
Program Analysis via Graph Reachability

Thomas Reps
University of Wisconsin

Abstract
This paper describes how a number of program-analysis problems can be solved by transforming them to
graph-reachability problems. Some of the program-analysis problems that are amenable to this treatment
include program slicing, certain dataflow-analysis problems, one version of the problem of approximating
the possible “shapes” that heap-allocated structures in a program can take on, and flow-insensitive points-to
analysis. Relationships between graph reachability and other approaches to program analysis are
described. Some techniques that go beyond pure graph reachability are also discussed.

1. Introduction
The purpose of program analysis is to ascertain information about a program without actually running the
program. For example, in classical dataflow analysis of imperative programs, the goal is to associate an
appropriate set of “dataflow facts” with each program point (i.e., with each assignment statement, call
statement, I/O statement, predicate of a loop or conditional statement, etc.). Typically, the dataflow facts
associated with a program point p describe some aspect of the execution state that holds when control
reaches p, such as available expressions, live variables, reaching definitions, etc. Information obtained
from program analysis is used in program optimizers, as well as in tools for software engineering and re-
engineering.

Program-analysis frameworks abstract on the common characteristics of some class of program-analysis
problems. Examples of analysis frameworks range from the gen/kill dataflow-analysis problems described
in many compiler textbooks to much more elaborate frameworks [25]. Typically, there is an “analysis
engine” that can find solutions to all problems that can be specified within the framework. Analyzers for
different program-analysis problems are created by “plugging in” certain details that specify the program-
analysis problem of interest (e.g., the dataflow functions associated with the nodes or edges of a program’s
control-flow graph, etc.).

For many program-analysis frameworks, an instantiation of the framework for a particular program-
analysis problem yields a set of equations. The analysis engine underlying the framework is a mechanism
for solving a particular family of equation sets (e.g., using chaotic iteration to find a least or greatest solu-
tion). For example, each forward gen/kill dataflow-analysis problem instance yields a set of equations that
are solved over a domain of finite sets, where the variables in the equations correspond to program points
and each equation is of the form valp = ((

q ∈ pred (p)
∪ valq) − killp) ∪ genp. The values killp and genp are con-

stants associated with program point p: killp represents dataflow facts “removed” by p, and genp represents
dataflow facts “created” at p.

This paper presents a program-analysis framework based on a somewhat different principle: Analysis
problems are posed as graph-reachability problems. As will be discussed below, we express (or convert)
program-analysis problems to context-free-language reachability problems (“CFL-reachability problems”),
which are a generalization of ordinary graph-reachability problems. CFL-reachability is defined in Sec-
tion 2. Some of the program-analysis problems that are amenable to this treatment include:

���

An abbreviated version of this paper appeared as an invited paper in the Proceedings of the 1997 International Symposium on Logic
Programming [84].

This work was supported in part by a David and Lucile Packard Fellowship for Science and Engineering, by NSF under grants DCR-
8552602, CCR-9100424, and CCR-9625667, by DARPA (monitored by ONR under contracts N00014-88-K-0590 and N00014-92-J-
1937), by grants from Rockwell and IBM, and by a Vilas Associate Award from the University of Wisconsin.

Author’s address: Computer Sciences Department, University of Wisconsin−Madison, 1210 W. Dayton St., Madison, WI 53706.
E-mail: reps@cs.wisc.edu
WWW: http://www.cs.wisc.edu/˜reps/

− 2 −

� Interprocedural program slicing
� Interprocedural versions of a large class of dataflow-analysis problems
� A method for approximating the possible “shapes” that heap-allocated structures can take on
� Flow-insensitive points-to analysis.

The first, second, and fourth of these applications of CFL-reachability apply to programs written in an
imperative programming language, such as C. The application of CFL-reachability to shape analysis
applies to both functional and imperative languages that permit the use of heap-allocated storage, but do
not permit destructive updating of fields.

There are a number of benefits to be gained from using graph reachability as a vantage point for studying
program-analysis problems:

� By expressing a program-analysis problem as a graph-reachability problem, we can obtain an efficient
algorithm for solving the program-analysis problem. In a case where the program-analysis problem is
expressed as a single-source ordinary graph-reachability problem, the problem can be solved in time
linear in the number of nodes and edges in the graph; in a case where the program-analysis problem is
expressed as a CFL-reachability problem, the problem can be solved in time cubic in the number of
nodes in the graph.

� The difference in asymptotic running time needed to solve ordinary reachability problems and CFL-
reachability problems provides insight into possible trade-offs between accuracy and running time for
certain program-analysis problems: Because a CFL-reachability problem can be solved in an approxi-
mate fashion by treating it as an ordinary reachability problem, this provides an automatic way to obtain
an approximate (but safe) solution, via a method that is asymptotically faster than the method for obtain-
ing the more accurate solution.

� In program optimization, most of the gains are obtained from making improvements at a program’s “hot
spots”, such as the innermost loops, which means that dataflow information is really only needed for
selected locations in the program. Similarly, software-engineering tools that use dataflow analysis often
require information only at a certain set of program points (in response to user queries, for example).
This suggests that applications that use dataflow analysis could be made more efficient by using a
demand dataflow-analysis algorithm, which determines whether a given dataflow fact holds at a given
point [11,102,78,30,49,88]. For program-analysis problems that can be expressed as CFL-reachability
problems, demand algorithms are easily obtained by solving single-source, single-target, multi-source, or
multi-target CFL-reachability problems [49].

� Graph reachability offers insight into the “O (n 3) bottleneck” that exists for certain kinds of program-
analysis problems. That is, a number of program-analysis problems are known to be solvable in time
O (n 3), but no sub-cubic-time algorithm is known. This is sometimes erroneously attributed to the need
to perform transitive closure when a problem is solved. However, because transitive closure can be per-
formed in sub-cubic time [95], this is not the correct explanation. We have long believed that, in many
cases, the real source of the O (n 3) bottleneck is that a CFL-reachability problem needs to be solved.
The constructions given in [66,67] show that this is indeed the case for certain set-constraint problems.

The source of the O (n 3) bottleneck has also been attributed to the need to solve a dynamic transitive-
closure problem. The basis for this statement is that several cubic-time algorithms for solving program-
analysis problems maintain the transitive closure of a relation in an on-line fashion (i.e., as a sequence of
insertions into the relation is performed). At the present time, no sub-cubic-time algorithm is known for
this version of the dynamic transitive-closure problem. In our opinion, the statement “a dynamic
transitive-closure problem needs to be solved” provides an operational characterization of the O (n 3)
bottleneck, whereas our alternative characterization—namely, “a CFL-reachability problem needs to be
solved”—offers a declarative characterization of the source of the O (n 3) bottleneck.

� The graph-reachability approach provides insight into the prospects for creating parallel program-
analysis algorithms. The connection between program analysis and CFL-reachability has been used to
establish a number of results that very likely imply that there are limitations on the ability to create
efficient parallel algorithms for interprocedural slicing and interprocedural dataflow analysis [82].
Specifically, it was shown that

− Interprocedural slicing is log-space complete for P.
− Interprocedural dataflow analysis is P-hard.
− Interprocedural dataflow-analysis problems that involve finite sets of dataflow facts (such as the clas-

sical “gen/kill” problems) are log-space complete for P.

− 3 −

The consequence of these results is that, unless P = NC, there do not exist algorithms for interprocedural
slicing and interprocedural dataflow analysis in which (i) the number of processors is bounded by a poly-
nomial in the input size, and (ii) the running time is bounded by a polynomial in the log of the input size.

� The graph-reachability approach offers insight into ways that more powerful machinery can be brought
to bear on program-analysis problems [78,88].

The remainder of the paper is organized into six sections, as follows: Section 2 defines CFL-reachability.
Section 3 discusses algorithms for solving CFL-reachability problems. Section 4 discusses how the graph-
reachability approach can be used to tackle interprocedural dataflow analysis, interprocedural program slic-
ing, shape analysis, and flow-insensitive points-to analysis. Section 5 concerns demand versions of
program-analysis problems. Section 6 describes some techniques that go beyond pure graph reachability.
Section 7 discusses related work.

2. Context-Free-Language Reachability Problems
The theme of this paper is that a number of program-analysis problems can be viewed as instances of a
more general problem: CFL-reachability. A CFL-reachability problem is not an ordinary reachability
problem (e.g., transitive closure), but one in which a path is considered to connect two nodes only if the
concatenation of the labels on the edges of the path is a word in a particular context-free language:

Definition 2.1. Let L be a context-free language over alphabet Σ, and let G be a graph whose edges are
labeled with members of Σ. Each path in G defines a word over Σ, namely, the word obtained by con-
catenating, in order, the labels of the edges on the path. A path in G is an L-path if its word is a member of
L. We define four varieties of CFL-reachability problems as follows:

(i) The all-pairs L-path problem is to determine all pairs of nodes n 1 and n 2 such that there exists an L-
path in G from n 1 to n 2.

(ii) The single-source L-path problem is to determine all nodes n 2 such that there exists an L-path in G
from a given source node n 1 to n 2.

(iii) The single-target L-path problem is to determine all nodes n 1 such that there exists an L-path in G
from n 1 to a given target node n 2.

(iv) The single-source/single-target L-path problem is to determine whether there exists an L-path in G
from a given source node n 1 to a given target node n 2.

�

Other variants of CFL-reachability include the multi-source L-path problem, the multi-target L-path
problem, and the multi-source/multi-target L-path problem.

