

Visibly Pushdown Automata

Deepak D'Souza

Department of Computer Science and Automation
Indian Institute of Science, Bangalore.

09 November 2021

Outline

1 Visibly Pushdown Automata

2 Closure properties of VPL

3 Determinization

4 Logical Characterization

Visibly Pushdown Automata

- A sub-class of Pushdown Automata (PDA's) in which pushing/popping from the stack is dictated by input letters.
- Useful properties for verification
 - Closed under operations like union, intersection, complementation, concatenation, Kleene- * .
 - Decidable language inclusion and universality problems.

Proposed by Rajeev Alur and P. Madhusudan in STOC 2004.

Example VPA

Example VPA for
 $\{a^n b^n \mid n \geq 0\}$

$$\Sigma_c = \{a\}$$

$$\Sigma_r = \{b\}$$

$$\Sigma_{int} = \emptyset$$

$$(s, a, p, \perp)$$

$$(p, a, p, A)$$

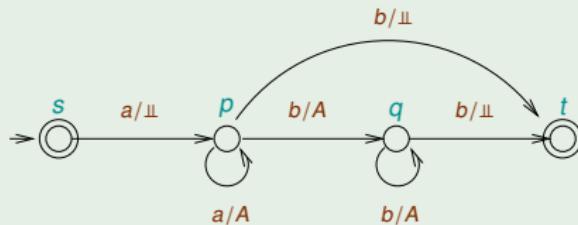
$$(p, b, A, q)$$

$$(q, b, A, q)$$

$$(q, b, \perp, t)$$

$$F = \{s, t\}.$$

State Diagram of VPA



Definitions

A VPA over a partitioned alphabet $\widetilde{\Sigma} = (\Sigma_c, \Sigma_r, \Sigma_{int})$ is a structure $M = (Q, Q_0, \Gamma, \perp, \delta, F)$ where Q is a finite set of states, Q_0 is a set of initial states, Γ is a stack alphabet with $\perp \in \Gamma$, F is a set of final states, and δ is the transition relation of the form:

- (p, a, q, A) if $a \in \Sigma_c$ (push transition)
- (p, a, A, q) if $a \in \Sigma_r$ (pop transition)
- (p, a, q) if $a \in \Sigma_{int}$ (internal transition).

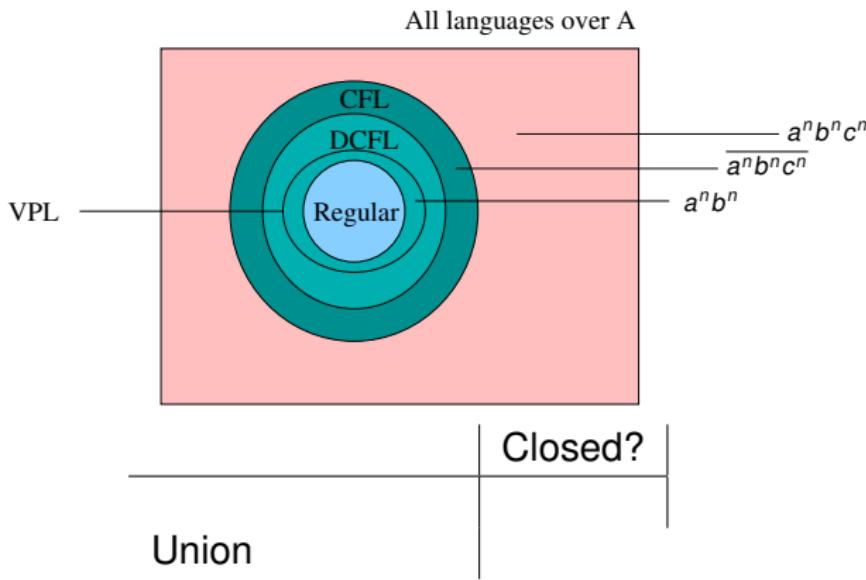
Restrictions:

- \perp is never pushed on the stack
- Pop transitions can read \perp from the stack but must leave it in place.
- No epsilon transitions

