q} and **right-moving** states \overrightarrow{Q}
- Transition $\delta : \overleftarrow{Q} \times (A \setminus \{\triangleright\}) \rightarrow Q$ reads letter and moves left,
 $\delta : \overrightarrow{Q} \times (A \setminus \{\triangleleft\}) \rightarrow Q$ reads letter and moves right as usual
- Partial functions (2DFA): moving left of left endmarker and moving right of right endmarker are undefined



Birget monoids for two-way automata

- Have to consider four types of morphic extensions for δ :

- Either $h(\rightarrow w \rightarrow) : \overrightarrow{Q} \rightarrow \overrightarrow{Q}$ enters from left exits from right
- Or $h(\leftarrow w) : \overrightarrow{Q} \rightarrow \overleftarrow{Q}$ enters from left exits from left
- Either $h(\leftarrow w \leftarrow) : \overleftarrow{Q} \rightarrow \overleftarrow{Q}$ enters from right exits from left
- Or $h(w \leftrightarrow) : \overleftarrow{Q} \rightarrow \overrightarrow{Q}$ enters from right exits from right



Problem

Construct a monoid recognizing the language accepted by a 2DFA

(Warning: there are missing cases above)