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Visibly Pushdown Automata

A sub-class of Pushdown Automata (PDA’s) in which
pushing/popping from the stack is dictated by input letters.
Useful properties for verification

Closed under operations like union, intersection,
complementation, concatentation, Kleene-*.
Decidable language inclusion and universality problems.

Proposed by Rajeev Alur and P. Madhusudan in STOC 2004.
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Example VPA

Example VPA for
{anbn | n ≥ 0}

Σc = {a}
Σr = {b}
Σint = ∅

(s, a, p,y)
(p, a, p,A)
(p, b ,A , q)
(q, b ,A , q)
(q, b ,y, t)

F = {s, t}.

State Diagram of VPA

a/y b/A b/y

a/A b/A

p qs t

b/y
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Definitions

A VPA over a partitioned alphabet Σ̃ = (Σc ,Σr ,Σint ) is a structure
M = (Q ,Q0, Γ,⊥, δ,F) where Q is a finite set of states, Q0 is a set
of initial states, Γ is a stack alphabet with ⊥ ∈ Γ, F is a set of final
states, and δ is the transition relation of the form:

(p, a, q,A) if a ∈ Σc (push transition)
(p, a,A , q) if a ∈ Σr (pop transition)
(p, a, q) if a ∈ Σint (internal transition).

Restrictions:
⊥ is never pushed on the stack
Pop transitions can read ⊥ from the stack but must leave it in
place.
No epsilon transitions

Run of M on a word w = a1a2 . . . an.
Class of languages accepted by VPA’s are called Visibly
Pushdown Languages (VPL).
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Closure Properties of VPL

DCFL

CFL

All languages over A

RegularVPL anbn
anbncn

anbncn

Closed?

Union

√

Intersection
√

Concatentation
√

Kleene-*
√

Complementation
√
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Example non-deterministic VPA

s

a/A

u p′ q′

a/y

c b/y

a/A b/A

p q t

a/y
a/A

d

b′/y

b/A

Partitioned alphabet is ({a}, {b , b ′}, {c, d}).

Accepts language {ancbn | n ≥ 1} ∪ {andbn−2b ′ | n ≥ 1}.
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Determinizing VPA’s

Let M = (Q ,Q0, Γ, δ,F) be a VPA over Σ̃. We define a new VPA M′

as follows:
Control state is of the form (S,R) where S ⊆ Q × Q and
R ⊆ Q .
Stack symbols will be of the form (S,R , a) where S and R are
as above, and a ∈ Σc is a call alphabet.
Construction maintains the following invariant:

S1 is the summary of w1, S2 of w2, and S of w3.
R1 is the reach set after w1, R2 after w1a1w2, and R after w.

Stack

w1 w2 w3a1 a2

⊥

(S1 ,R1 , a1)

(S2 ,R2 , a2)

(S,R)
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Decision Procedures for VPLs

Emptiness

Language inclusion / equivalance

Universality
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MSO over Σ̃ with matching predicate

Stack Height

a a a a a b b b b b

µ(1, 7)

Interpreted over finite words w over Σ.
Syntax:

Qa(x) | x < y | µ(x, y) | ¬ϕ | ϕ ∧ ϕ′ |∃xϕ | ∃Xϕ.

µ(x, y) is true if w(x) is a call and matching return is at w(y).
Example over ({a}, {b}, {d}):
∀x(Qa(x) =⇒ ∃y(µ(x, y) ∧ Qb(y))).
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Logical characterization of VPLs

Theorem

L is a VPL over Σ̃ iff L is definable in MSO(Σ̃).

Proof is similar to that of regular langauages.
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