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Universal Turing machine

0 1 0 0 1 # 0 0` [1

p

M x

We can construct a TM U that takes the encoding of a TM
M and its input x , and “interprets” M on the input x .

U accepts if M accepts x , rejects if M rejects x , and loops if
M loops on x .
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Encoding a TM as a {0, 1}-string

0n10m10k10s10t10r10u10v 1 0p10a10q10b10 1 0p
′
10a

′
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′
10b

′
100 · · · 1 0p

′′
10a

′′
10q

′′
10b

′′
10.

represents a TM M with

states {1, 2, . . . , n}.

Tape alphabet {1, 2, . . . ,m}.

Input alphabet {1, 2, . . . , k} (with k < m).

Start state s ∈ {1, 2, . . . , n}.

Accept state t ∈ {1, 2, . . . , n}.

Reject state r ∈ {1, 2, . . . , n}.

Left-end marker symbol u ∈ {k + 1, . . . ,m}.

Blank symbol v ∈ {k + 1, . . . ,m}.

Each string 0p10a10q10b10 represents the transition
(p, a) → (q, b, L).
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Example encoding of TM and its input

Input is encoded as 0a10b10c etc.

Exercise: What does the following TM do on input 001010?

Example encoding of a TM

00010000100101001000100010000 1 01000101000100 1 0100100100100 1 010101010.

[Assume accept and reject states are sink states]

s

a/a, L

t

r

` / `,R b/b,R
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How the Universal Turing machine works

p

M x

0 1 0 0 1 1 0` [1

0 0 0 0 1 0 0 0` [1
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0

Use 3 tapes: for input M#x , for current configuration, and
for current state and position of head.

Repeat:

Execute the transition of M applicable in the current config.

Accept if M gets into t state, Reject if M gets into r state.
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Halting Problem for Turing machines

Fix an encoding enc of TMs as above.

Define the language

HP = {enc(M)#enc(x) | M halts on x}.

What can we say about the language HP?

Is recursively enumerable, since we can use the Universal TM
to accept it.
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Undecidability of HP

Theorem (Turing 1936)

The language HP is not recursive.
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Proving undecidability of HP

Assume that we have a Turing machine M which decides HP. Then
we can compute each entry of the table below:

ε 0 1 00 01 10 11 000 001 010 011 111 · · ·
Mε L H L L L H H L L L L L · · ·
M0 L L L L L L L L L L L L · · ·
M1 H H L H L H H L L H L H · · ·
M00 L L L L L L L L L L L L · · ·
M01 L H L L L H H L L L L L · · ·
M10 H H L H L H H L L H L H · · ·
M11 L H L L L H H L L L L L · · ·
M000 L L L L L L H L L L H L · · ·
.
.
.

For each x ∈ {0, 1}∗ let Mx denote the TM

M, if x is the encoding of TM M with input alphabet {0, 1}.
Mloop otherwise, where Mloop is a one-state Turing machine
that loops on all its inputs.

Table entry (x , y) tells whether TM Mx halts on the input y .
Note that y is an (unencoded) input in {0, 1}∗.
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A TM N that behaves differently from all TM’s

Let us assume we have a TM M that decides HP.

Then we can define a TM N as follows: Given input
x ∈ {0, 1}∗, it

runs as M on x#enc(x).
If M accepts (i.e. Mx halts on x), goes to a new “looping”
state l and loops there.
If M rejects (i.e. Mx loops on x), goes to the accept state t ′.

N essentially “complements the diagonal” of the table: Given
input x ∈ {0, 1}∗ it halts iff Mx loops on x .

Consider y = enc(N). Then y cannot occur as any row of the
table since the behaviour of N differs from all rows in the
table. This is a contradiction.
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How N behaves

ε 0 1 00 01 10 11 000 001 010 011 111 · · ·
Mε L H L L L H H L L L L L · · ·
M0 L L L L L L L L L L L L · · ·
M1 H H L H L H H L L H L H · · ·
M00 L L L L L L L L L L L L · · ·
M01 L H L L L H H L L L L L · · ·
M10 H H L H L H H L L H L H · · ·
M11 L H L L L H H L L L L L · · ·
M000 L L L L L L H L L L H L · · ·
.
.
.

N H H H H H L L H · · ·
.
.
.

The constructed TM N complements the diagonal of the table,
and hence does not occur as any of the TM’s listed. This is not
possible!
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Complement of HP is not r.e.

Fact 1: If L and L are both r.e. then L (and L) must be recursive.

Let M accept L and M ′ accept L.

We can construct a total TM that simulates M and M ′ on
given input, one step at a time.

Accept if M accepts, Reject if M ′ accepts.

Fact 2: HP is recursively enumerable.

Just run the universal TM U on input M#x ; accept iff U
halts (i.e. M accepts or rejects x).

Corollary

The language ¬HP is not even recursively enumerable.
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Where HP lies

Regular

HP
DCFL

CFL

Recursive
RE

All languages over A

anbn
anbncn

anbncn
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