Example. Consider the graph shown below, and let L be the language that consists of strings of matched
parentheses and square brackets, with zero or more e’s interspersed:

s t

[[e

e

e

e(

)

]

]]

L : matched → matched matched
| (matched)
| [matched]
| e
| ε

In this graph, there is exactly one L-path from s to t: The path goes exactly once around the cycle, and gen-
erates the word “[(e [])eee [e]]”.

�

It is instructive to consider how CFL-reachability relates to two more familiar problems:
� An ordinary graph-reachability problem can be treated as a CFL-reachability problem by labeling each

edge with the symbol e and letting L be the regular language e *. For instance, transitive closure is the
all-pairs e *-problem. (Thus, ordinary graph reachability is an example of regular-language
reachability—the special case of CFL-reachability in which the language L referred to in Definition 2.1
is a regular language.)

� The context-free-language recognition problem (CFL-recognition) answers questions of the form “Given
a string ω and a context-free language L, is ω ∈ L?” The CFL-recognition problem for ω and L can be
formulated as the following special kind of single-source/single-target CFL-reachability problem: Create
a linear graph s → . . . → t that has | ω | edges, and label the i th edge with the i th letter of ω. There is
an L-path from s to t iff ω ∈ L [100].

− 4 −

There is a general result that all CFL-reachability problems can be solved in time cubic in the number of
nodes in the graph (see Section 3). This method provides the “analysis engine” for our program-analysis
framework. Again, it is instructive to consider how the general case relates to the special cases of ordinary
reachability and CFL-recognition:

� A single-source ordinary reachability problem can be solved in time linear in the size of the graph (nodes
plus edges) using depth-first search.

� Valiant showed that CFL-recognition can be performed in less than cubic time [95]. The algorithm han-
dles CFL-reachability problems on trees and directed acyclic graphs, as well as on chain graphs. Unfor-
tunately, the algorithm does not seem to generalize to CFL-reachability problems on arbitrary graphs.

From the standpoint of program analysis, the CFL-reachability constraint is a tool that can be employed
to filter out paths that are irrelevant to the solution of an analysis problem. In many program-analysis prob-
lems, a graph is used as an intermediate representation of a program, but not all paths in the graph represent
potential execution paths. Consequently, it is desirable that the analysis results not be polluted (or polluted
as little as possible) by the presence of such paths. Although the question of whether a given path in a pro-
gram representation corresponds to a possible execution path is, in general, undecidable, in many cases cer-
tain paths can be identified as being infeasible because they correspond to “execution paths” with
mismatched calls and returns.

Specific applications of CFL-reachability to program-analysis problems are discussed at length in Sec-
tion 4. For the moment, we will content ourselves merely with an example to illustrate how a context-free
language can be used to exclude from attention paths that clearly represent infeasible computations.

In the case of interprocedural dataflow analysis, we can characterize a superset of the feasible execution
paths—and thereby eliminate from consideration a subset of the infeasible execution paths—by introducing
a context-free language (L (realizable), defined below) that mimics the call-return structure of a program’s
execution: The only paths that can possibly be feasible execution paths are those in which “returns” are
matched with corresponding “calls”. These paths are called realizable paths.

Realizable paths are defined in terms of a program’s supergraph G *, an example of which is shown in
Fig. 1. A supergraph consists of a collection of control-flow graphs—one for each procedure—one of
which represents the program’s main procedure. Each flowgraph has a unique start node and a unique exit
node. The other nodes of the flowgraph represent statements and predicates of the program in the usual
way,1 except that each procedure call in the program is represented in G * by two nodes, a call node and a
return-site node. In addition to the ordinary intraprocedural edges that connect the nodes of the individual
control-flow graphs, for each procedure call—represented, say, by call node c and return-site node r—G *

contains three edges: an intraprocedural call-to-return-site edge from c to r; an interprocedural call-to-start
edge from c to the start node of the called procedure; an interprocedural exit-to-return-site edge from the
exit node of the called procedure to r.

Let each call node in G * be given a unique index from 1 to CallSites, where CallSites is the total number
of call sites in the program. For each call site ci , label the call-to-start edge and the exit-to-return-site edge
with the symbols “(i” and “)i”, respectively. Label all other edges of G * with the symbol e. A path in G *

is a matched path iff the path’s word is in the language L (matched) of balanced-parenthesis strings (inter-
spersed with strings of zero or more e’s) generated from nonterminal realizable according to the following
context-free grammar:

matched → matched matched
| (i matched)i for 1 ≤ i ≤ CallSites
| e
| ε

A path is a realizable path iff the path’s word is in the language L (realizable):

realizable → matched realizable
| (i realizable for 1 ≤ i ≤ CallSites
| ε

The language L (realizable) is a language of partially balanced parentheses: Every right parenthesis “)i” is
���

1The nodes of a flowgraph can represent individual statements and predicates; alternatively, they can represent basic blocks.

− 5 −

� ���

declare g: int

procedure main
begin
declare x: int
read(x)
call P (x)

end

procedure P (value a : int)
begin
if (a > 0) then
read(g)
a := a − g
call P (a)
print(a, g)

fi
end

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

S.S−{x}

S.S−{g}

S.S

S.S

S.S

S.S

S.S−{g}

S.S

S.S−{g}

S.S

ENTER P
P

IF a > 0

n4

ENTER main
main

READ(x)

n1

CALL P

n2

RETURN
FROM P

n3

EXIT main
main

RETURN
FROM P

n8

EXIT P

CALL P

n7

n6

a := a − g

n5

READ(g)

PRINT(a,g)

n9

S.{x,g}

S.if (a S) or (g S)
 then S {a}
 else S−{a}

U
εε

S.S<x/a>

S.S−{a}

S.S−{a}

S.S

start

exit

Pexit

start

(

)

(

)

1

1

2

2

(a) Example program (b) Supergraph G *

���

Fig. 1. An example program and its supergraph G * . The supergraph is annotated with the dataflow functions for the
“possibly-uninitialized variables” problem. The notation S<x/a> denotes the set S with x renamed to a.

balanced by a preceding left parenthesis “(i”, but the converse need not hold.
To understand these concepts, it helps to examine a few of the paths that occur in Fig. 1.

� The path “startmain → n1 → n2 → startP → n4 → exitP → n3”, which has word “ee(1ee)1”, is a matched
path (and hence a realizable path, as well). In general, a matched path from m to n, where m and n are in
the same procedure, represents a sequence of execution steps during which the call stack may tem-
porarily grow deeper—because of calls—but never shallower than its original depth, before eventually
returning to its original depth.

� The path “startmain → n1 → n2 → startP → n4”, which has word “ee(1e”, is a realizable path but not a
matched path: The call-to-start edge n2 → startP has no matching exit-to-return-site edge. A realizable
path from the program’s start node smain to a node n represents a sequence of execution steps that ends,
in general, with some number of activation records on the call stack. The pending activation records
correspond to the unmatched (i’s in the path’s word.

� The path “startmain → n1 → n2 → startP → n4 → exitP → n8”, which has word “ee(1ee)2”, is neither a
matched path nor a realizable path: The exit-to-return-site edge exitP → n8 does not correspond to the
preceding call-to-start edge n2 → startP. This path represents an infeasible execution path.

− 6 −

3. Algorithms for Solving CFL-Reachability Problems
CFL-reachability problems can be solved via a simple dynamic-programming algorithm. The grammar is
first normalized by introducing new nonterminals wherever necessary so that the right-hand side of each
production has at most two symbols (either terminals or nonterminals). Then, additional edges are added to
the graph according to the patterns shown in Fig. 2 until no more edges can be added. The solution is
obtained from the edges labeled with the grammar’s root symbol. When an appropriate worklist algorithm
is used (together with suitable indexing structures), the running time of this algorithm is cubic in the
number of nodes in the graph [66]. (This algorithm can be thought of as a generalization of the CYK algo-
rithm for CFL-recognition [101].)

Although all CFL-reachability problems can be solved in time cubic in the number of graph nodes, one
can sometimes do asymptotically better than this by taking advantage of the structure of the graph that
arises in a program-analysis problem. For instance, for the class of dataflow-analysis problems discussed
in Section 4.1, the number of graph nodes is ND, where N is the number of nodes in the program’s super-
graph and D is the size of the universe of dataflow facts. However, by taking advantage of some special
structural properties of the graph, the CFL-reachability problems that arise from the construction described
in Section 4.1 can be solved in time O (ED 3), where E is the number of edges in the program’s supergraph,
which is asymptotically better than the general-case time bound of O (N 3D 3) [81,49]. A similar improve-
ment over the general-case time bound can be obtained for the interprocedural-slicing problem, discussed
in Section 4.2 [77].

Another way of approaching CFL-reachability problems stems from the observation that CFL-
reachability problems correspond to a restricted class of Datalog programs, so-called “chain programs”:
Each edge m → n labeled e in the graph is represented by a fact “e (m,n).”; each production of the form

p → q 0 q 1
. . . qi

. . . qk

in the context-free grammar (where the qi are either terminals or nonterminals) is encoded as a chain rule,
i.e., a rule of the form

p (X,Y) :− q 0(X,Z 1), q 1(Z 1,Z 2), . . . , qi(Zi ,Zi +1), . . . , qk(Zk ,Y).

A CFL-reachability problem can be solved using bottom-up semi-naive evaluation of the chain program
[100]. This observation provides a way for program-analysis tools to take advantage of the methods
developed in the logic-programming and deductive-database communities for the efficient evaluation of
recursive queries in deductive databases, such as tabulation [96] and the Magic-sets transformation
[86,13,17,94]. For instance, algorithms for demand versions of program-analysis problems can be obtained
from their exhaustive counterparts essentially for free by specifying the problem with Horn clauses and
then applying the “Magic-sets” transformation [79,78,80].

