Myhill-Nerode Theorem

Deepak D'Souza

Department of Computer Science and Automation
Indian Institute of Science, Bangalore.

09 September 2021



Outline

© Overview

© Myhill-Nerode Theorem

© Correspondence between DA's and MN relations
@ Canonical DA for L

© Computing canonical DFA



Overview
©0000

Myhill-Nerode Theorem: Overview

Every language L has a “canonical” deterministic automaton
accepting it.

o Every other DA for L is a “refinement” of this canonical DA.

e There is a unique DA for L with the minimal number of states.

Holds for any L (not just regular L).

L is regular iff this canonical DA has a finite number of states.

There is an algorithm to compute this canonical DA from any
given finite-state DA for L.



Overview

Oe000

DA for any language

Note that every language L has DA accepting it (we call this the
“free” DA for L).

The free DA for L = {a"b" | n > 0}:




Overview
0000

lllustrating “refinement” of DA: Example 0

@ Replicate each state p in the first automaton some number of
times (p1, p2, -..), and add an edge labelled a from each p;
to some g such that 6(p,a) = q. The"split" DA accepts the
same language.

@ Conversely, every DA for L is a “splitting” of the canonical
DA for L.




o]

—(
/q a, b

(@]

a, b a, b a, b

O @ —0"C0"



Overview
ooooe

lllustrating “refinement” of DA: Example 2

Every DA for L is a “refinement” of this canonical DA:



Myhill-Nerode Theorem
[ Jelele)

Myhill-Nerode Theorem

Canonical equivalence relation =; on A* induced by L C A*:

x= yiff Vze A*, xze Liff yze L.

x #L y iff

Theorem (Myhill-Nerode)

L is regular iff =/ is of finite index (that is has a finite number of
equivalence classes).




Myhill-Nerode Theorem
0®00

Exercise 1

Describe the equivalence classes for L = “Odd number of a's".



Myhill-Nerode Theorem
coeo

Exercise 2

Describe precisely the equivalence classes of =, for the language
L C {a, b}* comprising strings in which the 2nd last letter is a b.



Myhill-Nerode Theorem
coeo

Exercise 2

Describe precisely the equivalence classes of =, for the language
L C {a, b}* comprising strings in which the 2nd last letter is a b.




Myhill-Nerode Theorem
oooe

Exercise 3

Describe the equivalence classes of =; for the language
L={a"b" | n>0}.



Myhill-Nerode Theorem
oooe

Exercise 3

Describe the equivalence classes of =; for the language
L={a"b" | n>0}.

a a

a a a

—

——=| @aa [——=|aaaa |——
//

b b

- -




Myhill-Nerode Theorem
oooe

Exercise 3

Describe the equivalence classes of =; for the language

L={a"b" | n>0}.

a

a a
— -

a
H €

——=| @aa [——=|aaaa |—— R
//
b b
- -

Note: The natural deterministic PDA for L gives this DA.



Correspondence between DA’s and MN relations
[ JeleleTolo)

Myhill-Nerode (MN) relations for a language

@ An MN relation for a language L on an alphabet A is an
equivalence relation R on A* satisfying
© R is right-invariant (i.e. xRy = xaRya for each a € A.)
@ R refines (or “respects”) L (i.e.
xRy = x,y€lorx,y¢&l).

A*




Correspondence between DA’s and MN relations
0®0000

Deterministic Automata for L and MN relations for L

DA for L and MN relations for L are in 1-1 correspondence (they
represent eachother).

DA for L MN relations for L

Maps A—R 4 and Ar<+R are inverses of eachother,



Correspondence between DA’s and MN relations

[ele] le]ele]

Example DA and its induced MN relation

L is “Odd number of a's":
b b

a a o -




Correspondence between DA’s and MN relations
[eleleY Yolo)

Deterministic Automata for L and MN relations for L

DA (with no unreachable states) for L and MN relations for L are
in 1-1 correspondence.

DA for L MN relations for L

Maps A— R4 and Ar<+R are inverses of eachother,



Correspondence between DA’s and MN relations
0000®0

Equivalence relations and Refinement

An equivalence relation R on a set X refines another equivalence
relation S on X if for each x,y € X, xRy = xSy.

Exercise: Consider the relations R: “equal mod 2" and S: “equal
mod 4" on N. Which refines which? Picture R and S.



Correspondence between DA’s and MN relations
00000e

Any MN-relation for L refines the relation =,

Let L be any language over an alphabet A. Let R be any
MN-relation for L. Then R refines =;.




Correspondence between DA’s and MN relations
00000e

Any MN-relation for L refines the relation =,

Let L be any language over an alphabet A. Let R be any
MN-relation for L. Then R refines =;.

Proof: To prove that xRy implies x =; y. Suppose x #; y. Then
there exists z such that (WLOG) xz € L and yz ¢ L. Suppose
xRy. Since its an MN relation for L, it must be right invariant; and
hence xzRyz. But this contradicts the assumption that R respects
L.



Correspondence between DA’s and MN relations
00000e

Any MN-relation for L refines the relation =,

Let L be any language over an alphabet A. Let R be any
MN-relation for L. Then R refines =,.

Proof: To prove that xRy implies x =; y. Suppose x #; y. Then
there exists z such that (WLOG) xz € L and yz ¢ L. Suppose
xRy. Since its an MN relation for L, it must be right invariant; and
hence xzRyz. But this contradicts the assumption that R respects
L.

