-A LINEAR ALGORITHM FOR TESTING
EQUIVALENCE OF FINITE AUTOMATA
J. E. Hopcroft

Cornell University
Ithaca, New York

R. M. Karp
University of California
Berkeley, California

TR 71 - 114

-December 1971

A LINEAR ALGORITHM FOR TESTING
EQUIVALENCE OF FINITE AUTOMATA
J. E. Hopcroft
Cornell University
Ithaca, New York
R. M. Karp

University of California
Berkeley, California

ABSTRACT

An algorithm is given for determining if two finite automata
with start states are equivalent. The asymptotic running time of
the algorithm is bounded by a constant times the product of the

number of states of the larger automaton with the size of the

input alphabet.

A LINEAR ALGORITHM FOR TESTING.
EQUIVALENCE OF FINITE AUTOMATA

J. E. Hopcroft
Cornell University
Ithaca, New York
R. M. Karp
University of California
Berkeley, California
I. Introduction

The algorithms for testing equivalence of finite automata
given in most texts [1,5] have asymptotic growth rates propor-
tional to the square of the number of states. A recent algorithm
[2] minimizes the number of states in a finite automaton in
0(n log n) steps where n is the number of states. Clearly
the minimization algorithm can be used to test the equivalence of
two finite automata by treating them as a single automaton, mini-
mizing the number of states, and seeing if their respective start
states are equivalent. However, if the finite automata have start
states and one wishes solely to test equivalence, then the algo-
rithm presented here can be used and the running time is bounded
by a constant times the product of the number of states in the
larger automaton and the size of the input alphabet.

The algorithm makes use of a linear list merging algorithm
described elsewhere [3]. The linear list merging algorithm
starts with n sets, each set consisting of a single integer
between 1 and n. The set containing the integer i is given
the name i. The list merging algorithm executes two types of
instructions, a merge instruction and a find instruction. The
execution of an instruction MERGE(i,j,k) causes the set named

i and the set named j to be combined into a single set named k.

The execution of an instruction FIND(i) determines the name of
the set currently containing i. The important property of the
algorithm is that the time necessary to execute any sequence of
merge and find instructions, whose length does not exceed a con-

stant times n, is bounded by a constant times n.

II. Notation

A finite automaton M 1is a 5-tuple M = (s, I, 6, 9 F)

where S and I are finite sets of states and input symbols,

respectively; & is a function mapping S x I into S, 9, in
S is the start state and F € 5 is the set of final states.
The function &6 is extended from S x I into S to § x I*
into S in the obvious manner [4] where I* is the set of all
finite length strings of symbols from I. Let

My = (51' I, 61, Qo+ Fl) and M, = (Sz' I, 62, Py Fz)‘
be finite automata. To simplify notation we assume Sl and S2
are disjoint and define 6(q,a) = Gi(q,a) for g in Si,
1 <i < 2. BAn equivalence relation = over 5, U 5, is called

a right-invariant equivalence relation if, for all q and p

in Sl_U S, , and all a in I, q = p implies §(g,a) = §(p,a).

States q and p in s, U S, are said to be equivalent if for
*

all x in I, 8(q,x) € Fl V] F2 if and only if 6(p,x)€ F1 U Fz.

My and M2 are said to be ecuivalent if qq is.equivalent to Py

III. Algorithm for testing the equivalence of finite automata.

The algorithm for testing the equivalence of finite automata
makes use of the following observations. If My and M2 are
equivalent, then d, and p, must be equivalent. If states ¢
and p are equivalent then for each a in I, §6(g,a) and
§(p,a) must be equivalent. The algorithm starts by setting up

a set for each state, and then merging two scts whenever it is

-9 -
discovered that a state in one set must be equivalent to a state

in the other if Ml is to be equivalent to Mz. Whenever two
sets are combined, a state from each set is selected and for

each a in I, the sets containing the pair of successor states
are combined. When the point is reached where every pair of

states in the same set has its successor pair for each a in I

in a single set, the process is stopped. Ml and M2 are équiva—
lent if and only if at this point no set contains both a final and

a non final state.

Step 1l: Initialize the linear list merging algorithm with
n'= |s;| + |s,|. That is, set up n sets each con-
taining a single element corresponding to a state in

Sl U SZ' The set containing the state g is assigned

the name q.

Step 2: Execute the instruction MERGE(qo, Pqyr po) and place

the pair (qo, po) on a pushdown store.

Step 3: While the pushdown store is nonempty do the following.
(a) Pop the top pair (ql,qz) from the pushdown store.
(b) For each a in I
(i) execute instructions FIND(G(ql,a)) and

FIND (8 (qz,a)).

(ii) Let ry and r, be the names of the lists
containing G(ql,a) and G(qz,a) respectively.
If X is not equal to Ty then execute the
. instruction MERGE(rl,rz,rz) and place the pair

(rl,rz) on the pushdown store. .

step 4: Scan the states on each list. The two finite automata
are equivalent if and only if no list contains both a

final and a non final state.

