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Algebraic approach to automata: Overview

An algebra is a set with some operations on it, satisfying some
properties.
E.g. a group is a nonempty set with a unit 1, a binary operation
satisfying associativity (x o (y 0 z) = (x o y) o z) and a unary
operation satisfying an inverse property (x o inv(x) = 1)
@ Define language recognition via morphisms into a monoid
@ Analogous result to canonical automaton (Myhill-Nerode)
@ Helps in characterising class of FO-definable languages

@ Helps in automaton constructions



Recognition via monoid morphisms
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Monoids

@ A monoid is an algebra (M, 0, 1), where
e M is a set containing the element 1,
e o is an associative binary operation on M, and
o 1 is the unit element (sometimes called identity) with respect
to o, so forevery me M, mol=m=1om
e Sometimes a monoid may have a zero element 0 (if so,
unique), such that for every me M, mo0=0=00om
o Examples: (N, x), (N1 x), (N, +), (A%, ). First three are
commutative monoids (operation is commutative), first one
has a zero, others do not

e Nonexample: (N=1 +)={1,2,3,...} with addition (why?)
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Monoids

@ A monoid is an algebra (M, 0, 1), where
e M is a set containing the element 1,
e o is an associative binary operation on M, and
o 1 is the unit element (sometimes called identity) with respect
to o, so forevery me M, mol=m=1om
e Sometimes a monoid may have a zero element 0 (if so,
unique), such that for every me M, mo0=0=00om
o Examples: (N, x), (N1 x), (N, +), (A%, ). First three are
commutative monoids (operation is commutative), first one
has a zero, others do not
e Nonexample: (N=1 +)={1,2,3,...} with addition (why?)
@ More noncommutative examples: Fun(X) = (X — X, o, id),
Rel(X) = (2X*X o, id) where
e X — X is the set of all functions from a set X to itself
o 2X*X is the set of subsets of X x X, that is, all relations on X
e f o g is function composition, R o S is relation composition,
both are not commutative



Recognition via monoid morphisms
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Monoid morphisms

@ A morphism from a monoid (M, op, 1p) to @ monoid
(N,on,1p) isa map h: M — N, satisfying
) h(].M) = 1/\/, and,
o h(mopy m') = h(m) oy h(m').

@ Example: h: A* — N, given by
h(w) = |wl|

is a morphism from (A*,-, ¢) to (N, +,0).
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Language recognition via monoid morphisms

o A language L C A* is said to be recognized by monoid
(M, 0,1) if there is a morphism h from (A*,- €) to (M,o,1),
and a recognizing subset X of M such that

L=h"1(X)

Exercise: Show that L = h1(h(L)).

@ If L is recognized by some finite M, we say that L is
recognizable

@ Finite monoids are finitely generated, that is, there is a finite
set of elements (which we can take to be the alphabet) such
that every element is a multiplication described by words over
the alphabet
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Example of language recognition via monoid morphisms

Monoid M = ({1, m},0,1) generated by m o |1l |m
Multiplication table shown 1 {1 |m
m|m|m

e Consider h: A* — M given by h(w) = miff w # €
(why morphism?)

@ Then M recognizes AT, since h~1({m}) = AT.

e M also recognizes {e} (taking X = {1}), A* (taking
X ={1,m}), and 0 (taking X = {}).
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Exercise

Show that the language of words with an odd number of a's over
the alphabet A = {a, b} is recognizable.



Recognition via monoid morphisms
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Finitely generated monoid to deterministic automaton

M generated by m Let B=h"Y(m)NA h(A\B)=1
A\ B A
o |1 |m
1 ]1 |m
m|m|m B

Let L C A* a language recognized by a monoid (M, o, 1).
That is, a morphism h: A* — M and X C M and the
morphism maps subset L to subset X, L = h=1(X).
Define a DA A(M) = (M, 4,1, X), where

5(m,a) = mo h(a).

To prove that: A(M) accepts L.
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Finitely generated monoid to deterministic automaton

M generated by m Let B=h"Y(m)NA h(A\B)=1
A\ B A
o |1 |m
1 ]1 |m
m|m|m B

Let L C A* a language recognized by a monoid (M, o, 1).
That is, a morphism h: A* — M and X C M and the
morphism maps subset L to subset X, L = h=1(X).
Define a DA A(M) = (M, 4,1, X), where

0(m,a) = mo h(a).

To prove that: A(M) accepts L.

~

Lemma: §(1, w) = h(w). Proof by induction on |w|.
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Finitely generated monoid to deterministic automaton

M generated by m Let B=h"Y(m)NA h(A\B)=1
A\ B A
o |1 |m
1 ]1 |m
m|m|m B

o Let L C A* a language recognized by a monoid (M, o, 1).

