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In 1962, Ginsburg raised 
impiies the re 

the question of whether regularity of the language L 

whetc 1 tv 1 &notes the length of the word w. Bn response, Yamada [S] and Chang 
independently proved that it does; and Stearns and Hartmanis [7] subsequently 
published a study of such “proportional removals” ~GXII regular languages. 
Kosaraju [2] and Seiferas [S] later extended these results to certain less-than- 
proportional “removals” from regular languages. In this note, we finally give a 
complete characterization of which prefix removals of regular languages are 
regular. 

For each binary relation r on the set of nonnegative integers and eac.9 

egular for every re 

work was s~~~~~te~ in part by t atio 
65-35293 (seconc9 author). 
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which we might refer to as SQUARE-ROOT(L) . Note th 
whether SQUARE-ROQTfL) is regular for every l&gular TSR 
whether n 2 2 PI, roughly the a’ntrer,se of & is regularity-preserv 

Similarly, we might define 

RCHJNDED-SQUARE-ROOT(L) = P((( [?~ij, n - [all )), L), 

where 1x4 denotes the greatest integer not exceeding X. 

A set Js of nonnegative integers is u.p. (ultimatdy periodic) if there is a 
positive integer p such that the following holds for aP1 but finitely many n t IV: 
n %= A C+ n + p E A. A relation r on the nonnegative integers is u.p.-presertring if 
r-‘(A) = {i I(3j E A) r(i, j)) is u.p. for every u.p. set A. 

Our main result is that a relation is regularity-preserving if and only if it is 
u.p.-preserving. Furthermore, we show that the u.p.-preserving relations include a ._. 
class of functions (the “essentially increasing u.p, reducible” functions defined 
below) shown by Siefkes f6] to be very rich. For each integer k > 1, for example, 
the functions n’ and k 1o are in the class; and the sums, products, compositions, and 
certain iterations (e.g., the exponential stack of 2’3 of height n) of functions in the 
class are in the class. 

Masaraju f4] has recently characterized the class of functions f having the 
props& that Pu, L) is comext-ftee for every context-freti language L. These 
“c.f.-preserving” functions turn out to be precisely the u.p.-preserving functtons f 
that sw5sfy the additional condition that the following set is finite far each k: 
UYn)Ef(n)C w* 

We assume the reader is familiar with the definition and basic properties of regular 
languages. (These can be found, along with further references, in [I, Chapter 31.) 

e recall two well-known results about the relationship between regular languages 
and u.p. sets. 

L is regular, then (1 x 1 1 x E L} is u.p. 

Aiwp.,thePt{xEI2* 1 /xlEA} is regular, for each finite ~l~h~~~t 2, 

L if it is 
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proof of Nersde’s theorem [l, Theorem 34 we take a deterministic finite 
automaton M that accepts L and partition X? into the equivalence classes of the 
equivalence relation “leads to the same state of as”. This gives a partition of 2? 

any regular sets L1, l l 0, Lk (one for each accessible state of 
L) = {y 1 x2y E L) whenever xl, x2 lie in the same block Li. 

to be the regular set (y 1 xy E L} obtained for every x E Li. Because 
“‘t .& zzL*U . . . U Lk, we have 

P(r,L)=(P(r,L)nL*)wdJ( (r, L)rl Lk). ’ 

Since r is u.p.-preserving, the regularity of 

P(r,L)nLi =(X EL /3y (r(iXI~lyl) & Xy EL)} 

={xELil@Y ERi) ~(l~I~lyl)l 
Y ER) r(lx191yI))nLi 

={XCZ* 

for each i Msws by Lemmas 

! IKIEr-l({IYI 1 y ERi)))fl-L 

I, 2. El 

3. U.p.9degenerating reia 

Consider the re:atior;r r = {( ]$j, n - [n?J) 1 n E N}. If .1* is u.p.-preserving, then the 
regularity of L imp’& the ‘regularity of ROUNDED-SQUARE-RQQT(L), by 
Theorem 1. In f;act C* is qui$e trivially u.p.-preserving: 

If A is up., then ’ 

(1) r-‘(Ah is finite if A is finite, 
cofinite mf _.4 is infinite. 

[For each i, note that r(i, j) Solas for every j with i2 - i G j 6 i2 + i. Thus if A is 
infinite and u.p. with (Vn 2 n,) (n E A “‘;3 n + p E A), then (3j E A)@, j) holds 
for every i so large that i2 - i 3 no, 2i 3 p.] Let us cali any relation satisfying (1) 
updegenemtin 2. 

2.Ifq, r2 are i.4 p-degenerating relatisns, then 
for etiery regdrr bqp.mge E. 

( r2, L ) is finite 

. 

reg&r sets L,, 

P(.-J)= (J ({x a* 1 IxIEr-“({lyI 1 y E 
i= I 
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By definix:li<sn [and Lemmas I, 2), 

& is 
I 

finite if Rj is finite, 
cofinite (in 1;“) if Ri is infinite; 

SO L&t - 14i.C is finite for each i, But 

ssk. Consider any fixed regular language L. By Merode’s theorem again, there 
are only finitely manv distinct finite sets of the fQrm {y 1 xy E L). If we take e to 
exceed the lengths of all strings in these sets and d&ne a u.y.-degenerating relation 

rL ={(i,j)lj-iae}, 

then we get 

P(Q,, L) = {x I{y Ixy E L} is infinite}. 

y Theorem 2, therefore, every language in {P(r, L) 1 r is u.g.-degenerating} is 
merely a finite variation of the regular language {x 1 {y Ixy E L} is infinite}. 