Note that any Datalog problem in which all the rules are chain rules can be immediately converted to a
CFL-reachability problem. The graph is constructed from the given set of base facts (which must all
involve binary relations): For each fact “e (m,n).”, there is an edge from node m to node n, labeled e. Each
Datalog rule of the form

p (X,Y) :− q 0(X,Z 1), q 1(Z 1,Z 2), . . . , qi(Zi ,Zi +1), . . . , qk(Zk ,Y).

is converted to a context-free-grammar production of the form

� ���

A A

B B C

A
(a) A → ε (b) A → B (c) A → B C

���

Fig. 2. Patterns for adding edges to solve a CFL-reachability problem. Symbols B and C are either terminals or nonter-
minals. In each case, the dotted edge labeled with nonterminal A is added to the graph.

− 7 −

p → q 0 q 1
. . . qi

. . . qk

We will make use of this transformation in Section 4.4.

4. Four Examples
In this section, we show how four program-analysis problems can be transformed into CFL-reachability
problems. The first three problems discussed illustrate the use of only a limited class of context-free
languages; our constructions make use of partially balanced parenthesis problems, similar to the language
L (realizable) defined in Section 2 (see Sections 4.1−4.3). The application of CFL-reachability to flow-
insensitive points-to analysis, presented in Section 4.4, provides an example of a program-analysis problem
that can be solved by expressing it as an L-path problem, where L is a context-free language that is some-
thing other than a language of partially balanced parentheses (see also [66,67]).

4.1. Interprocedural Dataflow Analysis

Dataflow analysis is concerned with determining an appropriate dataflow value to associate with each point
p in a program to summarize (safely) some aspect of the execution state that holds when control reaches p.
To define an instance of a dataflow problem, one needs

� The supergraph for the program.
� A domain V of dataflow values. Each point in the program is to be associated with some member of V.
� A meet operator

������
, used for combining information obtained along different paths.

� An assignment of dataflow functions (of type V → V) to the edges of the supergraph.

Example. In Fig. 1, the supergraph G * is annotated with the dataflow functions for the “possibly-
uninitialized variables” problem. The possibly-uninitialized variables problem is to determine, for each
node n in G *, a set of program variables that may be uninitialized just before execution reaches n. Thus, V
is the power set of the set of program variables. A variable x is possibly uninitialized at n either if there is
an x-definition-free path from the start of the program to n, or if there is a path from the start of the pro-
gram to n on which the last definition of x uses some variable y that itself is possibly uninitialized. For
example, the dataflow function associated with edge n6 → n7 shown in Fig. 1 adds a to the set of possibly-
uninitialized variables after node n6 if either a or g is in the set of possibly-uninitialized variables before
node n6.

�

Below we show how a large class of interprocedural dataflow-analysis problems can be handled by
transforming them into realizable-path reachability problems. This is a non-standard treatment of dataflow
analysis. Ordinarily, a dataflow-analysis problem is formulated as a path-function problem: The path func-
tion pfq for path q is the composition of the functions that label the edges of q; the goal is to determine, for
each node n, the “meet-over-all-paths” solution: MOPn =

q ∈ Paths(start, n)

������
pfq(��� �), where Paths(start, n)

denotes the set of paths in the control-flow graph from the start node to n [54].2 MOPn represents a sum-
mary of the possible execution states that can arise at n; ��� � ∈ V is a special value that represents the execu-
tion state at the beginning of the program; pfq(� � �) represents the contribution of path q to the summarized
state at n.

In interprocedural dataflow analysis, the goal shifts from the meet-over-all-paths solution to the more
precise “meet-over-all-realizable-paths” solution: MRPn =

q ∈ RPaths(startmain, n)

������
pfq(��� �), where

RPaths(startmain, n) denotes the set of realizable paths from the main procedure’s start node to n (and “real-
izable path” means a path whose word is in the language L (realizable) defined in Section 2)
[90,20,59,55,81,30]. Although some realizable paths may also be infeasible execution paths, none of the
non-realizable paths are feasible execution paths. By restricting attention to just the realizable paths from
startmain, we thereby exclude some of the infeasible execution paths. In general, therefore, MRPn charac-
terizes the execution state at n more precisely than MOPn.

���

2For some dataflow-analysis problems, such as constant propagation, the meet-over-all-paths solution is uncomputable. A sufficient
condition for the solution to be computable is for each edge function f to distribute over the meet operator; that is, for all a,b ∈ V,
f (a 	

 	 b) = f (a) 	

 	 f (b). The problems amenable to the graph-reachability approach are distributive.

− 8 −

The interprocedural, finite, distributive, subset problems (IFDS problems) are those interprocedural
dataflow-analysis problems that involve (i) a finite set of dataflow facts, and (ii) dataflow functions that dis-
tribute over the confluence operator (either set union or set intersection, depending on the problem). Thus,
an instance of an IFDS problem consists of the following:

� A supergraph G *.
� A finite set D (the universe of dataflow facts). Each point in the program is to be associated with some

member of the domain 2D.
� An assignment of distributive dataflow functions (of type 2D → 2D) to the edges of G *.

We assume that the meet operator is union; it is not hard to show that IFDS problems in which the meet
operator is intersection can always be handled by dualizing, i.e., by transforming such a problem into a
complementary problem in which the meet operator is union [76]. (Informally, if the “must-be-X” problem
is an intersection IFDS problem, then the “may-not-be-X” problem is a union IFDS problem. Furthermore,
for each node of G *, the solution to the “must-be-X” problem is the complement, with respect to D, of the
solution to the “may-not-be-X” problem.)

The IFDS framework can be used for languages with a variety of features (including procedure calls,
parameters, global and local variables, and pointers). The call-to-return-site edges are included in G * so
that the IFDS framework can handle programs with local variables and parameters. The dataflow functions
on call-to-return-site and exit-to-return-site edges permit the information about local variables and value
parameters that holds at the call site to be combined with the information about global variables and refer-
ence parameters that holds at the end of the called procedure. The IFDS problems include, but are not lim-
ited to, the classical “gen/kill” problems (also known as the “bit-vector” or “separable” problems), e.g.,
reaching definitions, available expressions, live variables, etc. In addition, the IFDS problems include
many non-gen/kill problems, including possibly-uninitialized variables, truly-live variables [35], and
copy-constant propagation [33, pp. 660].

Expressing a problem so that it falls within the IFDS framework may, in some cases, involve a loss of
precision. For example, there may be a loss of precision involved in formulating an IFDS version of a
problem that must account for aliasing. However, once a problem has been cast as an IFDS problem, it is
possible to find the MRP solution with no further loss of precision.

One way to solve an IFDS problem is to convert it into a realizable-path reachability problem [81,49].
For each problem instance, we build an exploded supergraph G #, in which each node 〈n,d〉 represents
dataflow fact d ∈ D at supergraph node n, and each edge represents a dependence between individual
dataflow facts at different supergraph nodes.

The key insight behind this “explosion” is that a distributive function f in 2D→2D can be represented
using a graph with 2 D + 2 nodes; this graph is called f’s representation relation. Half of the nodes in this
graph represent f’s input; the other half represent its output. D of these nodes represent the “individual”
dataflow facts that form set D, and the remaining node (which we call Λ) essentially represents the empty
set. An edge Λ → d means that d is in f (S) regardless of the value of S (in particular, d is in f (∅)). An
edge d 1 → d 2 means that d 2 is not in f (∅), and is in f (S) whenever d 1 is in S. Every graph includes the
edge Λ → Λ; this is so that function composition corresponds to compositions of representation relations
(this is explained below).

Example. The main procedure shown in Fig. 1 has two variables, x and g. Therefore, the representation
relations for the dataflow functions associated with this procedure will each have six nodes. The function
associated with the edge from startmain to n1 is λS.{x,g}; that is, variables x and g are added to the set of
possibly-uninitialized variables regardless of the value of S. The representation relation for this function is
shown in Fig. 3(a).

The representation relation for the function λS.S − {x} (which is associated with the edge from n1 to n2)
is shown in Fig. 3(b). Note that x is never in the output set, and g is there iff it is in S.

�

A function’s representation relation captures the function’s semantics in the sense that the representation
relation can be used to evaluate the function. In particular, the result of applying function f to input S is the
union of the values represented by the “output” nodes in f’s representation relation that are the targets of
edges from the “input” nodes that represent either Λ or a node in S. For example, consider applying the
dataflow function λS.S − {x} to the set {x} using the representation relation shown in Fig. 3(b). There is no
edge out of the initial x node, and the only edge out of the initial Λ node is to the final Λ node, so the result
of this application is ∅. The result of applying the same function to the set {x,g} is {g}, because there is

− 9 −

� ���

x g

x g

Λ

Λ

x g

x g

Λ

Λ

x g

x g

x g

Λ

Λ

Λ

x g

x g

x g

Λ

Λ

Λ

(a) λS.{x,g} (b) λS.S − {x} (c) λS.S − {x} � λS.{x,g} (d) λS.{x,g} � λS.S − {x}
���

Fig. 3. Representation relations for two functions and the two ways of composing the functions.

an edge from the initial g node to the final g node.
The composition of two functions is represented by “pasting together” the graphs that represent the indi-

vidual functions. For example, the composition of the two functions discussed above,
λS.S − {x} � λS.{x,g}, is represented by the graph shown in Fig. 3(c). Paths in a “pasted-together” graph
represent the result of applying the composed function. For example, in Fig. 3(c) there is a path from the
initial Λ node to the final g node. This means that g is in the final set regardless of the value of S to which
the composed function is applied. There is no path from an initial node to the final x node; this means that
x is not in the final set, regardless of the value of S.