@ That is, a morphism h: A* — M and X C M and the
morphism maps subset L to subset X, L = h=1(X).

o Define a DA A(M) = (M, 4,1, X), where

5(m’ a) =mo h(a)
e To prove that: A(M) accepts L.

o Lemma: 6(1,w) = h(w). Proof by induction on |w].
e Main proof: A(M) accepts exactly the w such that

h(w) € X. So A(M) accepts h=1(X) = L.
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Transition Monoid of a DA

Let A= (Q,J,s) be a deterministic transition system.

@ For w € A*, define f, : @ = Q by

~

fw(q) = (g, w).
@ Consider the monoid
M(A) = ({fy | w € A"}, 0, f).

with the morphism h(w) = f,,.
e M(A) is a submonoid of Fun(Q) = (Q — Q, o, id), it is called
the transition monoid of A.



Transition monoid
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Example: DFA to Transition Monoid to DFA

o |1 |a |b |ab|ba|0

@/\02 1 [1 [a [b |ab|ba|O
! \E/ a |a [0 |ab|0 |a |0
b a b b ba | O b |0 0
ablab|a |0 |ab |0 |0

3% ab ba |ba |0 b |0 ba | 0

0 0 0 0 0 0 0

Distinct elements of M(.A) are

{fe - 17 fa7 fb? fab7 fba7 faa - fbb - 0}

Multiplication table as shown. Idempotents e satisfy ee = e.
Right-multiplication by generators a, b is coloured.

1 2 3 fy = (313), f,p = (133),
2 3 3 > or(233) £ _(323),0 = (333).

Question: If Q is finite, how many elements can M(.A) have?

Write f; as <



Transition monoid
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Homework

Problem (McNaughton-Papert 1971)

Find transition monoids for two DFA with states {s, p, q}, initial
state s. Also construct the automata from the monoids and
compare what you get.

@0i=s3pp>sq3q sdsprqqop

@h=s3pp3qgq3q sdspdsq>p

@ Two automata look similar
@ First monoid has 6 elements, second monoid has 8 elements.
Using them can say something about languages they recognize

@ There is a language recognized by first monoid which is not
definable in first-order logic with <. All languages recognized
by second one are defined by first-order logic sentences
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Syntactic Monoid of a language

o Let A=, = (Q,s,d, F) be the canonical automaton for a
language L C A*.

@ The transition monoid of A=, is called the syntactic monoid
of L, we write M(L) rather than M(A=,).

@ The surjective morphism h; : A* — M(L) is called the
syntactic morphism of L.
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Syntactic Congruence of a language

@ Define an equivalence relation =, on A*, induced by L, as
u= viffVx,y € A*: xuy € Liff xvy € L.

@ =, is called the syntactic congruence of L.
@ Check that &/ is a two-sided congruence:
o That is, 2 is both a left-congruence (i.e u 2 v implies
wu =) wy, for each w € A*) and a right-congruence (i.e
u =y v implies uw 2 vw).
o Equivalently, v =, v and v =, v/ imples uv =, 'V’

@ =, refines the canonical MN relation, =, for L.
@ Example?
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Syntactic Congruence of a language

@ Define an equivalence relation =, on A*, induced by L, as
u= viffVx,y € A*: xuy € Liff xvy € L.

@ =, is called the syntactic congruence of L.
@ Check that &/ is a two-sided congruence:
o That is, 2 is both a left-congruence (i.e u 2 v implies
wu =) wy, for each w € A*) and a right-congruence (i.e
u =y v implies uw 2 vw).
o Equivalently, v =, v and v =, v/ imples uv =, 'V’

@ =, refines the canonical MN relation, =, for L.
e Example? Consider the language (a + b)*bb:

(a+ b)*bb



Syntactic Monoid
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Characterization of the syntactic monoid

For a canonical DA A = (Q,4,s, F),

fu=f, iff u=y v.

Proof: ( =) By definition the element f,, of the transition
monoid of the canonical DA is §(_, w).
xuy € L iff (fiof,of,)(s) € F in the canonical DA
(in other words, &(s, xuy) € F) in the canonical DA
iff  (fcof,of,)(s) € F in the canonical DA
(in other words, g(s,xvy) € F) in the canonical DA
iff xvyel
Exercise: Prove the (<) direction.
Thus the syntactic congruence u =2; v matches the equality

fu, = f, derived from the canonical DA.



Syntactic Monoid
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Syntactic monoid via syntactic congruence

For a language L C A*, consider the monoid A*/ =, :

@ elements are congruence classes under =2,
@ take the unit to be [¢],

@ multiply two congruences by defining:

[u] o [v] = [uv].

