Myhill-Nerode Theorem Deepak D'Souza Department of Computer Science and Automation Indian Institute of Science, Bangalore. 09 September 2021 ### Outline - Overview - 2 Myhill-Nerode Theorem - 3 Correspondence between DA's and MN relations - Canonical DA for L - 5 Computing canonical DFA ### Myhill-Nerode Theorem: Overview - Every language *L* has a "canonical" deterministic automaton accepting it. - Every other DA for *L* is a "refinement" of this canonical DA. - There is a unique DA for *L* with the minimal number of states. - Holds for any L (not just regular L). - L is regular iff this canonical DA has a finite number of states. - There is an algorithm to compute this canonical DA from any given finite-state DA for L. ## DA for any language Note that every language L has DA accepting it (we call this the "free" DA for L). The free DA for $L = \{a^n b^n \mid n \ge 0\}$: ## Illustrating "refinement" of DA: Example 0 - Replicate each state p in the first automaton some number of times (p_1, p_2, \dots) , and add an edge labelled a from each p_i to some q_j such that $\delta(p, a) = q$. The "split" DA accepts the same language. - Conversely, every DA for L is a "splitting" of the canonical DA for L. ### Illustrating "refinement" of DA: Example 1 Every DA for *L* is a "refinement" of this canonical DA: ## Illustrating "refinement" of DA: Example 2 Every DA for *L* is a "refinement" of this canonical DA: ### Myhill-Nerode Theorem Canonical equivalence relation \equiv_L on A^* induced by $L \subseteq A^*$: $$x \equiv_L y \text{ iff } \forall z \in A^*, \ xz \in L \text{ iff } yz \in L.$$ ### Theorem (Myhill-Nerode) L is regular iff \equiv_L is of finite index (that is has a finite number of equivalence classes). Describe the equivalence classes for L = "Odd number of a's". Describe precisely the equivalence classes of \equiv_L for the language $L \subseteq \{a, b\}^*$ comprising strings in which the 2nd last letter is a b. Describe precisely the equivalence classes of \equiv_L for the language $L \subseteq \{a,b\}^*$ comprising strings in which the 2nd last letter is a b. Describe the equivalence classes of \equiv_L for the language $L = \{a^n b^n \mid n \geq 0\}$. Describe the equivalence classes of \equiv_L for the language $L = \{a^n b^n \mid n \geq 0\}$. Describe the equivalence classes of \equiv_L for the language $L = \{a^n b^n \mid n \geq 0\}$. Note: The natural deterministic PDA for L gives this DA. ## Myhill-Nerode (MN) relations for a language - An MN relation for a language L on an alphabet A is an equivalence relation R on A^* satisfying - **1** R is right-invariant (i.e. $xRy \implies xaRya$ for each $a \in A$.) - 2 R refines (or "respects") L (i.e. $xRy \implies x, y \in L \text{ or } x, y \notin L$). ### Deterministic Automata for L and MN relations for L DA for L and MN relations for L are in 1-1 correspondence (they represent eachother). Maps $\mathcal{A} \mapsto R_{\mathcal{A}}$ and $\mathcal{A}_R \leftarrow R$ are inverses of eachother. ### Example DA and its induced MN relation ### L is "Odd number of a's": ### Deterministic Automata for L and MN relations for L DA (with no unreachable states) for L and MN relations for L are in 1-1 correspondence. Maps $\mathcal{A} \mapsto R_{\mathcal{A}}$ and $\mathcal{A}_R \leftarrow R$ are inverses of eachother. ## Equivalence relations and Refinement An equivalence relation R on a set X refines another equivalence relation S on X if for each $x, y \in X$, $xRy \implies xSy$. Exercise: Consider the relations R: "equal $\mod 2$ " and S: "equal $\mod 4$ " on \mathbb{N} . Which refines which? Picture R and S. ## Any MN-relation for L refines the relation \equiv_L #### Lemma Let L be any language over an alphabet A. Let R be any MN-relation for L. Then R refines \equiv_L . ## Any MN-relation for L refines the relation \equiv_L #### Lemma Let L be any language over an alphabet A. Let R be any MN-relation for L. Then R refines \equiv_L . Proof: To prove that xRy implies $x \equiv_L y$. Suppose $x \not\equiv_L y$. Then there exists z such that (WLOG) $xz \in L$ and $yz \not\in L$. Suppose xRy. Since its an MN relation for L, it must be right invariant; and hence xzRyz. But this contradicts the assumption that R respects L. ## Any MN-relation for L refines the relation \equiv_L #### Lemma Let L be any language over