As a corollary we have:

Theorem (Myhill-Nerode)

L is regular iff =/ is of finite index (that is has a finite number of
equivalence classes).




Canonical DA for L
®000

Canonical DA for L

o We call A=, the “canonical” DA for L.
@ In what sense is A=, canonical?
o Every other DA for L is a refinement of A=, .
e A is a refinement of B if there is a stable partitioning ~ of A
such that quotient of A under ~ (written A/ ~) is isomorphic
to B.
o Stable partitioning of A = (Q, s, 4, F) is an equivalence
relation ~ on @ such that:
e p~ qimplies 6(p, a) ~ (g, a).
e If p~gqgandpé€F, then g € F also.
o Note that if ~ is a stable partitioning of A, then A/~ accepts
the same language as A.



Canonical DA for L
000

Example: 1

A stable partitioning shown by pink and light pink classes, and
below, the quotiented automaton:

— ()
9 a, b

LY
X
Q)
\

(6!

a, b a, b a, b



%F& (O

T

N

9
o
£
IS
X

LLl



Canonical DA for L
ocooe

Proving canonicity of A-,

Let A be a DA for L with no unreachable states. Then A=,

represents a stable partitioning of A. (Use the refinement of =; by
the MN relation R4.)




Computing canonical DF/
©0000000

Stable partitioning ~

o Let A=(Q,s,0,F) be a DA for L with no unreach. states.
@ The canonical MN relation for L (i.e. =) induces a
“coarsest” stable partitioning =; of A given by

~ ~

p~;q iff 3x,y € A* such that i(s,x) = p and d(s,y) = q,
with x = y.
@ Define a stable partitioning =~ of A by

o~ o~

prqiff Vze A*: d(p,z) € F iff §(q,z) € F.

»O\Jdo\z/»»()



Computing canonical DF/
0®000000

Example of ~ partitioning relation




Computing canonical DF/
00®00000

Stable partitioning = is coarsest

Claim: =~ coincides with ~;.

N ==

Proof:

-~

p#qiff Ix,y,z: 8(s,x) = p, 8(s,y) = g, and
d(p,z) € F but 6(q,z) € F.
iff p 1 q.



Computing canonical DF/
[eleleY Yolelele]

Algorithm to compute ~ for a given DFA

Input: DFA A = (Q,s, 4, F).
Output: =~ for A.
© Create a (symmetric) table indexed by pairs of states.
Initialize entry for each pair to “unmarked”.
@ Mark (p,q) if p€ F and g & F (or vice-versa).
@ Call a pair (p, g) markable if (p, q) is unmarked, and for some
a € A, the pair (6(p, a), (g, a)) is marked.
@ While there is an markable pair:
@ Pick a markable pair (p, g) and mark it.

© Return = as: p =~ q iff (p, q) is left unmarked in table.



Computing canonical DF/
0000®000

Example

Run minimization algorithm on DFA below:

— )
4 a, b

Y
o)
\

N\

@,

- |
he]
~+
Q
»
~

S LA +~79 o




Computing canonical DF/
0000®000

Example

Run minimization algorithm on DFA below:

—()
| 4 a, b

Q)

0

- |
he]
~+
Q
»
~

<

S LA +~79 o




Example

Computing canonical DF/
0000®000

Run minimization algorithm on DFA below:

Q)

a

/@ a.b

b AN
N b /
dio Ol
u p t g s r
PV
t |V .
q v oV
s v oV
v VoV VY



Example

Computing canonical DF/
0000®000

Run minimization algorithm on DFA below:

Q)

a

()

" joo
a, b
N b /
dio Ol
u p t g s r
PV
t |V .
alv v Vv
sV VvV
v VoV oV Y



Computing canonical DF/
00000e00

Correctness of minimization algorithm

Claim: Algo always terminates. Let n = |Q)|.

@ n(n— 1)/2 table entries in each scan, and at most n(n —1)/2
scans.

@ In fact, number of scans in algo is < n.

@ Consider modified step 3.1 in which mark check is done wrt
the table at the end of previous scan.
@ Argue that at end of /-th scan algo computes =2;, where

o~ o~

p~iqiff Yw € A* with |w| <i: §(p,w) € Fiff 6(q,w) € F.

© Observe that ~;,; strictly refines =¢;, unless the algo
terminates after scan i + 1. So modified algo does at most n
scans.

@ Both versions mark the same set of pairs. Also if modified algo
marks a pair, original algo has already marked it.



Computing canonical DF/
000000e0

Correctness of minimization algorithm

Claim: Original algo marks (p, q) iff p % q.

@ (=) Argue by induction on number of steps of the algo that
this is true.

@ («:) Suppose p % g. Argue by induction on n that if two
states t and u are distinguished by a string z of length n, then
(t,u) will be marked by the algo.

»O\ﬂQJO



Computing canonical DF/
0000000Oe

A corollary

If p and g are two states such that p % g, then there is a string of
length at most n — 2 which distinguishes them.

ak

az ai
—0@— 06-0-0
Pk %2 #1 Zo

~ ~0

~1
-0 - 0 -0 -0



	Overview
	Myhill-Nerode Theorem
	Correspondence between DA's and MN relations
	Canonical DA for L
	Computing canonical DFA