To understand the need for the Λ → Λ edges in representation relations, consider the composition of the
two example functions in the opposite order, λS.{x,g} � λS.S − {x}, which is represented by the graph
shown in Fig. 3(d). Note that both x and g are in the final set regardless of the value of S to which the com-
posed functions are applied. In Fig. 3(d), this is reflected by the paths from the initial Λ node to the final x
and g nodes. However, if there were no edge from the initial Λ node to the intermediate Λ node, there
would be no such paths, and the graph would not correctly represent the composition of the two functions.

Returning to the definition of the exploded supergraph G #: Each node n in supergraph G * is “exploded”
into D + 1 nodes in G #, and each edge m→n in G * is “exploded” into the representation relation of the
function associated with m→n. In particular:

(i) For every node n in G *, there is a node 〈n, Λ〉 in G #.
(ii) For every node n in G *, and every dataflow fact d ∈ D, there is a node 〈n,d〉 in G #.

Given function f associated with edge m→n of G *:

(iii) There is an edge in G # from node 〈m, Λ〉 to node 〈n,d〉 for every d ∈ f (∅).
(iv) There is an edge in G # from node 〈m,d 1〉 to node 〈n,d 2〉 for every d 1, d 2 such that d 2 ∈ f ({ d 1 }) and

d 2 ∈/ f (∅).
(v) There is an edge in G # from node 〈m, Λ〉 to node 〈n, Λ〉.

Because “pasted together” representation relations correspond to function composition, a path in the
exploded supergraph from node 〈m,d 1〉 to node 〈n,d 2〉 means that if dataflow fact d 1 holds at supergraph
node m, then dataflow fact d 2 holds at node n. By looking at paths that start from node 〈startmain,Λ〉 (which
represents the fact that no dataflow facts hold at the start of procedure main) we can determine which
dataflow facts hold at each node. However, we are not interested in all paths in G #, only those that
correspond to realizable paths in G *; these are exactly the realizable paths in G #. (For a proof that a
dataflow fact d is in MRPn iff there is a realizable path in G # from node 〈startmain,Λ〉 to node 〈n,d〉, see
[76].)

Example. The exploded supergraph that corresponds to the instance of the “possibly-uninitialized vari-
ables” problem shown in Fig. 1 is shown in Fig. 4. The dataflow functions are replaced by their representa-
tion relations. In Fig. 4, closed circles represent nodes that are reachable along realizable paths from
〈startmain,Λ〉. Open circles represent nodes not reachable along realizable paths. (For example, note that

− 10 −

� ���

a g

ENTER P
P

IF a > 0

n4

ENTER main
main

READ(x)

n1

CALL P

n2

RETURN
FROM P

n3

EXIT main
main

RETURN
FROM P

n8

EXIT P
P

CALL P

n7

n6

a := a − g

n5

READ(g)

PRINT(a,g)

n9

x g

x g

x g

x g

x g

a g

a g

a g

a g

a g

a g

a g

start

exit

exit

startΛ

Λ

Λ

Λ

Λ

Λ

Λ

Λ

Λ

Λ

Λ

Λ

Λ

(

)

(
1

)
1

2

2

���

Fig. 4. The exploded supergraph that corresponds to the instance of the possibly-uninitialized variables problem shown
in Fig. 1. Closed circles represent nodes of G # that are reachable along realizable paths from 〈startmain ,Λ〉. Open cir-
cles represent nodes not reachable along such paths.

nodes 〈n8,g〉 and 〈n9,g〉 are reachable only along non-realizable paths from 〈startmain,Λ〉.) This informa-
tion indicates the nodes’ values in the meet-over-all-realizable-paths solution to the dataflow-analysis prob-
lem. For instance, the meet-over-all-realizable-paths solution at node exitP is the set {g}. (That is, variable
g is the only possibly-uninitialized variable just before execution reaches the exit node of procedure P.) In
Fig. 4, this information can be obtained by determining that there is a realizable path from 〈startmain,Λ〉 to
〈exitP,g〉, but not from 〈startmain,Λ〉 to 〈exitP,a〉.

�

4.2. Interprocedural Program Slicing

Slicing is an operation that identifies semantically meaningful decompositions of programs, where the
decompositions consist of elements that are not necessarily textually contiguous [98,72,32,46,77,92,19].
Slicing, and subsequent manipulation of slices, has applications in many software-engineering tools,

− 11 −

including tools for program understanding, maintenance [34], debugging [61], testing [18,16], differencing
[45,47], specialization [83], reuse [71], and merging [45].

There are two kinds of slices: a backward slice of a program with respect to a set of program elements S
is the set of all program elements that might affect (either directly or transitively) the values of the vari-
ables used at members of S; a forward slice with respect to S is the set of all program elements that might
be affected by the computations performed at members of S. A program and one of its backward slices is
shown in Fig. 5.

The value of a variable x defined at p is directly affected by the values of the variables used at p and by
the predicates that control how many times p is executed; the value of a variable y used at p is directly
affected by assignments to y that reach p and by the predicates that control how many times p is executed.
Consequently, a slice can be obtained by following chains of dependences in the directly-affects relation.
This observation is due to Ottenstein and Ottenstein [72], who noted that program dependence graphs
(PDGs), which were originally devised for use in parallelizing and vectorizing compilers, are a convenient
data structure for slicing. The PDG for a program is a directed graph whose nodes are connected by
several kinds of edges. The nodes in the PDG represent the individual statements and predicates of the
program. The edges of a PDG represent the control and flow dependences among the procedure’s state-
ments and predicates [58,72,32]. Once a program is represented by its PDG, slices can be obtained in time
linear in the size of the PDG by solving an ordinary reachability problem on the PDG. For example, to
compute the backward slice with respect to PDG node v, find all PDG nodes from which there is a path to v
along control and/or flow edges.

The problem of interprocedural slicing concerns how to determine a slice of an entire program, where
the slice crosses the boundaries of procedure calls. For this purpose, it is convenient to use system depen-
dence graphs (SDGs), which are a variant of PDGs extended to handle multiple procedures [46]. An SDG
consists of a collection of procedure dependence graphs (which we will refer to as PDGs)—one for each
procedure, including the main procedure. In addition to nodes that represent the assignment statements,
I/O statements, and predicates of a procedure, each call statement is represented in the procedure’s PDG by

� ���

int add(a, b)
int a, b;
{
return(a + b);

}
void main()
{
int sum, i;
sum = 0;
i = 1;
while (i < 11) {
sum = add(sum,i);
i = add(i,1);

}
printf("sum=%d\n",sum);
printf("i=%d\n",i);

}

int add(a, b)
int a, b;
{
return(a + b);

}
void main()
{
int
���� �����
� ����� i;

� �� �����������
� �����������
i = 1;
while (i < 11) {� ��������������������������
�������������������������
i = add(i,1);

}� �� �����������������������������
� �����������������������������
printf("i=%d\n",i);

}

enter

i ret

call

sum i

in

in in

= 1b inin

= 1= 0

= sum ret= =

= =

=
in

=a sum

a a b b

call

(
1

(
1

(
1 (

(
2

(
2

2

1
)

)
2

ret = a+b

printfprintf

Edge Key
control edge

flow edge
edge in the slicecall, parameter−in, or

parameter−out edge

b i

sum i

add add

while i<11

enter main

a i

add

���

Fig. 5. A program, the slice of the program with respect to the statement printf(“i = %d\n”, i), and the program’s sys-
tem dependence graph. In the slice, the starting point for the slice is shown in italics, and the empty boxes indicate
where program elements have been removed from the original program. In the dependence graph, the edges shown in
boldface are the edges in the slice.

− 12 −

a call node and by a collection of actual-in and actual-out nodes: There is an actual-in node for each actual
parameter; there is an actual-out node for the return value (if any) and for each value-result parameter that
might be modified during the call. Similarly, procedure entry is represented by an entry node and a collec-
tion of formal-in and formal-out nodes. (Global variables are treated as “extra” value-result parameters,
and thus give rise to additional actual-in, actual-out, formal-in, and formal-out nodes.) The edges of a PDG
represent the control and flow dependences in the usual way. The PDGs are connected together to form the
SDG by call edges (which represent procedure calls, and run from a call node to an entry node) and by
parameter-in and parameter-out edges (which represent parameter passing, and which run from an actual-
in node to the corresponding formal-in node, and from a formal-out node to all corresponding actual-out
nodes, respectively). In Fig. 5, the graph shown on the right is the SDG for the program that appears on the
left.

It should be noted that SDGs are really a class of program representations, and there is a sense in which
the term “SDG” has a generic meaning: To represent programs in different programming languages one
would use different kinds of PDGs, depending on the features and constructs of the given language. A
large body of work exists concerning techniques for building dependence graphs for a wide variety of
programming-language features and constructs. For example, previous work has addressed arrays
[14,99,63,36,73,74], reference parameters [46], pointers [60,44,21,87], and non-structured control flow
[12,22,2].

The issue of how to create appropriate PDGs/SDGs is mostly orthogonal to the issue of how to slice
them. Once an SDG has been constructed, slicing can be formulated as a CFL-reachability problem.