IV Analysis of the algorithm'

We assume that the algor;thm i$ executed on a random access
computer.
Theorem 1: The execution time of the algorithm for testing equiva-
lence of finite automata is bounded by a constant times the product
of the number of input symbols with the sum of the number of states
of each of the automata.
Proof: Steps 1, 2 and 4 are executed in an amount of time bounded
by a constant times n. Let m be the cardinality of the set I.
The time to execute Step 3 is bounded by a constant times m
times the number of pairs popped from the pushdown store. It remains
to show that the number of pairs popped from the pushdown store is
bounded by n. Each time a pair is placed on the pushdown store,
two sets are merged and thus the total number of sets is decreased
‘by one. Since initially there are only n sets, at most n-1
pairs are placed on the pushdown store.

For the next lemma we need the following definition. At a
given step in the execution of the algorithm, a sequence of states

Qyr 9pr eeer 9, is said to be a connecting sequence if for

1 <i<r either
(1) for all a € I G(qi,a) and 6(qi+1,a) are on the same
list, or
(2) the pair (qi, qi+l) is on the pushdown store.
States q and p are said to be joined by the connecting se-

quence q;, dy, ... Q. if q = q and p = q,.
Lemma 1: Let E be an equivalence relation on S; u s, defined
by g Ep if and only if g and p appear on the same list at
the termination of the algorithm. Then E is the coarsest right

invariant equivalence relation which identifies dy and Pg*

=5 -

Proof: Clearly E is an equivalence relation and identifies
q, and Pgy- Two lists are merged at Step 3bii only if there
exist Py and Py already on the same list, and an a in
I such that Gl(pl,a) and 62(p2,a) are on different lists.
Hence the algorithm does not make too many identifications.
That- E is right invariant can be proved by induction

as follows. Induction hypothesis: Immediately prior to the

kth execution of the body of the while statement in Step 3 if
states g and p are on the same list then q and p are
joined by a connecting sequence.

Clearly the induction hypothesis is true the first time
the body of the while statement is executed since 9 and Pq
are the only states which are on the same list and the pair
(qo,po) is on the pushdown store. Thus 94+Pg is a connecting
sequence joining 9, and Py-

If states p and q are joined prior to the kth execu-
tion of the body of the while statement, then they are joined
after the kth execution. Whenever two lists are merged during
the kth execution, a state on the first list is joined to a
state on the second list. Assume p and q are on the same
list after the kth execution. Consider two cases.

Case 1: States p and q weré on the same list prior to the
kth execution in which case they were joined and hence remain
joined.

Case 2: States p and g end up on the same list as a result
of a sequence of merges during the kth execution. In this case

several lists have been merged into one list. Each time a pair

of lists were merged .a state in one list was joined to a state
in the other. Since the join relation is reflexive, transitive
and symmetric, every pair of elements on the new list are joined.
Thus after the kth execution states p and gq are joined.
Theorem 2: The algorithm for testing the equivalence of finite
automata is correct.
Proof: Combine Ml and Mz into a single automaton

My = (S, Us,, I,8, q F=F UF,) .

3
Let E' be the equivalence relation g E' p if and only if for
all x in I, 6(g,x) is in F if and only if §6(p,x) is in
F. If My is equivalent to Mz, then 95 E' Py and since E'
is right invariant, then E' must be a refinement (possibly
trivial) of E. Since E' does not identify any final and non-
final states, E cannot. Therefore, if Ml and M, are equiva-
lent, no list can contain both a final and nonfinal state.

It remains to show that if M1 is not equivalent to M2,
then some list must contain a final and nonfinal state. Clearly
without loss of generality we can assume there exists an x xuch
that Gl(qo,x) is in Fy and Gz(po,x) is in F,. Since E
is right invariant 61(qo,x) E éz(po,x) and hence Gl(qo,x)

g;d 62(p0,x) are on the same iist. Therefore the list contains

both a final and a nonfinal state.

Y

gl

[1]

(21

[3]

(4]

[5]

REFERENCES

Harrison, M. A., Introduction to Switching and

Automata Theory, McGraw-Hill, New York, 1965.

Hopcroft, J. E., "An N log N Algorithm for Minimizing
States in a Finite Automaton," Proceedings of the
International Symposium on the Theory of Machines

and Computations, Academic Press, New York, 1971

(pp 189-196).

Hopcroft, J. E. and J. D. Ullman, "A Linear List
Merging Algorithm," Cornell University, TR 71-111,

November, 1971.

Hopcroft, J. E. and J. D. Ullman, Formal Languages

and Their Relation to Automata, Addison-Wesley,

Reading, Massachusetts, 1969.

McCluskey, E. J. Introduction to the Theory of

Switching Circuits, McGraw Hill, New York, 1965.

	pdftemp/0001.tif
	pdftemp/0002.tif
	pdftemp/0003.tif
	pdftemp/0004.tif
	pdftemp/0005.tif
	pdftemp/0006.tif
	pdftemp/0007.tif
	pdftemp/0008.tif
	pdftemp/0009.tif

