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1. Intreduction

In 1962, Ginsburg raised the question of whether the regularity of the language L
impiies the regularity of ’

FIRST-HALZ(L)=-{x |3y (y|=|x| & xy € L)},

where | w | denotes the length of the word w. In response, Yamada [8] and Chang
independently proved that it does; and Stearns and Hartmanis [7] subsequently
published a study of such “proportional removals” trom regular languages.
Kosaraju {2] and Seiferas [5] later extended these results to certain less-than-
propostional “removals” from regular languages. In this note, we finally give a
complete characterization of which prefix removals of regular languages are
regular.

Definition. For eacl binary relation r on the set N of nonnegative integers and each
language i., define

P(rL)={x|3y(r(x], |y]) & xy €L},

where r(i, j) indicates that the ordered pair (i, j) is in the relation r. We say that &
relation r is regularity -preserving if P(r, L) is regular for every regular language L.
By identifving each function f: N— N with the relation {(n, f(n))| n’€ N}, we give
meaning also to P(f, L) and to regularity -preserving functions.

Examples. The function f defined by f(1)= n is regularity-preserving because
P(f,L)=FIRST-HALF(L).
For f(n)= n®>—n, we get

* This work was susported in part by the National Science r-undation under Research Grants
GJ-34671 (first authoi) and GJ-35293 (second author).
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P¢,L)={x!3y (xy|=|x[ & xy L),

which we might refer to as SQUARE-ROOT(L) . Notc that the question of
whether SQUARE-ROQOT(L) is regular for every 1. gular iarguage L hinges on
whether n2— n, roughly the inverse of n, is regularity-preserving.

Sumlarly, we might define

KOUNDED-SQUARE-ROOT(L) = P({(|n#], n — [»!}, L),

where | x| denotes the greatest integer not exceeding x.

Definition. A set A of nonnegative integers is u.p. (ultimately periodic) if there is a
positive integer p such that the following holds for all but finitely many n €N:
n€ A & n+p€E€ A. A relation r on the nonnegative iniegers is u.p.-preserving if
r'’(A)={i|@3j € A) r(i,j)} is u.p. for every u.p. set A.

Our main result is that a relation is regularity—pres.:rving if and only if it is
u.p.-preserving. Furthermore, we show that the u.p.-preserving relations include a
class of functions (the ‘“‘essentially increasing u.p. reducible” functions defined
below) shown by Siefkes [6] to be very rich. For each integer k > 1, for example,
the functions n* and k" are in the class; and the sums, products, compositions, and
certain iterations {e.g., the exponential stack of 2’s of heiglit n) of functions in the
class are in the class.

Remark. Kosaraju [4] has recently charzcterized the class of functions f having the
property that P(f,L) is context-free for every context-free language L. These
“c.f.-preserving” functions turn out to be precisely the u.p.-preserving funct:ons f
that satisiy the additional condition that the following set is finite for each k:

{f(m)|f(n)=<kr}.

2. Characterization as u.p.-preserving relations

We assume the reader is familiar with the definition and basic properties of regular
languages. (These can be found, along with further references, in [1, Chapter 3].)

We recall two well-known results about the reiationship between regular languages
and u.p. sets.

Lemma 1. If L is regular, then {|x|| x €L} is u.p.

Lemma 2. If Aisu.p., then {x €Z* | [x|E A} is regular, for each finite alphabet 3.
Theqrem 1. A relation is regularity-preserving if and only if it is u.p.-preserving.

Proof. (only if) Assume r is reguiarity-preserving. Suppose A is u.p. By Lemma 2,
L ={1" |n € A}is regular. Therefore, L' =0*1 N P(r,0*1L) is regular. By Lemma

s Hz]lxELYis up. Bur {{x| | x €L} =r"(A)~{0}; so r"'(A) s u.p., too.
(1f) Azsume 7 is u.p.-preserving. Suppose L C3* is regular. Recall tha: in the
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proof of Nerode’s theorem [1, Theorem 3.1] we take a2 deterministic finite
automaton M that accepts L and partition 2* into the equivalence ciasses of the
equivalence relation “‘leads to the same state of M as’’. This gives a partition of 3*
into finitely many regular sets L,, - - -, L, (one for each accessible state of M) such
that {y |x,y € L} ={y | x,y € L} whenever x,, x; lie in the same block L. For each
i define R; to be the regular set {y | xy € L} obtained for every x € L;. Because
w*=LU--- UL, we have