an alphabet A. Let R be any MN-relation for L. Then R refines \equiv_L . Proof: To prove that xRy implies $x \equiv_L y$. Suppose $x \not\equiv_L y$. Then there exists z such that (WLOG) $xz \in L$ and $yz \not\in L$. Suppose xRy. Since its an MN relation for L, it must be right invariant; and hence xzRyz. But this contradicts the assumption that R respects L. As a corollary we have: ### Theorem (Myhill-Nerode) L is regular iff \equiv_L is of finite index (that is has a finite number of equivalence classes). ### Canonical DA for L - We call A_{\equiv_l} the "canonical" DA for L. - In what sense is A_{\equiv_i} canonical? - Every other DA for L is a refinement of A_{\equiv_L} . - \mathcal{A} is a refinement of \mathcal{B} if there is a stable partitioning \sim of \mathcal{A} such that quotient of \mathcal{A} under \sim (written \mathcal{A}/\sim) is isomorphic to \mathcal{B} . - Stable partitioning of $\mathcal{A}=(Q,s,\delta,F)$ is an equivalence relation \sim on Q such that: - $p \sim q$ implies $\delta(p, a) \sim \delta(q, a)$. - If $p \sim q$ and $p \in F$, then $q \in F$ also. - Note that if \sim is a stable partitioning of \mathcal{A} , then \mathcal{A}/\sim accepts the same language as \mathcal{A} . A stable partitioning shown by pink and light pink classes, and below, the quotiented automaton: # Proving canonicity of \mathcal{A}_{\equiv_L} Let \mathcal{A} be a DA for L with no unreachable states. Then \mathcal{A}_{\equiv_L} represents a stable partitioning of \mathcal{A} . (Use the refinement of \equiv_L by the MN relation $R_{\mathcal{A}}$.) ## Stable partitioning \approx - Let $A = (Q, s, \delta, F)$ be a DA for L with no unreach. states. - The canonical MN relation for L (i.e. \equiv_L) induces a "coarsest" stable partitioning \approx_L of $\mathcal A$ given by $$p \approx_L q$$ iff $\exists x, y \in A^*$ such that $\widehat{\delta}(s, x) = p$ and $\widehat{\delta}(s, y) = q$, with $x \equiv_L y$. ullet Define a stable partitioning pprox of ${\mathcal A}$ by $$p \approx q \text{ iff } \forall z \in A^* : \ \widehat{\delta}(p,z) \in F \text{ iff } \widehat{\delta}(q,z) \in F.$$ ## Example of \approx partitioning relation ## Stable partitioning \approx is coarsest ### Claim: \approx coincides with \approx_L . $$\approx_L = \approx$$. #### Proof: $$p \not\approx q$$ iff $\exists x, y, z : \widehat{\delta}(s, x) = p$, $\widehat{\delta}(s, y) = q$, and $\widehat{\delta}(p, z) \in F$ but $\widehat{\delta}(q, z) \notin F$. iff $p \not\approx_L q$. # Algorithm to compute pprox for a given DFA Input: DFA $A = (Q, s, \delta, F)$. Output: \approx for \mathcal{A} . - Create a (symmetric) table indexed by pairs of states. Initialize entry for each pair to "unmarked". - ② Mark (p,q) if $p \in F$ and $q \notin F$ (or vice-versa). - **3** Call a pair (p, q) markable if (p, q) is unmarked, and for some $a \in A$, the pair $(\delta(p, a), \delta(q, a))$ is marked. - While there is an markable pair: - Pick a markable pair (p, q) and mark it. - **1** Return \approx as: $p \approx q$ iff (p,q) is left unmarked in table. ## Correctness of minimization algorithm Claim: Algo always terminates. Let n = |Q|. - n(n-1)/2 table entries in each scan, and at most n(n-1)/2 scans. - In fact, number of scans in algo is $\leq n$. - Consider modified step 3.1 in which mark check is done wrt the table at the end of previous scan. - ② Argue that at end of i-th scan algo computes \approx_i , where $$p \approx_i q \text{ iff } \forall w \in A^* \text{ with } |w| \leq i : \widehat{\delta}(p, w) \in F \text{ iff } \widehat{\delta}(q, w) \in F.$$ - **3** Observe that \approx_{i+1} strictly refines \approx_i , unless the algo terminates after scan i+1. So modified algo does at most n scans. - On Both versions mark the same set of pairs. Also if modified algomarks a pair, original algo has already marked it. ## Correctness of minimization algorithm Claim: Original algo marks (p, q) iff $p \not\approx q$. - (⇒:) Argue by induction on number of steps of the algo that this is true. - (\Leftarrow :) Suppose $p \not\approx q$. Argue by induction on n that if two states t and u are distinguished by a string z of length n, then (t, u) will be marked by the algo. ### A corollary If p and q are two states such that $p \not\approx q$, then there is a string of length at most n-2 which distinguishes them.