Automata-based decision procedure for
Presburger Logic

Deepak D'Souza

Department of Computer Science and Automation
Indian Institute of Science, Bangalore.

02 September 2021

Outline

@ Presburger Logic
© Automata-based procedure

© Decision Procedure

Q@ Summary

Presburger Logic
®00

Presburger Logic

First-Order logic of (N, <, +).
Interpreted over N = {0,1,2,3,...}.
What you can say:

x+2y <z+1, dxp, ¥Vxp, 7, A, V.

Examples:

Q VxVy((x <y) = Fz(x < z < y)) (Also in FO(<)).

@ Solutions to a system of linear inequalities:

IxTy(x+2y <1Ax=y).

© “Every number is odd or even”: VxJy(x =2y V x =2y + 1).
Studied by Mojzesz Presburger, who gave a sound and
complete axiomatization, as well as a decision procedure for
validity, circa 1929.

Presburger Logic
oeo

Problems to solve

Questions: Is there an algorithm to decide the following problems:

e Is a given Presburger logic sentence true or not (validity
problem)?

@ Given a Presburger logic formula ¢(x,y), do there exist
natural numbers x and y satisfying ¢ (satisfiability problem)?

Presburger Logic
ooe

Presburger Logic more formally

@ Terms t are of the form:
0|1l |x|y|t+t
@ Atomic formulas (f) are of the form:
t=t|t<t
@ General formulas (¢):
fFlowlevelene|3xe|Vxp.

We denote by L(¢) the set of all interpretations for variables V
that satisfy ¢.

Automata-based procedure
©0000000000000

Overall idea

@ Represent interpretation of variables as (rows of) binary

strings
x 001111
y 100011
z 011100

@ Construct automata over such words, that accept all satisfying
assignments of the variables, for atomic formulas.

@ Use closure properties of automata to inductively construct
automata for more complex formulas.

Automata-based procedure
0®000000000000

Representing numbers as binary strings

@ Represent the number 3 by “011" or “0011" or “00011" etc.
@ The automata will read the strings from right to left.

@ Will read a tuple of bits: For example for the formula
x < 2y 4+ 1 it will read inputs from the alphabet

{0,132

which we represent as:

(0)-(2)(o)-(3),

@ Thus, automaton constructed for a given formula will accept
the reverse of actual interpretations.

Automata-based procedure
0O®00000000000

Exercise: Give an automaton for y = 2x + 1

Automata-based procedure
000®0000000000

Automaton for x +2y — 3z =1

Accepting run on:

0 10 1
1 10 0
XE: Og ;000 0 10 1
y(=2): 010 1 0
z(=1): 001 0 _ 1
{ =)i { { |
x(=15): 001111 \/ 0 A 0 N
y(=35): 100011 11 0 0
z(=28): 011100 o 1 o 1
1
0
. 0 1 1 0 01
but none on: o 1 008 o1
0 1 N 1 TN 0 1
x(=1): 001 1) /\k\l)=
— \/ —
y(=2): o010 U |
z(=1): 001 1 | 0

oo
[}

Automata-based procedure
0000®000000000

Construction for atomic formulas: Idea

Consider formula x +2y — 3z = 1.

x 001111
y 100011
z 011100

Keep track of the weighted sum needed in the future to reach the
original weighted sum of b.

0 0
—M m M
T T T T A T T T T T T T T
1 0
-6 -5 -4 -3 -2 -1 0o 1 o 2 3 4 5 6
N AL

Automata-based procedure
00000®00000000

Construction for atomic formulas (=)

Consider formula ¢ : ajx; + axxo + - - - 4+ apx, = b, with a; € Z:
Construct automaton A, as follows:
@ Begin with initial state labelled b.
e In general, if state is ¢, on reading bit vector (01, ...,60,)
o Check if (8161 + -+ + apb,) = ¢ (mod 2).

o Move to state labelled M.

o Else, move to “Error” state.

e Make state with label 0 the (only) final state.
Example formula x +2y — 3z = 1.

x 001111
y 100011
z 011100

Automata-based procedure
000000@0000000

Exercise: Construct the automaton for y = 2x 4+ 1

Using the algorithm.