P(r,L)=(P(r,L)NL,)U---U(P(r,LYN Ly).
Since r is u.p.-preserving, the regularity of
P(r,L)NL ={x € L|3y (r(x|.|y)) & xy € L)}
={xeL|@y€R)r(x]| |y}
={xe3*|@yeR) r(x|,lyDNL
={xeZ*||x|ler'{yl| yERNINL

for each i fol'sws by Lemmas 1, 2. []

3. U.p.-degenerating reiations

Consider the relatior r = {( {{ﬁj , n— |n%]) | n €N}. If r is u.p.-preserving, then the
regulaiity of L imp'izs the regularity of ROUNDED-SQUARE-ROOT(L), by
Theorem 1. In fact i is quize trivially u.p.-preserving:

If A is u.p., then '

1 AN G finite if A is finite,
@) (AN s {coﬁnite if A is infinite.

[For each i, note that r(i, j) holas for every j with i’~i<j=<i’+i Thusif A is
infinite and u.p. with Vn=n) (n € A < n+ p € A), then (3j € A)r(i,j) holds
for every i so large that i*—i = n,, 2i = p.] Let us cali any relation satisfying (1)
u.p.-degenerating.

Theorem 2. Jf r,, r, are u p.-degenerating relations, then P(r,, L)— P(r;, L) is finite
for every reguicr language L.

Proof. Let L be any reguiar language over Z. In proving Theorem 1, we found
regularsets Ly, - -+, Ly and Ry, - - -, R, over 2 such thay, for any relation r on N,

k
P(-L)=U dx€3*||x|€r(lyl |y ERDINL).
For r, r, u.p.-degenerating, define

Ly={xeZ*||x|€r/{ly| ]| y €ER}} (sisklsj<2).
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By Gefinition (and Lemmas 1, 2),

i s {ﬁnite if R, is finite,
i cofinite (in 2*) jf R, is infinite;

s¢ L;.— L, is finite for each i But

k k
P{;fl,L)" P{rg,L)‘-"— U {Li,‘ 0 L,)"' H (Lg‘zr\ Li)

i=

k

C U La- LN L)

C L’;' (L“"‘I.q"z). L—J

Remark. Consider any fired regular language L. By Nerode’s theorem again, there
are only finitely manv distinct finite sets of the form {y | xy € L}. If we take e to
exceed the lengths of ali strings in these sets and d::fine a u.p.-degenerating relation

n={G@j)lji-i=e}
then we get
P(r,,L)={x |{y|xy €L} is infinite}.
By Theorem 2, therefore, every language in {P(r,L)|r is u.p.-degenerating} is
merely a finite variation of the regular language {x |{y|xy € L} is infinite}.
Examples. Define
ro={(|n¥, n - {ni))}, ROUNDED-CUBE-ROOT(L) = P(r, L);
r,={({log:n|, n — [log,n]}}, ROUNDED-BASE-2-LOG(L)= P(r,,L);
r; = {(log* n,n —log* n)}, LOG-STAR(L)= P(r, L),

where
2

log* n = min {k [g_’;a n}.

k

Like {(|n}], n — | %3}, the relations ry, r», r; are u.p.-degenerating. If L is regular,
therefore, then ROUNDED-SQUARE-ROOT(L) is regular, and the foillowing
holds for all sufficiently long strings x:
x € ROUNDED-SQUARE-ROOT(L )< x'€ ROUNDED-CUBE-ROOT(L)
‘ & x € ROUNDED-BASE-2-LOG(L)
© x €LOG-STAR(L)

< {y|xy €L} is infinite.
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4. The cldss of regularity-preserving fenctions

By Theorem 1, the regularity-preserving functions are preciscly the u.p.-preserving
ones. In an cniirely different context, Siefkes [6] happens to have studied the
civsure properties of classes of functions closely ielated to the class of u.p.-
preserving functions.

¢finition (Siefkes [6]). A function f:N— N is u.p. reducibie if, for every modulus
m, there is a period p such that the following holds for all but finitely many n €N:
f(n)=f(n+p) (modm) (i.e., f(n)—f(n+p) is divisible by m). A function
f :N— N is essentially increasing if, for every k, f(n)= k for all but finitely many
n €N. '

Let
F ={f|f is essentially increasing and u.p. reducible},
G={f|f u.p;-preserving;-,
H =7f|f is u.p. reducible}.

Arguments in [6] show that F and H are very rich classes, and the results of this
section show that G lies properly between them (i.e., FE G £ H). The particnlar
result F & G shows that G is ricker than F, so that Theorem 1 is stronger than the
earlier result of |5].

Theorem 3. Fz G.

