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Algebraic approach to automata: Overview

An algebra is a set with some operations on it, satisfying some
properties.
E.g. a group is a nonempty set with a unit 1, a binary operation
satisfying associativity (x ◦ (y ◦ z) = (x ◦ y) ◦ z) and a unary
operation satisfying an inverse property (x ◦ inv(x) = 1)

Define language recognition via morphisms into a monoid

Analogous result to canonical automaton (Myhill-Nerode)

Helps in characterising class of FO-definable languages

Helps in automaton constructions
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Monoids

A monoid is an algebra (M, ◦, 1), where
M is a set containing the element 1,
◦ is an associative binary operation on M, and
1 is the unit element (sometimes called identity) with respect
to ◦, so for every m ∈ M, m ◦ 1 = m = 1 ◦m
Sometimes a monoid may have a zero element 0 (if so,
unique), such that for every m ∈ M, m ◦ 0 = 0 = 0 ◦m

Examples: (N,×), (N≥1,×), (N,+), (A∗, ·). First three are
commutative monoids (operation is commutative), first one
has a zero, others do not
Nonexample: (N≥1,+) = {1, 2, 3, . . . } with addition (why?)

More noncommutative examples: Fun(X ) = (X → X , ◦, id),
Rel(X ) = (2X×X , ◦, id) where

X → X is the set of all functions from a set X to itself
2X×X is the set of subsets of X × X , that is, all relations on X
f ◦ g is function composition, R ◦ S is relation composition,
both are not commutative

(f ◦ g)(x) = g(f (x)), x (R ◦ S) y ⇐⇒ ∃z(x R z ∧ z S y)
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Monoid morphisms

A morphism from a monoid (M, ◦M , 1M) to a monoid
(N, ◦N , 1N) is a map h : M → N, satisfying

h(1M) = 1N , and,
h(m ◦M m′) = h(m) ◦N h(m′).

Example: h : A∗ → N, given by

h(w) = |w |

is a morphism from (A∗, ·, ε) to (N,+, 0).
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Language recognition via monoid morphisms

A language L ⊆ A∗ is said to be recognized by monoid
(M, ◦, 1) if there is a morphism h from (A∗, ·, ε) to (M, ◦, 1),
and a recognizing subset X of M such that

L = h−1(X )

Exercise: Show that L = h−1(h(L)).

If L is recognized by some finite M, we say that L is
recognizable

Finite monoids are finitely generated, that is, there is a finite
set of elements (which we can take to be the alphabet) such
that every element is a multiplication described by words over
the alphabet
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Example of language recognition via monoid morphisms

Monoid M = ({1,m}, ◦, 1) generated by m
Multiplication table shown

◦ 1 m

1 1 m

m m m

Consider h : A∗ → M given by h(w) = m iff w 6= ε
(why morphism?)

Then M recognizes A+, since h−1({m}) = A+.

M also recognizes {ε} (taking X = {1}), A∗ (taking
X = {1,m}), and ∅ (taking X = {}).
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Exercise

Show that the language of words with an odd number of a’s over
the alphabet A = {a, b} is recognizable.
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Finitely generated monoid to deterministic automaton

M generated by m

◦ 1 m

1 1 m

m m m

Let B = h−1(m) ∩ A, h(A \ B) = 1

1��
��

m��
���

A \ B

-B �

A

Let L ⊆ A∗ a language recognized by a monoid (M, ◦, 1).

That is, a morphism h : A∗ → M and X ⊆ M and the
morphism maps subset L to subset X , L = h−1(X ).

Define a DA A(M) = (M, δ, 1,X ), where

δ(m, a) = m ◦ h(a).

To prove that: A(M) accepts L.

Lemma: δ̂(1,w) = h(w). Proof by induction on |w |.
Main proof: A(M) accepts exactly the w such that
h(w) ∈ X . So A(M) accepts h−1(X ) = L.
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Transition Monoid of a DA

Let A = (Q, δ, s) be a deterministic transition system.