One algorithm for interprocedural slicing was presented in Weiser’s original paper on slicing [98]. This
algorithm is equivalent to solving an ordinary reachability problem on the SDG. However, Weiser’s algo-
rithm is imprecise in the sense that it may report effects that are transmitted through paths that have
mismatched calls and returns (and hence do not represent feasible execution paths). The slices obtained in
this way may include unwanted components. For example, there is a path in the SDG shown in Fig. 5 from
the node of procedure main labeled “sum = 0” to the node of main labeled “printf i.” However, this path
corresponds to an “execution” in which procedure add is called from the first call site in main, but returns
to the second call site in main. This could never happen, and so the node labeled “sum = 0” should not be
included in the slice with respect to the node labeled “printf i”.

Although it is undecidable whether a path in the SDG actually corresponds to a feasible execution path,
we can again use a language of partially balanced parentheses to exclude from consideration paths in which
calls and returns are mismatched. The parentheses are defined as follows: Let each call node in SDG G be
given a unique index from 1 to CallSites, where CallSites is the total number of call sites in the program.
For each call site ci , label the outgoing parameter-in edges and the incoming parameter-out edges with the
symbols “(i” and “)i”, respectively; label the outgoing call edge with “(i”. Label all other edges in G with
the symbol e. (See Fig. 5.)

Slicing is slightly different from the CFL-reachability problems defined in Definition 2.1. For instance, a
backward slice with respect to a given target node t consists of the set of nodes that lie on a realizable path
from the entry node of main to t (cf. Definition 2.1). However, as long as we are dealing with a program
that does not have any unreachable procedures (i.e., all procedures are transitively callable from main), we
can change the backward-slicing problem into a single-target CFL-reachability problem (in the sense of
Definition 2.1(iii)). We say that a path in an SDG is a slice path iff the path’s word is in the language
L (slice):

unbalanced-right → unbalanced-right matched
| unbalanced-right)i for 1 ≤ i ≤ CallSites
| ε

slice → unbalanced-right realizable

The nodes in the backward slice with respect to t are all nodes n such that there exists an L (slice)-path
between n and t. That is, the nodes in the backward slice are the solution to the single-target L (slice)-path
problem for target node t.

To see this, suppose that r ||s is an L (slice)-path that connects n and t, where r is an L (unbalanced-
right)-path and s is an L (realizable)-path. Because of the assumption that all procedures are transitively
callable from main, there exists a path p ||q (of control and call edges) that connects the entry node of main
to n, where p is an L (realizable)-path and q “balances” r; that is, the path q ||r is an L (matched)-path. Con-
sequently, the path p ||q ||r ||s is of the form realizable||matched||realizable, which can be shown to be an
L (realizable)-path.

− 13 −

4.3. Shape Analysis

Shape analysis is concerned with finding approximations to the possible “shapes” that heap-allocated struc-
tures in a program can take on [85,50,68]. This section addresses shape analysis for imperative languages
that support non-destructive manipulation of heap-allocated objects. Similar techniques apply to shape
analysis for pure functional languages.

We assume we are working with an imperative language that has assignment statements, conditional
statements, loops, I/O statements, goto statements, and procedure calls; the parameter-passing mechanism
is either by value or value-result; recursion (direct and indirect) is permitted; the language provides atomic
data (e.g., integer, real, boolean, identifiers, etc.) and Lisp-like constructor and selector operations (nil,
cons, car, and cdr), together with appropriate predicates (equal, atom, and null), but not rplaca and rplacd
operations. Because of the latter restriction, circular structures cannot be created; however, dag structures
(as well as trees) can be created. We assume that a read statement reads just an atom and not an entire tree
or dag. For convenience, we also assume that only one constructor or selector is performed per statement
(e.g., “y := cons(car(x), y)” must be broken into two statements: “temp := car(x); y := cons(temp, y)”).
(The latter assumption is not essential, but simplifies the presentation.)

Example. An example program is shown in Fig. 6. The program first reads atoms and forms a list x; it
then traverses x to assign y the reversal of x. This example will be used throughout the remainder of this
section to illustrate our techniques.

�

A collection of dataflow equations can be used to capture an approximation to the shapes of a superset of
the terms that can arise at the various points in the program [85,50]. The domain Shape of shape descrip-

� ���

x := nil
read(z)
while z ≠ 0 do

x := cons(z, x)
read(z)

od
y := nil
while x ≠ nil do

temp := car(x)
y := cons(temp, y)
x := cdr(x)

od
y := nil

while x != nil

temp := car(x)

y := cons(temp, y)

Exit

Start

x := nil

read(z)

while z != 0

x := cons(z, x)

read(z)

tl

hd

hd −1

tl hd

tl
−1

atom

n1

n2

n3

n4

n5

n6

n7

n8

n9

n10

n11

n12

x y z temp

x y z temp

empty

T
F

T F

x := cdr(x)

���

Fig. 6. A program, its control-flow graph, and its equation dependence graph. All edges of the equation dependence
graph shown without labels have the label id . The path shown by the dotted lines is an L (hd_path)-path from atom to
node 〈n12,y〉.

− 14 −

tors is the set of selector sequences terminated by at or nil: Shape = 2L ((hd + tl)*(at + nil)) . Each sequence in
L ((hd + tl)*(at + nil)) represents a possible root-to-leaf path. Note that a single shape descriptor in Shape
may contain both the selector sequences hd.tl.at and hd.tl.hd.at, even though the two paths cannot occur
together in a single term.

Dataflow variables correspond to 〈program-point,program-variable〉 pairs. For example, if x is a pro-
gram variable and p is a point in the program, then v 〈p,x〉 is a dataflow variable. The dataflow equations are
associated with the control-flow graph’s edges; there are several dataflow equations associated with each
edge, one per program variable. The equations on an edge p → q reflect the execution actions performed
at node p. Thus, the value of a dataflow variable v 〈q,x〉 approximates the shape of x just before q executes.
The dataflow-equation schemas are shown in Fig. 7.

Procedure calls with value parameters are handled by introducing equations between dataflow variables
associated with actual parameters and dataflow variables associated with formal parameters to reflect the
binding changes that occur when a procedure is called. (By introducing equations between dataflow vari-
ables associated with formal out-parameters and dataflow variables associated with the corresponding actu-
als at the return site, call-by-value-result can also be handled.)

When solved over a suitable domain, the equations define an abstract interpretation of the program. The
question, however, is: “Over what domain are they to be solved?” One approach is to let the value of each
dataflow variable be a set of shapes (i.e., a set of sets of root-to-leaf paths) and the join operation be union
[85,50]. Functions cons, car, and cdr are appropriate functions from shape sets to shape sets. For exam-
ple, cons is defined as:

cons =df λS 1.λS 2.{ { hd.p 1 | p 1 ∈ s 1 } ∪ { tl.p 2 | p 2 ∈ s 2 } | s 1 ∈ S 1, s 2 ∈ S 2 }.

In our work, however, we use an alternative approach: The value of each dataflow variable is a single
Shape (i.e., a single set of root-to-leaf paths), and the join operation is union [68]. Functions cons, car, and
cdr are functions from Shape to Shape. For example, cons is defined as:

cons =df λS 1.λS 2.{ hd.p 1 | p 1 ∈ S 1 } ∪ { tl.p 2 | p 2 ∈ S 2 }.

With both approaches, solutions to shape-analysis equations are, in general, infinite. Thus, in practice,
there must be a way to report the “shape information” that characterizes the possible values of a program
variable at a given program point indirectly—i.e., in terms of the values of other program variables at other
program points. This indirect information can be viewed as a simplified set of equations [85], or,
equivalently, as a regular-tree grammar [50,68].

The use of domain Shape in place of 2Shape does involve some loss of precision. A feeling for the kind
of information that is lost can be obtained by considering the following program fragment:

if . . . then p : A := cons(B, C)
else q : A := cons(D, E)
fi
r: . . .

� ���

�� ���
Form of source-node p Equations associated with edge p → q� �� ���

x := a, where a is an atom v 〈q,x〉 = { at } v 〈q,z〉 = v 〈p,z〉, for all z ≠ x� ���
read(x) v 〈q,x〉 = { at } "� ���
x := nil v 〈q,x〉 = { nil } "� ���
x := y v 〈q,x〉 = v 〈p,y〉 "� ���
x := car(y) v 〈q,x〉 = car(v 〈p,y〉) "� ���
x := cdr(y) v 〈q,x〉 = cdr(v 〈p,y〉) "� ���
x := cons(y, z) v 〈q,x〉 = cons(v 〈p,y〉, v 〈p,z〉) "� ��

��
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�

� ���

Fig. 7. Dataflow-equation schemas for shape analysis.

− 15 −

The information available about the value of A at program point r in the two approaches can be represented
with the following two tree grammars:

(i) v 〈r,A〉 → cons(v 〈p,B〉, v 〈p,C〉) | cons(v 〈q,D〉, v 〈q,E〉) (ii) v 〈r,A〉 → cons(v 〈p,B〉 | v 〈q,D〉, v 〈p,C〉 | v 〈q,E〉)

Grammar (i) uses multiple cons right-hand sides for a given nonterminal [50]. In grammar (ii), the link
between branches in different cons alternatives is broken, and a single cons right-hand side is formed with
a collection of alternative nonterminals in each arm [68]. The shape descriptions are sharper with gram-
mars of type (i): With grammar (i), nonterminals v 〈p,B〉 and v 〈q,E〉 can never occur simultaneously as chil-
dren of v 〈r,A〉, whereas grammar (ii) associates nonterminal v 〈r,A〉 with trees of the form cons(v 〈p,B〉, v 〈q,E〉).

We now show how shape-analysis information can be obtained by solving CFL-reachability problems on
a graph obtained from the program’s dataflow equations.