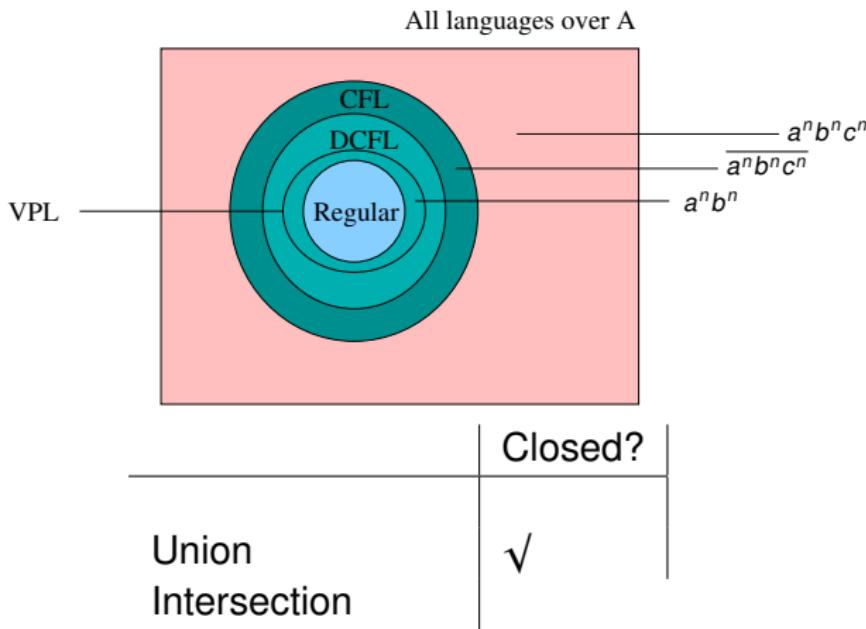
Run of M on a word $w = a_1 a_2 \dots a_n$.

Class of languages accepted by VPA's are called **Visibly Pushdown Languages (VPL)**.