For w ∈ A∗, define fw : Q → Q by

fw (q) = δ̂(q,w).

Consider the monoid

M(A) = ({fw | w ∈ A∗}, ◦, fε).

with the morphism h(w) = fw .

M(A) is a submonoid of Fun(Q) = (Q → Q, ◦, id), it is called
the transition monoid of A.
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Example: DFA to Transition Monoid to DFA

b

a

ab

a, b

1

3

2

◦ 1 a b ab ba 0
1 1 a b ab ba 0
a a 0 ab 0 a 0
b b ba 0 b 0 0
ab ab a 0 ab 0 0
ba ba 0 b 0 ba 0
0 0 0 0 0 0 0

1j
aj

bj

abj

baj
0j�

��a

A
AUb

-b

-a

]a

]
b

A
AU
b

�
��a

c
c
c~

a

#
#
#>b

Distinct elements of M(A) are
{fε = 1, fa, fb, fab, fba, faa = fbb = 0}.
Multiplication table as shown. Idempotents e satisfy ee = e.
Right-multiplication by generators a, b is coloured.

Write fa as

(
1 2 3
2 3 3

)
, or (233).

fb = (313), fab = (133),
fba = (323), 0 = (333).

Question: If Q is finite, how many elements can M(A) have?
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Homework

Problem (McNaughton-Papert 1971)

Find transition monoids for two DFA with states {s, p, q}, initial
state s. Also construct the automata from the monoids and
compare what you get.

1 δ1 = s
a→ p, p

a→ s, q
a→ q, s

b→ s, p
b→ q, q

b→ p

2 δ2 = s
a→ p, p

a→ q, q
a→ q, s

b→ s, p
b→ s, q

b→ p

Two automata look similar

First monoid has 6 elements, second monoid has 8 elements.
Using them can say something about languages they recognize

There is a language recognized by first monoid which is not
definable in first-order logic with <. All languages recognized
by second one are defined by first-order logic sentences
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Syntactic Monoid of a language

Let A≡L
= (Q, s, δ,F ) be the canonical automaton for a

language L ⊆ A∗.

The transition monoid of A≡L
is called the syntactic monoid

of L, we write M(L) rather than M(A≡L
).

The surjective morphism hL : A∗ → M(L) is called the
syntactic morphism of L.
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Syntactic Congruence of a language

Define an equivalence relation ∼=L on A∗, induced by L, as

u ∼=L v iff ∀x , y ∈ A∗ : xuy ∈ L iff xvy ∈ L.

∼=L is called the syntactic congruence of L.
Check that ∼=L is a two-sided congruence:

That is, ∼=L is both a left-congruence (i.e u ∼=L v implies
wu ∼=L wv , for each w ∈ A∗) and a right-congruence (i.e
u ∼=L v implies uw ∼=L vw).
Equivalently, u ∼=L u′ and v ∼=L v ′ imples uv ∼=L u′v ′.

∼=L refines the canonical MN relation, ≡L, for L.
Example?

Consider the language (a + b)∗bb:

ε

(a + b)∗a

(a + b)∗bb

(a + b)∗ab

b
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Characterization of the syntactic monoid

Claim

For a canonical DA A = (Q, δ, s,F ),

fu = fv iff u ∼=L v .

Proof: ( =⇒ ) By definition the element fw of the transition
monoid of the canonical DA is δ̂( ,w).
xuy ∈ L iff (fx ◦ fu ◦ fy )(s) ∈ F in the canonical DA

(in other words, δ̂(s, xuy) ∈ F ) in the canonical DA
iff (fx ◦ fv ◦ fy )(s) ∈ F in the canonical DA

(in other words, δ̂(s, xvy) ∈ F ) in the canonical DA
iff xvy ∈ L

Exercise: Prove the (⇐=) direction.
Thus the syntactic congruence u ∼=L v matches the equality
fu = fv derived from the canonical DA.
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Syntactic monoid via syntactic congruence

For a language L ⊆ A∗, consider the monoid A∗/ ∼=L:

elements are congruence classes under ∼=L,

take the unit to be [ε],

multiply two congruences by defining:

[u] ◦ [v ] = [uv ].