Definition 4.1. Let EqnG be the set of equations for the shape-analysis problem on control-flow-graph
G. The associated equation dependence graph has two special nodes atom and empty, together with a
node 〈p,z〉 for each variable v 〈p,z〉 in EqnG. The edges of the graph, each of which is labeled with one of
{ id , hd , tl , hd −1, tl −1 }, are defined as shown in the following table:

�� ���
Form of equation Edge(s) in the equation dependence graph Label� �� ���
v 〈q,x〉 = { at } atom → 〈q,x〉 id� ���
v 〈q,x〉 = { nil } empty → 〈q,x〉 id� ���
v 〈q,x〉 = v 〈p,y〉 〈p,y〉 → 〈q,x〉 id� ���

〈p,y〉 → 〈q,x〉 hd
v 〈q,x〉 = cons(v 〈p,y〉, v 〈p,z〉) 〈p,z〉 → 〈q,x〉 tl� ���
v 〈q,x〉 = car(v 〈p,y〉) 〈p,y〉 → 〈q,x〉 hd −1

� ���
v 〈q,x〉 = cdr(v 〈p,y〉) 〈p,y〉 → 〈q,x〉 tl −1

� ��
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�

The equation dependence graph for this section’s example is shown in Fig. 6.
Shape-analysis information can be obtained by solving three CFL-reachability problems on the equation

dependence graph, using the following context-free grammars:

L 1: id_path → id_path id_path
| hd id_path hd −1

| tl id_path tl −1

| id
| ε

L 2: hd_path → id_path hd id_path
L 3: tl_path → id_path tl id_path

The language L 1 represents paths in which each hd (tl) is balanced by a matching hd −1 (tl −1); these paths
correspond to values transmitted along execution paths in which each cons operation (which gives rise to a
hd or tl label on an edge in the path) is eventually “taken apart” by a matching car (hd −1) or cdr (tl −1)
operation. Thus, the second and third rules of the L 1 grammar are the grammar-theoretic analogs of
McCarthy’s rules: “car(cons(x, y)) = x” and “cdr(cons(x, y)) = y” [64].

The language L 2 represents paths that are slightly unbalanced—those with one unmatched hd ; these
paths correspond to the possible values that could be accessed by performing one additional car operation
(which would extend the path with an additional hd −1). The language L 3 also represents paths that are
slightly unbalanced—in this case, those with one unmatched tl ; these paths correspond to the possible
values that could be accessed by performing one additional cdr operation (extending the path with tl −1).

Example. Suppose we are interested in characterizing the shape of program variable y just before the
exit statement of the program shown in Fig. 6. We can determine information about the possible origin of
the root constituent of y at n12 by solving the single-target L 1-path problem for 〈n12,y〉. This yields the set
{ 〈n12,y〉, 〈n8,y〉, 〈n11,y〉, empty }. This indicates that y is either nil or was allocated at n10 during an exe-
cution of the second while loop. Similarly, the solution to the single-target L 2-path problem for 〈n12,y〉 is
the set { 〈n10,temp〉, 〈n5,z〉, 〈n4,z〉, atom }. This indicates that the atom in car(y) is one originally read in
as the value of z. (See Fig. 6, which shows an L 2-path from atom to 〈n12,y〉.) Finally, the solution to the
single-target L 3-path problem for 〈n12,y〉 is the set { 〈n10,y〉, 〈n9,y〉, 〈n8,y〉, 〈n11,y〉, empty }. This indi-
cates that the tail of y is either nil or was allocated at n10 during an execution of the second while loop.

− 16 −

This information can be interpreted as the following regular-tree grammar:

〈n12,y〉 → 〈n12,y〉 | 〈n8,y〉 | 〈n11,y〉 | empty
| cons(〈n10,temp〉 | 〈n5,z〉 | 〈n4,z〉 | atom, 〈n10,y〉 | 〈n9,y〉 | 〈n8,y〉 | 〈n11,y〉 | empty)

�

4.4. Flow-Insensitive Points-To Analysis

In languages like C, analysis of the ways pointers are used in a program is crucial for obtaining good
results from static analysis. Direct use of the results from pointer analysis can allow optimizations to be
performed that would otherwise not be possible. Pointer analysis is also useful as a preprocessing step for
other static analyses, with the payback being that it permits more precise information to be obtained: In
many dataflow problems, the dataflow function at a particular point depends on the set of memory locations
that a pointer variable may point to; when a better estimate can be provided for this set, a more precise
dataflow function can be employed.

“Points-to analysis” is one approach to pointer analysis. It is concerned with determining, for each point
in the program, (a superset of) the set of variables that a pointer variable might point to during execution.
Even though points-to analysis concentrates on variables (i.e., on stack-allocated storage), heap-allocated
storage need not be completely ignored in points-to analysis. A common approach to handling heap-
allocated storage is to fold together into a single, allocation-site-specific, pseudo-variable all of the memory
locations that are allocated at an individual allocation site. For example, the C statement

s1: p = malloc(...);

would, for purposes of analysis, be treated as the statement

s1: p = &malloc_s1;

where malloc_s1 is a newly created variable.
A flow-insensitive analysis of a program is one that ignores the actual structure of the program’s

control-flow graph, and instead assumes that any statement can be executed immediately after any other
statement. (Many type-inference algorithms are examples of flow-insensitive analyses.) Flow-insensitive
points-to analyses have been developed by Andersen [9], Steensgaard [91], and Shapiro and Horwitz [89].

In this section, we show how a variant of Andersen’s analysis, as reformulated by Shapiro and Horwitz
[89], can be expressed as a CFL-reachability problem. Throughout the section, we assume that the assign-
ment statements in the program have been normalized, by suitable introduction of temporary variables, so
that all assignment statements have one of the following four forms:

p = &q; p = q; p = *q; *p = q;

We also assume that malloc statements are handled via the transformation discussed above.
Shapiro and Horwitz reformulate Andersen’s algorithm as one that builds up a graph that represents

points-to relationships among the program’s variables [89].3 The nodes of the points-to graph represent the
program’s variables; an edge from the node for variable p to the node for variable q means “p might point
to q”. As the algorithm processes the assignment statements of the program, additional edges may be
added to the points-to graph. Figure 8(b) illustrates the rules that are applied for each of the different kinds
of assignment statements. In general, statements are considered multiple times; the rules are applied itera-
tively until a graph is obtained in which the application of the appropriate rule for each statement in the
program fails to add any additional edges to the points-to graph.

Example 4.2. Suppose that the program contains the following assignment statements:

���

3Reference [89] does not actually give a full description of the method; only an example of the final points-to graph is given, and the
steps by which the graph is created are not explained.

− 17 −

� ���

� �� ���
Statement Fact generated
� �� ���
p = &q; ⇒ assignAddr(p,q).
� ���
p = q; ⇒ assign(p,q).
� ���
p = *q; ⇒ assignStar(p,q).
� ���
*p = q; ⇒ starAssign(p,q).
� ���

(a)� �� ���
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

� �� ���
Statement Effect on points-to graph Corresponding Horn-clause rule
� �� ���

p = &q; p q pointsTo(P,Q) :− assignAddr(P,Q).
� ���

p = q; p q

r

r

1

2

pointsTo(P,R) :− assign(P,Q), pointsTo(Q,R).

� ���

p = *q; p q

r

r

1

2

1

2

s

s

s
3

pointsTo(P,S) :− assignStar(P,Q), pointsTo(Q,R), pointsTo(R,S).

� ���

*p = q; p q

r

r

1

2

1

2

s

s

pointsTo(R,S) :− starAssign(P,Q), pointsTo(P,R), pointsTo(Q,S).

� ���
(b) (c)� �� ���

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

� ���

Fig. 8. Points-to analysis expressed as a Datalog program: (a) Examples of base facts generated for each of the four
statement kinds. (b) Examples illustrating how each kind of statement causes the points-to graph to be modified in the
Shapiro-Horwitz formulation of Andersen’s algorithm [89]. In each case, the dotted edges are added to the points-to
graph. (c) Horn-clause rules that express, in the form of a Datalog program, an algorithm equivalent to the Shapiro-
Horwitz formulation of Andersen’s algorithm.

a = &b;
d = &c;
d = a;
e = &a;
*e = d;
f = *e;

In this example, it happens that when the statements are processed in the order listed above, they only need
to be considered once for points-to analysis to reach quiescence. When the statements are processed in this

− 18 −

order, the points-to graph is built up as follows:
� ���

a b

e

d c

f

a b

e

d c

f

a b

e

d c

f

(1) a = &b; (2) d = &c; (3) d = a;� ���

a b

e

d c

f

a b

e

d c

f

a b

e

d c

f

(4) e = &a; (5) *e = d; (6) f = *e;� �� ���
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

In each case, the dotted edge (or edges) indicates what is added to the points-to graph when we process the
statement shown at the bottom of the box. Graph (6) is the final points-to graph; for each statement in the
program, reapplying the corresponding rule fails to add any additional edges to the points-to graph.

�

Our goal is now to show that this formulation of the problem can be reformulated as a CFL-reachability
problem. To do this, we will show that the problem can be reformulated in yet two additional ways—first
as a Datalog program, and then as a chain program.

The first step is easy: Figures 8(a) and 8(c) show how the Shapiro-Horwitz formulation of Andersen’s
algorithm can be expressed as a Datalog program. Figure 8(a) shows examples of base facts generated for
each of the four statement kinds. One such fact would be generated for each assignment statement in the
program. Figure 8(c) shows how the rules used for adding edges to the points-to graph in the Shapiro-
Horwitz formulation can be expressed as Horn clauses.