The monoids M(L) and A*/ %, are isomorphic.

(Use the morphism f,, — [w].)



Syntactic Monoid
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Algebraic definition of regular languages

Theorem (Myhill-Nerode)
Let L C A*. Then the following are equivalent:

Q L is regular
@ The syntactic monoid of L, i.e. M(L), is finite

© L is recognizable

Proof:
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Algebraic definition of regular languages

Theorem (Myhill-Nerode)
Let L C A*. Then the following are equivalent:

Q L is regular
@ The syntactic monoid of L, i.e. M(L), is finite

© L is recognizable

Proof:
(1) = (2): since A, is finite, and hence so is M(L).
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Algebraic definition of regular languages

Theorem (Myhill-Nerode)
Let L C A*. Then the following are equivalent:

Q L is regular
@ The syntactic monoid of L, i.e. M(L), is finite

© L is recognizable

Proof:

(1) = (2): since A, is finite, and hence so is M(L).

(2) = (3): Syntactic morphism h; : A* — M(L), given by
w — f,, recognizes L.
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Algebraic definition of regular languages

Theorem (Myhill-Nerode)
Let L C A*. Then the following are equivalent:

Q L is regular
@ The syntactic monoid of L, i.e. M(L), is finite

© L is recognizable

Proof:

(1) = (2): since A, is finite, and hence so is M(L).

(2) = (3): Syntactic morphism h; : A* — M(L), given by

w — f,, recognizes L.

(3) = (1): Given finite M recognizing L, finite A(M) accepts L.

Corollary (Rabin-Scott, Shepherdson-Sturgis)

Nondeterministic and two-way automata accept regular languages
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NFA to monoid of relations

A(a) = {(s;s), (f, 1)}

3 b A(b) = {(s.5). (5.p). (P 9). (a. ). (F. )}
A(e) = id = {(s,s),(p. p), (9. 9), (f, )}
b A(bb) = {(5’5)’(5ap)>(5a q)7(p7 f)7(fa f)}

0 Abbb) = {(5.5). (5. p). (5. 9), (5. ) (7. )}
. A(ab) = {(s.5). (s.p). (F. )}
a}b A(abb) = {(S7S)v(57p)7(53 q)a(fa f)}
@ Think of (Q,A), where every letter of the alphabet defines a
transition relation A : A — 29%@Q

o A as mapping a word to a relation on states A* — 29%Q

~

o Ale) =id, A(wa)=A(w)o A(a)

@ That is, As a morphism into monoid of relations Rel(Q)



Applications
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Rabin-Scott construction as a monoid construction

o al|b ab | bb abb | bbb
a a | ab ab | abb | abb | bbb
b a| bb b bbb | bb bbb
ab a|abb | b bbb | bb bbb
bb a| bbb |b bbb | bb bbb
abb | a | bbb | b bbb | bb bbb
bbb | a | bbb | b bbb | bb bbb

Complete the NFA to make it total, then take Rel(Q)
The monoid has 8 elements {1, a, b, ab, bb, abb, bbb, 0}

1,0 are not shown in the multiplication table

Follow abstractly how the monoid is calculated
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[o] lele}

Rabin-Scott construction as a monoid construction

o al|b ab | bb abb | bbb
a a | ab ab | abb | abb | bbb
b a| bb b bbb | bb bbb
ab a|abb | b bbb | bb bbb
bb a| bbb |b bbb | bb bbb
abb | a | bbb | b bbb | bb bbb
bbb | a | bbb | b bbb | bb bbb

Complete the NFA to make it total, then take Rel(Q)
The monoid has 8 elements {1, a, b, ab, bb, abb, bbb, 0}
1,0 are not shown in the multiplication table

Follow abstractly how the monoid is calculated

Exercise: Which monoid elements correspond to initial and
final states of the automaton?
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Shepherdson construction for two-way automata

@ Left and right endmarkers >w< in
alphabet A for input word w

F
@ Q@ is union of left-moving states Q
and right-moving states
%
e Transition 6 : @ x (A\ {r}) = @Q
reads letter and moves left,

J: 8 x (A\ {<}) = Q reads letter
and moves right as usual

e Partial functions (2DFA): moving left
of left endmarker and moving right of
right endmarker are undefined
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Birget monoids for two-way automata

@ Have to consider four types of morphic
extensions for 9:

o Either h(— w —) 8 8 enters

from left exits from right
N P

e Or h(+ w): 6 — @ enters from
left exits from left -

o Either h(+— w <) : Q — Q enters
from right eX|ts from left

o Or h(w %) Q — 8 enters from
right exits from right

Problem
Construct a monoid recognizing the language accepted by a 2DFA

(Warning: there are missing cases above)
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