Proof. (C ) Assume f is essentially increasing and u.p. reducible. Suppose A is u.p.
Take no, m such that WVn=rn,) (n€EA & n+m€A). Thus, (Vn,, n,=n,)
(u=nymodm; = (€A & n; € A)). Take iy, p such that (Vn = no) (f(n) = no
& f(n)=f(n + p) (mod m)). Then

nzne=> f(n), f(n+p)=n, & f(n)=f(n +p) (modm)
> (f(n)€A & f(n+p)EA)
2 MEfA)S n+pEfT(A);

i.e., f7'(A) is u.p.
(# ) Define

_f0 if n is even,
f={a) it n i odd

Clearly f& F. For A u.p., it is easy to see that f'(A) contains either all or no even
numbers and cither oaly finitely many or all but finitely many odd numbers: in
either case, f'(Avis u.p,so fe€G. O

Examples. The functions

2

fr)=n? fin)=r’, fin)=2" fn)=2"_,
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and n are u.p. reducible; and the difference of u.p. recucible functions (if it does
not go negative) is easily seen to be u.p. reducible. Thas, the essentially increasing
fenctions fi(n)—n, fAn)—n, fi(n)—n, and fy(n)—n are u.p. reducible. By
Theorems 3, i, therefore, the following languages are regular if L is regular:

 SQUARE-ROOQT(L) = P(fi(n)- n, L),
CUBE-ROOT(L) = P(fA(n)~—n,L),
BASE-2-LOG(L)= P(fi(n)—n,L),

AT Bt ™ Bk NS N\ St

BASE-2-HEIGHT(L) = P(f(n)—n,L).
Thooren

Proof. (C) Assume f is u.p.-preserving. Let m be any positive integer. Then

f{jlj=n(modm)y}) is u.p. for each n, 0<n<m—1. If p is a common period

for these m u.p. sets, then f(n)=f(n + p) (mod m) for all but finitely many n.
(#) For any set A that is not u.p. (e.g., the set of primes), define

f(")z{?z! :: :::f
For every m and every n = m,

f(n)=f(n+1)=0 (modm),
so f € H. On the other hand, the singleton {0} is certainly u.p., but f'ii}j= A is
not u.p.; so f€ G. [J

If we consider all functions f that are regularity-preserving with respect to just
languages over a one-letter alphabet (i.e., P(f, L) is regular for every regular
L C{1}*), then we get the whole class H (and hence, by Theorem 4, more than just
the regularity-preserving functions as actually defined).

Theorem S. H = {f | P(f, L) s iegular for every regular L C{1}*}.

Proof. T.et f be any function. Define an essentially increasing function g by
g(n)=n+f(n). Because H is closed under sum and (when the result is
nonnetative-valued) difference, the following are equivalent: f € H, g € F, g € H.

(2) Assume P(f,L) is regular for every regular L C{1}*. Suppose A is u.p.
Then

g(A)={i| g(i)E A}
={i|i+f(i)EA}
=lx||xeP({ze{l}* |- €A}
is u.p. by Lemmas 2, 1. Thus, g € G C H (y Theorem 4); so f € H.
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(C) Assume f is u.p. reducible. Then g € F, so that g is u.p.-preserving by
Theorem 3.
Suppose L C {1}* is regular. Since g is u.p.-preserving, the regularity of

P,L)={x |3y (f(xD=Iy| & xy € L)}
={x |3y (g(xD=Ixy| & xy€L)}
={xe{t}*||x|€g7({iz|| z€L}}

follows by Lemmas 1, 2. [J

Finally, we give a characterization (suggested by Kosaraju [3]) of G as a
restriction of H.

Theorem 6. G ={f€ H | f'{j}) is u.p. for every j}.

Proof. (C) Assume f & G. By Theorem 4, f € H. Since {j} is certainly u.p. {or
each j, f7'({j}* is u.p. for each j.

(2) Assume f € H and f7'({j}) is u.p. for ev ery j. Suppose A is u.p. Take ng, p
such that

(Vn=n) (nEASn+p€Aj;

then
gealj=n=( U {ilj=n (modp)})={j|j<nd.
ns'::<n0+p
Then

FUAY=F'@G=A [ j<n)Uf'GEA |j=nd
=faieali<nhu(r( U U1i=n @modp))
- £ 1 <o)
=(y mam)u(( Y, ti1s=n @odpi)-(U F@in)).

neEA j<no
j<ng ng=n<ng+p

Because f is u.p. reducible, each of the sets {i | f(i)=n (modp)} is u.p. By
assumption, f'({j}) is v.p. for each j. The u.p. sets are easily seen to be closed under
set union and set difference, so f7'(A) is u.p. [J
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