The second step—to show that this can be expressed as a chain program—is not quite so easy.4 As we
see from Figure 8(c), the first three Horn clauses are all chain rules. Unfortunately, the fourth rule does not
have the required form:

(4.3)pointsTo(R,S) :− starAssign(P,Q), pointsTo(P,R), pointsTo(Q,S).

To recast the program as a chain program, we start by rewriting the fourth rule as follows:

(4.4)pointsTo(R,S) :− pointsTo(P,R), starAssign(P,Q), pointsTo(Q,S).

This has nearly the form required, except that the order of the variables in the first literal are reversed: R
follows P, whereas to have a chain rule R has to precede P.

The way to finesse this issue is to introduce a new relation, “pointsTo
� � � � ��� �

”, in which we maintain the rever-
sal of the pointsTo relation. (This corresponds to maintaining every edge of the Shapiro-Horwitz points-to
graph in both directions, one with the label “pointsTo” and one with the label “pointsTo

� ��� � � � �

”.) This allows us
to rewrite rule (4.4) as the following chain rule:

(4.5)pointsTo(R,S) :− pointsTo
� ��� � � � �

(R,P), starAssign(P,Q), pointsTo(Q,S).

The question is now how to build up the appropriate set of pointsTo
� � � � ��� �

tuples. In Datalog, this can be done
by introducing the following rule:

(4.6)pointsTo
� � ��� � � �

(Q,P) :− pointsTo(P,Q).

However, this is unsatisfactory for our purposes because rule (4.6) is not itself a chain rule. The way to
overcome this difficulty is shown in Figure 9: Figure 9(a) shows the revised set of base facts generated for
���

4The construction we give for this step is due to David Melski [65].

− 19 −

� ���

� �� ���
Statement Facts generated
� �� ���

p = &q; ⇒
assignAddr(p,q).

assignAddr
�����������������

(q,p).
� ���

p = q; ⇒
assign(p,q).

assign
���������

(q,p).
� ���

p = *q; ⇒
assignStar(p,q).

assignStar
� ���������������

(q,p).
� ���

*p = q; ⇒
starAssign(p,q).

starAssign
� ���������������

(q,p).
� ���

(a)� �� ���
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

� �� ���
Form of statement Chain rules for inferring pointsTo tuples and pointsTo

� ��� � � � �

tuples
� �� ���

P = &Q;
pointsTo(P,Q) :− assignAddr(P,Q).

pointsTo
� � ��� � � �

(Q,P) :− assignAddr
�����������������

(Q,P).
� ���

P = Q;
pointsTo(P,R) :− assign(P,Q), pointsTo(Q,R).

pointsTo
� � ��� � � �

(R,P) :− pointsTo
� ��� � � � �

(R,Q), assign
���������

(Q,P).
� ���

P = *Q;
pointsTo(P,S) :− assignStar(P,Q), pointsTo(Q,R), pointsTo(R,S).

pointsTo
� � ��� � � �

(S,P) :− pointsTo
� � ��� � � �

(S,R), pointsTo
� � � � ��� �

(R,Q), assignStar
� ���������������

(Q,P).
� ���

*P = Q;
pointsTo(R,S) :− pointsTo

� ��� � � � �

(R,P), starAssign(P,Q), pointsTo(Q,S).

pointsTo
� � ��� � � �

(S,R) :− pointsTo
� ��� � � � �

(S,Q), starAssign
� ���������������

(Q,P), pointsTo(P,R).
� ���

(b)� �� ���
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

� ���

Fig. 9. Points-to analysis expressed as a chain program: (a) Revised set of base facts generated for each of the four
statement kinds. (b) Chain rules that express an algorithm equivalent to the Shapiro-Horwitz formulation of
Andersen’s algorithm.

each of the four statement kinds; here we have introduced four new “reversed” base relations: assignAddr
�����������������

,
assign
���������

, assignStar
� ���������������

, and starAssign
� ���������������

. Figure 9(b) shows the eight chain rules used for inferring pointsTo and
pointsTo
� � ��� � � �

tuples. The first six rules in Figure 9(b) are the first three rules from Figure 8(c) and their respec-
tive reversals:

� In addition to the rule

pointsTo(P,Q) :− assignAddr(P,Q).

we have the rule

pointsTo
� � ��� � � �

(Q,P) :− assignAddr
�����������������

(Q,P).
� In addition to the rule

− 20 −

pointsTo(P,R) :− assign(P,Q), pointsTo(Q,R).

we have the rule

pointsTo
� � ��� � � �

(R,P) :− pointsTo
� ��� � � � �

(R,Q), assign
���������

(Q,P).

Notice that in this rule (i) the order of the literals on the right-hand side is reversed, and (ii) the order of
the variables in each literal is also reversed.

� In addition to the rule

pointsTo(P,S) :− assignStar(P,Q), pointsTo(Q,R), pointsTo(R,S).

we have the rule

pointsTo
� � ��� � � �

(S,P) :− pointsTo
� � ��� � � �

(S,R), pointsTo
� � � � ��� �

(R,Q), assignStar
� ���������������

(Q,P).

Again, the order of the literals on the right-hand side is reversed, and the order of the variables in each
literal is also reversed.

In all three cases, both the new rule and the old rule are chain rules.
The eighth rule of Figure 9(b) is obtained by applying the reversal process to the seventh rule (i.e., rule

(4.5))

pointsTo(R,S) :− pointsTo
� ��� � � � �

(R,P), starAssign(P,Q), pointsTo(Q,S).

to obtain

(4.7)pointsTo
� � ��� � � �

(S,R) :− pointsTo
� ��� � � � �

(S,Q), starAssign
� ���������������

(Q,P), pointsTo(P,R).

Here, not only is the order of the literals and variables reversed, but in the final literal we have substituted

“pointsTo(P,R)” for “pointsTo
� ��� � � � �

� ��� � � � �

(P,R)”. Notice that rule (4.7) is a chain rule (i.e., all eight rules of
Figure 9(b) are chain rules).

The final step is to extract a context-free grammar from the chain program of Figure 9 by the method
discussed in Section 3:

� ���

pointsTo → assignAddr pointsTo
� � ��� � � �

→ assignAddr
�����������������

pointsTo → assign pointsTo pointsTo
� � ��� � � �

→ pointsTo
� � � � ��� �

assign
���������

pointsTo → assignStar pointsTo pointsTo pointsTo
� � ��� � � �

→ pointsTo
� � � � ��� �

pointsTo
� � � � ��� �

assignStar
� ���������������

pointsTo → pointsTo
� � � � � ���

starAssign pointsTo pointsTo
� � ��� � � �

→ pointsTo
� � � � ��� �

starAssign
� ���������������

pointsTo
� ���
��
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�

Points-to facts can now be determined by solving L (pointsTo)-reachability problems in the graph created
from the facts generated according to the table given in Figure 9(a); that is, we solve L (pointsTo)-
reachability problems in a graph whose nodes correspond to program variables, and whose edges are
labeled with the symbols assignAddr, assignAddr

�����������������

, assign, assign
���������

, assignStar, assignStar
� ���������������

, starAssign, and
starAssign
� ���������������

.

Example 4.8. The graph corresponding to the six assignment statements of Example 4.2 is

starAssign

a b

d c

f

assignAddr

e
assig

nAddr

assignAddr

as
si

gn

assignStar

(To avoid clutter, we have left out all reversed edges.) Using this graph and the grammar given above, we
can discover, for instance, that f points to both b and c:

− 21 −

� Because of the paths

a
assignAddr

b, d
assignAddr

c, and e
assignAddr

a,

there are paths

a
pointsTo

b, d
pointsTo

c, and e
pointsTo

a, respectively.
� Because of the paths

b
assignAddr

a, c
assignAddr

d, and a
assignAddr

e,

there are paths

b
pointsTo

a, c
pointsTo

d, and a
pointsTo

e, respectively.

� There is a path f
pointsTo

b because of the following path:

f
assignStar

e
pointsTo

a
pointsTo

b.

� There is a path a
pointsTo

c because of the following path:

a
pointsTo

e
starAssign

d
pointsTo

c,

and hence there is a path f
pointsTo

c because of the following path:

f
assignStar

e
pointsTo

a
pointsTo

c.
�

5. Solving Demand Versions of Program-Analysis Problems
An exhaustive dataflow-analysis algorithm associates with each point in a program a set of “dataflow facts”
that are guaranteed to hold whenever that point is reached during program execution. By contrast, a
demand dataflow-analysis algorithm determines whether a single given dataflow fact holds at a single given
point [11,102,78,30,49,88]. Demand analysis can sometimes be preferable to exhaustive analysis for the
following reasons:

� Narrowing the focus to specific points of interest. Software-engineering tools that use dataflow analysis
often require information only at a certain set of program points. Similarly, in program optimization,
most of the gains are obtained from making improvements at a program’s “hot spots”—in particular, its
innermost loops. The use of a demand algorithm has, in some cases, the potential to reduce greatly the
amount of extraneous information computed.

� Narrowing the focus to specific dataflow facts of interest. Even when dataflow information is desired for
every program point p, the full set of dataflow facts at p may not be required. For example, for the
uninitialized-variables problem we are ordinarily interested in determining only whether the variables
used at p might be uninitialized, rather than determining that information at p for all variables.

� Reducing work in preliminary phases. In problems that can be decomposed into separate phases, not all
of the information from one phase may be required by subsequent phases. For example, the MayMod
problem determines, for each call site, which variables may be modified during the call. This problem
can be decomposed into two phases: computing side effects disregarding aliases (the so-called DMod
problem), and computing alias information [15]. Given a demand (e.g., “What is the MayMod set for a
given call site c?”), a demand algorithm has the potential to reduce drastically the amount of work spent
in earlier phases by propagating only relevant demands (e.g., “What are the alias pairs (x, y) such that x
is in DMod(c)”?).