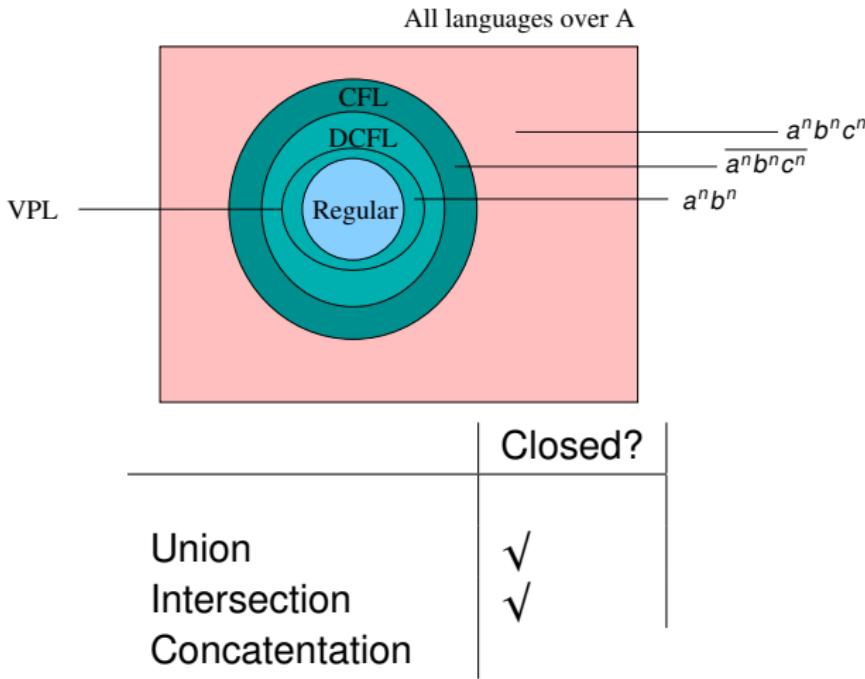
Closure Properties of VPL



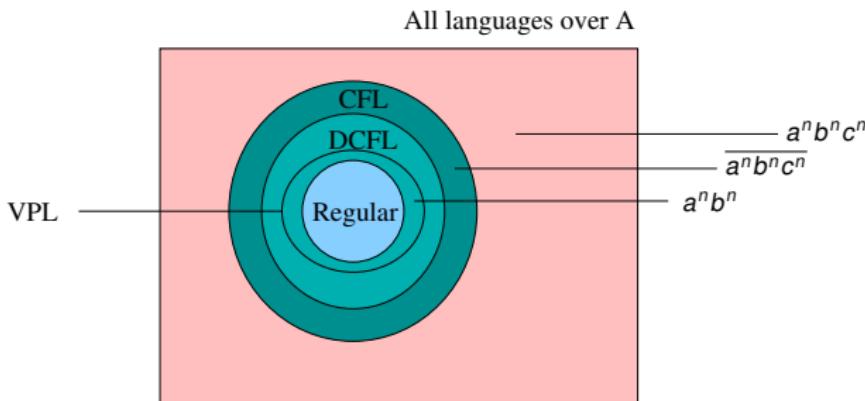
Closure Properties of VPL



Closure Properties of VPL

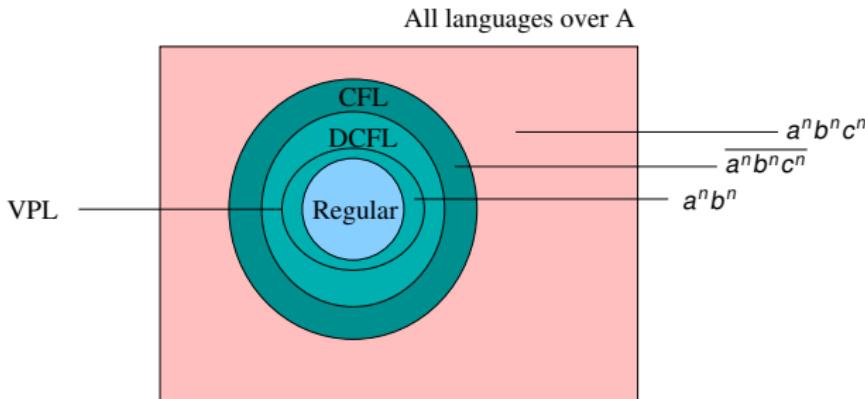


Closure Properties of VPL



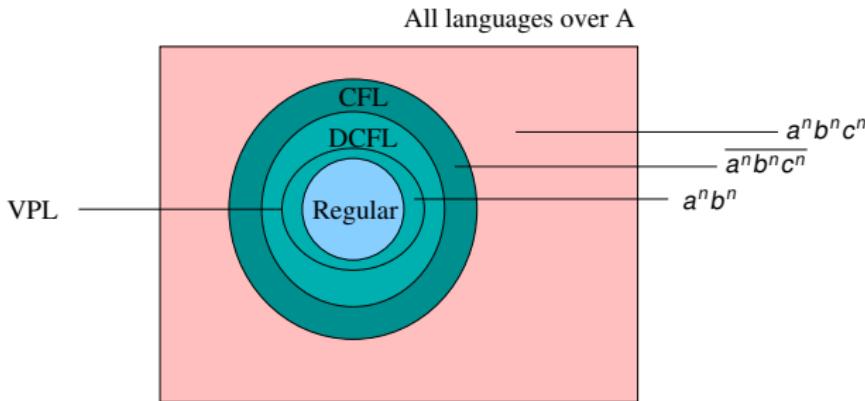
	Closed?
Union	✓
Intersection	✓
Concatenation	✓
Kleene-*	

Closure Properties of VPL



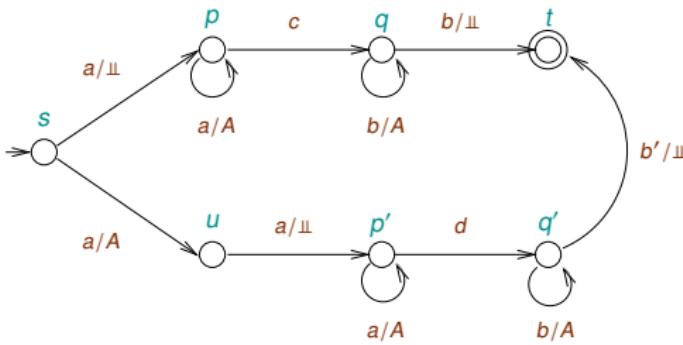
	Closed?
Union	✓
Intersection	✓
Concatenation	✓
Kleene-*	✓
Complementation	

Closure Properties of VPL



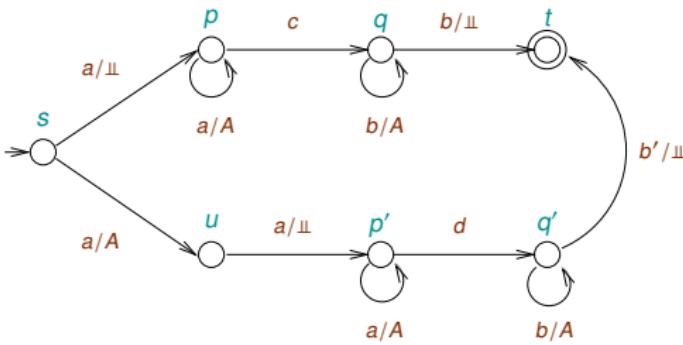
	Closed?
Union	✓
Intersection	✓
Concatenation	✓
Kleene-*	✓
Complementation	✓

Example non-deterministic VPA



Partitioned alphabet is $(\{a\}, \{b, b'\}, \{c, d\})$.