lets. Define 

h = {(In+], n - [dj)}, ROUNDED-CUBE-ROOT(L) = P(rl, L); 

b==(([.log2nJ,n - [log2 It] )), ROUNDED-BASE-2-LOG(L) = P(rz, I); 

13= 0 to g * n, rz - log* n)}, LOG-STAR(L) = P(rf, L)? 

where 

the relations rl, r2, r3 are u.p.-degenerating. 
OOT(L) is regular, and the following 
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y Thedrem 1, the regularity-preserving functions are precise!y the u.p.-preserving 
es. In an entirely d rent context, Siefkes [6) happens to have studied the 

cI0sure properties of sses of functions closely lbelated to the class of u.p.- 
eserving functions. 

is u.p. reducible if, for every modulus 
m, there.is a period p such that the following holds for all but finitely Imany m E 

f (n + p) (mod m ) (i.e., f(n) - f (n +p) is divisible by m ). A function 
N is essentially increasing if, for every k, f (n ) 3 k for all but finitely many 

Let 

F = (f 1 f is essentially increasing and u.p. reducible}, 

G={fl$ :-* . up.-preserving;, 

H -= Jflf is u.p. reducible}. . 

Arguments in [6] show that F and H are very rich classes, and the results of this 
section show that G !ies properly between them (i.e., Fs G s H). The particular 
result Fs G shows that C is richer :han _F, so that Theorem 1 is stronger than the 
earlier result of IS]. 

of. ( G ) AssuEe f is cssentiahv increasing and u.p. reducible. Suppose A is u.p. 
Take nO, m such that (Vn 3~~) (nEA en+mEA). Thus, (Vnl,nz~no) 
( tz1 = na(mod na i 3 (nl E A e nz E A )). Take I$ p such that (Wn 2 n;) (f(m) 2 rzo 
& f(rt) = f(n + p) (mod m)). Then 

Ita 63 f(n), f(n+p)ano & f(n)=f(n+p)(modm) 

3 (f(n)EA e f(n+p)EA) 

9 (n E f-‘(A) e ra + p E f-‘(A )); 

i.e., f-‘(A) is up. 

f0 ( 0 
n = if n is even, 

n! if n is odd. 

0 ev 
ers . 
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and r~ are u.p. reducibk; and the difference af u.p. reducible functions (if it does 
nafa’ go negative) is easily seen to be u.p. reducible. Thus, the essentially increasing 
f~rr~tions ft(n)- n, fi(n) - n, f3(n)- n, and fd(n) - n are u.p. reducible. 
Theorems 3, I, therefore, the following languages are regular if is regular: 

SQUARE-ROOT(L) = P&(n) - n, L)s 

CUBE-RC)QT(L) = PV;(n) - n, L ), 

ASE-2-LOG(L) = P&(n) - n, L), 

BASE-2-WEIGHT(L) = Pv&( n) - n, L ). 

roof. (6) Assume f is up.-preserving. Let m be any positive integer. Then 
f-W I i 3 n (mod m)}) is u.p. for each n, 0 s n s yrt - 1. If ip is a common period 
for these m u.p. sets, then f(n) = f(n f p) (mod m) for all but finitely many n. 

(# ) For any set A that is not 

f0 { 
0 

n 
= if n E A, 

n! if t&A. 

For every rn and every n 3 m, 

u.p. (e.g., the set of primes), define 

f(n)= f(n + I)=0 (m&m), 

so f E H, On the other hand, the singleton (0) is certainly u.p., but f- $0)) = A is 
not u.p.; so fE G. Cl 

If we consider all functions f that are regularity-preserving with respect to just 
languages over a one-letter alphabet (i.e., P(f, 5 j is regular for every regular 
L c {I)“), then we get the whole class H (and thence, by Theorem 4, more than just 
the regularity-preserving functions as actrlally defined). 

’ H=wpw) 3 iegldklr for ‘every regular L E Cl}*}. 

Let f be any function. Define an essentially increasing function g by 
is closed under sum and (when the result is 

erence, the following are equivalent: f E 
(fi L) is regular for every regular L c {I}*. S 
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(c) Assume f is u.p. reducible. Then g E F, so that g is u.p.-preserving by 
heorem 3. 
Suppose L c {I}* is regular. Since g is up.-preserving, the regularity of 

Y df(ixiPiYi ~XY~O 

Y (gw)=l~Yi 492 xYf=N 

follows by Lemmas 1, 2. q 

Finally, we give a characterization (suggested by Kosardju [3]) of G as a 
restriction of H. 

Theorem 4. G = (f E H 1 f-Ii(i)) is u.p. for every j}. 

roof. (C) Assume f E 6;. By Theorem 4, f E H. Since {j} is certainly up. lor 
each j, f-‘({j]” is u.p. for each j. 

( 2 ) Assume f E H and f -*((j}) is u.p. fx e&y j. Suppose A is u.p. Take no, p 
such that 

then 

Then 

f-‘(A) f-'({j E A f j < no}) U f-'({j E A 1 j 2 4) 

A 1 jCn0})U(f-‘( U Ii ii-2 bW$) 
nEA 

no6n < no+p 

- f-‘({j 1 j < hl)) 

Because f is up. rcdacible, eat 
assumption, f ““({j}) is ri. 
set union and set diffe 

t.%e sets (i 1 f(i) = n ( od p)) is u.p. 
sets are easily seen to be closed un 
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