Claim

The monoids M(L) and A∗/∼=L are isomorphic.

(Use the morphism fw 7→ [w ].)
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Algebraic definition of regular languages

Theorem (Myhill-Nerode)

Let L ⊆ A∗. Then the following are equivalent:

1 L is regular

2 The syntactic monoid of L, i.e. M(L), is finite

3 L is recognizable

Proof:

(1) =⇒ (2): since A≡L
is finite, and hence so is M(L).

(2) =⇒ (3): Syntactic morphism hL : A∗ → M(L), given by
w 7→ fw , recognizes L.
(3) =⇒ (1): Given finite M recognizing L, finite A(M) accepts L.

Corollary (Rabin-Scott, Shepherdson-Sturgis)

Nondeterministic and two-way automata accept regular languages
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NFA to monoid of relations

sj pj qj fjh	

a, b

-b -b -b

�

a, b

∆(a) = {(s, s), (f , f )}
∆(b) = {(s, s), (s, p), (p, q), (q, f ), (f , f )}
∆̂(ε) = id = {(s, s), (p, p), (q, q), (f , f )}
∆̂(bb) = {(s, s), (s, p), (s, q), (p, f ), (f , f )}
∆̂(bbb) = {(s, s), (s, p), (s, q), (s, f ), (f , f )}
∆̂(ab) = {(s, s), (s, p), (f , f )}
∆̂(abb) = {(s, s), (s, p), (s, q), (f , f )}

Think of (Q,∆), where every letter of the alphabet defines a
transition relation ∆ : A→ 2Q×Q

∆̂ as mapping a word to a relation on states A∗ → 2Q×Q

∆̂(ε) = id , ∆̂(wa) = ∆̂(w) ◦∆(a)

That is, ∆̂ is a morphism into monoid of relations Rel(Q)
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Rabin-Scott construction as a monoid construction

sj pj qj fjh
dj

	

a, b

-b -b -b

�

a, b

R
a, b

A
AU
a �
�� a

◦ a b ab bb abb bbb
a a ab ab abb abb bbb
b a bb b bbb bb bbb
ab a abb b bbb bb bbb
bb a bbb b bbb bb bbb
abb a bbb b bbb bb bbb
bbb a bbb b bbb bb bbb

Complete the NFA to make it total, then take Rel(Q)

The monoid has 8 elements {1, a, b, ab, bb, abb, bbb, 0}
1,0 are not shown in the multiplication table

Follow abstractly how the monoid is calculated

Exercise: Which monoid elements correspond to initial and
final states of the automaton?
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Shepherdson construction for two-way automata

Left and right endmarkers .w/ in
alphabet A for input word w

Q is union of left-moving states
←−
Q

and right-moving states
−→
Q

Transition δ :
←−
Q × (A \ {.})→ Q

reads letter and moves left,
δ :
−→
Q × (A \ {/})→ Q reads letter

and moves right as usual

Partial functions (2DFA): moving left
of left endmarker and moving right of
right endmarker are undefined

→j
←j

→j
→j jh

	

a, b, c , d

R
/

I
a, c , d



�
b

JĴ
b

�

c

-d
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Birget monoids for two-way automata

Have to consider four types of morphic
extensions for δ:

Either h(→ w →) :
−→
Q →

−→
Q enters

from left exits from right

Or h(
→← w) :

−→
Q →

←−
Q enters from

left exits from left
Either h(← w ←) :

←−
Q →

←−
Q enters

from right exits from left

Or h(w
←→) :

←−
Q →

−→
Q enters from

right exits from right

→j
←j

→j
→j jh

	

a, b, c , d

R
/

I
a, c , d



�
b

JĴ
b

�

c

-d

Problem

Construct a monoid recognizing the language accepted by a 2DFA

(Warning: there are missing cases above)
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