Example non-deterministic VPA



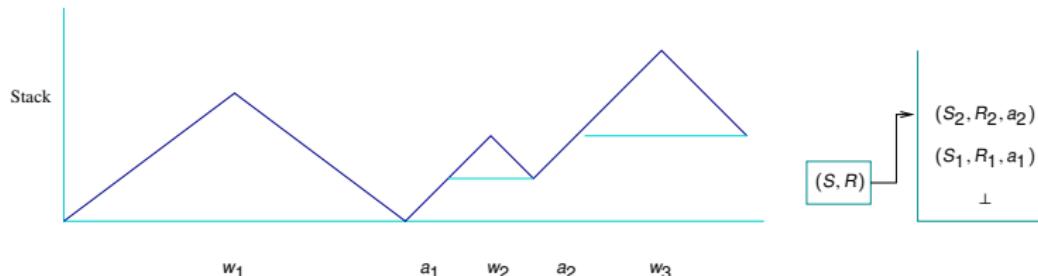
Partitioned alphabet is $(\{a\}, \{b, b'\}, \{c, d\})$.

Accepts language $\{a^n cb^n \mid n \geq 1\} \cup \{a^n db^{n-2}b' \mid n \geq 1\}$.

Determinizing VPA's

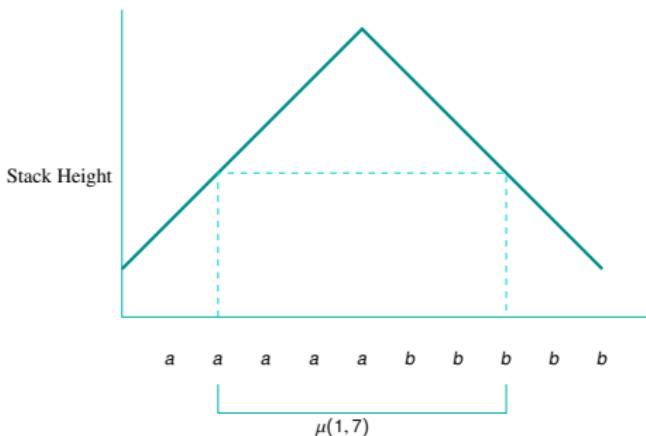
Let $M = (Q, Q_0, \Gamma, \delta, F)$ be a VPA over $\widetilde{\Sigma}$. We define a new VPA M' as follows:

- Control state is of the form (S, R) where $S \subseteq Q \times Q$ and $R \subseteq Q$.
- Stack symbols will be of the form (S, R, a) where S and R are as above, and $a \in \Sigma_c$ is a call alphabet.
- Construction maintains the following invariant:
 - S_1 is the **summary** of w_1 , S_2 of w_2 , and S of w_3 .
 - R_1 is the reach set after w_1 , R_2 after $w_1 a_1 w_2$, and R after w .



Decision Procedures for VPLs

- Emptiness
- Language inclusion / equivalence
- Universality

MSO over $\widetilde{\Sigma}$ with **matching** predicate

- Interpreted over finite words w over Σ .
- Syntax:

$$Q_a(x) \mid x < y \mid \mu(x, y) \mid \neg\varphi \mid \varphi \wedge \varphi' \mid \exists x\varphi \mid \exists X\varphi.$$

- $\mu(x, y)$ is true if $w(x)$ is a call and matching return is at $w(y)$.
- Example over $(\{a\}, \{b\}, \{d\})$:
 $\forall x(Q_a(x) \implies \exists y(\mu(x, y) \wedge Q_b(y))).$

Logical characterization of VPLs

Theorem

L is a VPL over $\widetilde{\Sigma}$ iff L is definable in $MSO(\widetilde{\Sigma})$.

Proof is similar to that of regular languages.