Automata-based procedure
0000000e000000

Bounded state claim

The number of states is bounded by 2M + 1 where

M = max(|b|, |a1] + - - - + |an]).

The “remaining” weighted sum is always in the interval [-M, M].
Observe that the remaining weighted sum is an order less (the
place value of bits goes down by a factor of 2).

Automata-based procedure
00000000®00000

Weighted Sum

e Fix an atomic formula ¢: a;xy + -+ apx, = b
@ Define weighted sum of a string w = dj - - - do € ({0,1}")*:

wsum(w) = a1(k1) + - - + an(kn),

where ki,..., k, are the numbers represented by w.
@ Thus, if w # e with |w| = k + 1, then

wsum(w) = a1(2%d(1) + -+ 2%do(1))+

a,,(2kdk(n) 4+ 4 20d0(n))

If w =€, then wsum(w) is defined to be 0.

If w=v-uthen wsum(w) = 2!l . wsum(v) + wsum(u).

Automata-based procedure
000000000 e0000

Correctness of construction for atomic formulas with =

After reading u € ({0,1}*)* the automaton A, will be in state

c such that ¢ - 2/“l + wsum(u) = b if wsum(u) =b mod 2Yl
Error otherwise

Proof: By induction on |ul.
o Base case: u=¢

@ Induction step: u=d-w

Automata-based procedure
0000000000e000

Construction for <

aixy + axxa + -+ apx, < b.

@ One approach:
o Begin with initial state label b
o From state c on input (6y,...,6,) go to state

c— (3191 +"'+an0n)
L 5 |

o and make all states with labels ¢ > 0, final.
o State labels are still in the range [-M, M].
o Note that remaining weighted sum is an integer.

@ Another approach: Replace by 3z(a;xy + -+ + apx, + z = b).

Automata-based procedure
0000000000000

Construction for general formulas

We use models in ({a} x {0,1}")" (0 < n). Thus models are
non-empty words of tuples of the form (a,0,1,...,0). All
operations (including complementation) is wrt this universe of
models.

For a given formula ¢, we define a relation R, that relates
valuations for variables (say V) with models w of the form
above.

Let A, denote the alphabet {a} x {0, 1}/FV(©)l.

Then (V,w) € R, iff w € AY and for each x € FV/(y),
V(x) = (w(x))2.

We use “(w(x))2" to denote the value of the binary string
corresponding to the row for x in w.

Note that R, is a many-to-many relation.

Automata-based procedure
0000000000000

Construction for general formulas

For any Presburger logic formula ¢ we can construct an
automaton A, that accepts precisely the set R, (L(¢p)).

We construct A, inductively:
@ For atomic formulas, construct as described earlier.

@ For 11 V 12, we add rows for new variables (for example x in
FV(¢2) — FV(1)) in the automata Ay, and Ay,, and then
“union” them.

@ For —1), we construct an automaton for A:Z — L(Ay).

@ For dx1), we do the following:

o Project out the row for x in A,

o If no free vars in ¢, then take acceptance-closure.
o Else (if there are free vars in), take zero-closure.

Automata-based procedure

0000000000000 e

lllustrating acceptance-closure: —3x(x > 2)

Project
away X

Automata-based procedure

0000000000000 0

lllustrating zero-closure: Jy(x + y > 2)

a
1

Jy Zero

Closure

Project
away y

x+y>2

Decision Procedure
°

Deciding the logical questions

Given a Presburger logic formula ¢ we contruct the automaton A,
as described, which accepts all the satisfying assignments that
make ¢ true.

o If ¢ is a sentence (no free variables), then A, runs on the
single-letter alphabet {a}. Then ¢ is valid iff L(A,) = a*.
This can be checked algorithmically, by complementing A,
intersecting with A_+ and checking for emptiness.

o If © has free variables, then ¢ is satisfiable iff L(.A,) accepts a
non-empty word. Again this can be algorithmically checked in
linear time in size of A,.

Summary
°

Summary

@ Another application of automata-theory to solve a problem in
logic.

@ Automata approach gives us a convenient representation of
the set of all satisfying assignments for a Presburger formula.

e Automata-based approach can be expensive (tower of
exponentials), but more efficient decision procedures are
known (triple exponential).

	Presburger Logic
	Automata-based procedure
	Decision Procedure
	Summary