� Sidestepping incremental-updating problems. A transformation performed at one point in the program
can affect previously computed dataflow information at other points in the program. In many cases, the
old information at such points is no longer safe; the dataflow information needs to be updated before it is
possible to perform further transformations at such points. Incremental dataflow analysis could be used
to maintain complete information at all program points; however, updating all invalidated information

− 22 −

can be expensive. An alternative is to demand only the dataflow information needed to validate a pro-
posed transformation; each demand would be solved using the current program, so the answer would be
up-to-date.

� Demand analysis as a user-level operation. It is desirable to have program-development tools in which
the user can ask questions interactively about various aspects of a program [62]. Such tools are particu-
larly useful when debugging, when trying to understand complicated code, or when trying to transform a
program to execute efficiently on a parallel machine [8]. Because it is unlikely that a programmer will
ask questions about all program points, solving just the user’s sequence of demands is likely to be
significantly less costly than performing an exhaustive analysis.

Of course, determining whether a given fact holds at a given point may require determining whether other,
related facts hold at other points (and those other facts may not be “facts of interest” in the sense of the
second bullet-point above). It is desirable, therefore, for a demand-driven program-analysis algorithm to
minimize the amount of such auxiliary information computed.

For program-analysis problems that have been transformed into CFL-reachability problems, demand
algorithms are obtained for free, by solving single-source, single-target, multi-source, or multi-target CFL-
reachability problems. For instance, the problem transformation described in Section 4.1 has been used to
devise demand algorithms for interprocedural dataflow analysis [76,49,48]. Because an algorithm for solv-
ing, for example, single-target (or multi-target) reachability problems focuses on the nodes that reach the
specific target(s), it minimizes the amount of extraneous information computed.

In the case of IFDS problems, which were discussed in Section 4.1, to answer a single demand we need
to solve a single-source/single-target L (realizable)-path problem: “Is there a realizable path in G # from
node 〈startmain,Λ〉 to node 〈n,d〉?” For an exhaustive algorithm, we need to solve a single-source
L (realizable)-path problem: “What is the set of nodes 〈n,d〉 such that there is a realizable path in G # from
〈startmain,Λ〉 to 〈n,d〉?” In general, however, it is not known how to solve single-source/single-target (or
single-source/multi-target) CFL-reachability problems any faster than single-source CFL-reachability prob-
lems. However, experimental results showed that in situations when only a small number of demands are
made, or when most demands are answered yes, a demand algorithm for IDFS problems (i.e., for the
single-source/single-target or single-source/multi-target L (realizable)-path problems) runs faster than an
exhaustive algorithm (i.e., for the single-source L (realizable)-path problem) [49,48].

In the case of partially balanced parenthesis problems, it is possible to use a hybrid scheme; that is, one
in between a pure exhaustive and a pure demand-driven approach. The hybrid approach takes advantage of
the fact that there is a natural way to divide partially balanced parenthesis problems into two stages. The
first stage is carried out in an exhaustive fashion, after which individual queries are answered on a
demand-driven basis. In the description that follows, we explain the hybrid technique for backward inter-
procedural slicing [46,77]. A similar technique also applies in the case of IFDS problems.

The preprocessing step adds summary edges to the SDG. Each summary edge represents a matched path
between an actual-in and an actual-out node (where the two nodes are associated with the same call site).
Let P be the number of procedures in the program; let E be the maximum number of control and flow edges
in any procedure’s PDG; and let Params be the the maximum number of actual-in nodes in any
procedure’s PDG. There are no more than CallSites Params 2 summary edges, and the task of identifying
all summary edges can be performed in time O ((P × E × Params) + (CallSites × Params 3)) [77]. By the
augmented SDG, we mean the SDG after all appropriate summary edges have been added to it.

The second, demand-driven, stage involves only regular-reachability problems on the augmented SDG.
In the second stage, we use the following two linear grammars:

unbalanced-right′ → unbalanced-right′ summary realizable′ → summary realizable′
| unbalanced-right′ e | e realizable′
| unbalanced-right′)i 1≤i≤CallSites | (i realizable′ 1≤i≤CallSites
| ε | ε

Suppose we wish to find the backward slice with respect to SDG node n. First, we solve the single-target
L (realizable′)-path problem for node n, which yields a set of nodes S. Let S ′ be the subset of actual-out
nodes in S. The set of nodes in the slice is S together with the solution to the multi-target L (unbalanced-
right′)-path problem with respect to S ′.

An advantage of this approach is that each regular-reachability problem—and hence each slice—can be
solved in time linear in the number of nodes and edges in the augmented SDG; i.e., in time

− 23 −

O ((P × E) + (CallSites × Params 2)).
This approach is used in the Wisconsin Program-Slicing Tool, a slicing system that supports essentially

the full C language. (The system is available under license from the University of Wisconsin. It has been
successfully applied to slice programs as large as 51,000 lines.)

6. Program Analysis Using More Than Graph Reachability
The graph-reachability approach offers insight into ways that machinery more powerful than the graph-
reachability techniques described above can be brought to bear on program-analysis problems [78,88].

One way to generalize the CFL-reachability approach stems from the observation that CFL-reachability
problems correspond to chain programs, which are a restricted class of Datalog programs. The fact that
CFL-reachability problems are related to chain programs, together with the fact that chain programs are
just a special case of the logic programs to which tabulation and transformation techniques apply, suggests
that more powerful program-analysis algorithms can be obtained by going outside the class of pure chain
programs [78].

A different way to generalize the CFL-reachability approach so as to bring more powerful techniques to
bear on interprocedural dataflow analysis was presented in [88]. This method applies to problems in which
the dataflow information at a program point is represented by a finite environment (i.e., a mapping from a
finite set of symbols to a finite-height domain of values), and the effect of a program operation is captured
by a distributive “environment-transformer” function. This class of dataflow problems has been called the
Interprocedural Distributive Environment problems (or IDE problems, for short).

Two of the dataflow-analysis problems that the IDE framework handles are (decidable) variants of the
constant-propagation problem: copy-constant propagation and linear-constant propagation. The former
interprets assignment statements of the form x = 7 and y = x. The latter also interprets statements of the
form y = −2*x +5.

By means of an “explosion transformation” similar to the one utilized in Section 4.1, an interprocedural
distributive-environment-transformer problem can be transformed from a meet-over-all-realizable-paths
problem on a program’s supergraph to a meet-over-all-realizable-paths problem on a graph that is larger,
but in which every edge is labeled with a much simpler edge function (a so-called “micro-function”) [88].
Each micro-function on an edge d 1 → d 2 captures the effect that the value of symbol d 1 in the argument
environment has on the value of symbol d 2 in the result environment. Fig. 10 shows the exploded
representations of four environment-transformer functions used in constant propagation. Fig. 10(a) shows
how the identity function λenv.env is represented. Figs. 10(b)−(d) show the representations of the func-
tions λenv.env [x ||→ 7], λenv.env [y ||→ env (x)], and λenv.env [y ||→ −2*env (x)+5], which are the dataflow
functions for the statements x = 7, y = x, and y = −2*x +5, respectively. (Λ is used to represent the effects
of a function that are independent of the argument environment. Each graph includes an edge of the form
Λ → Λ, labeled with λv.v; as in Section 4.1, these edges are needed to capture function composition prop-
erly.)

Dynamic programming on the exploded supergraph can be used to find the meet-over-all-realizable-
paths solution to the original problem: An exhaustive algorithm can be used to find the values for all sym-
bols at all program points; a demand algorithm can be used to find the value for an individual symbol at a

� ���

Λ

Λ

v.vλv.vλv.vλ

x y

x y

Λ

Λ

v.vλ

v.vλλv.7

x y

x y

Λ

Λ

v.vλ v.vλ

x y

x y

v.vλ

Λ

Λ

v.vλ

λv.−2*v+5

v.vλ

x y

x y

(a) λenv.env (b) λenv.env [x ||→ 7] (c) λenv.env [y ||→ env (x)] (d) λenv.env [y ||→ −2*env (x)+5]
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

���

Fig. 10. The exploded representations of four environment-transformer functions used in constant propagation.

− 24 −

particular program point [88]. An experiment was carried out in which the exhaustive and demand algo-
rithms were used to perform constant propagation on 38 C programs, which ranged in size from 300 lines
to 6,000 lines. The experiment found that

� In contrast to previous results for numeric Fortran programs [37], linear-constant propagation found
more constants than copy-constant propagation in 6 of the 38 programs.

� The demand algorithm, when used to demand values for all uses of scalar integer variables, was faster
than the exhaustive algorithm by a factor ranging from 1.14 to about 6.

7. Related Work
This paper describes how a number of program-analysis problems can be solved by transforming them to
CFL-reachability problems. This section discusses how the CFL-reachability approach relates to previous
work on program analysis.

7.1. The Use of Graph Reachability for Analyzing Programs

A variety of work exists that has applied graph reachability (of various forms) to analysis of imperative
programs. Kou [57] and Hecht [38] gave linear-time graph-reachability algorithms for solving intrapro-
cedural “bit-vector” dataflow-analysis problems. This approach was later applied to intraprocedural bi-
directional bit-vector problems by Khedker and Dhamdhere [53]. Cooper and Kennedy used reachability
to give efficient algorithms for interprocedural side-effect analysis [23] and alias analysis [24].

The first uses of CFL-reachability for program analysis were in 1988, in Callahan’s work on flow-
sensitive side-effect analysis [20] and Horwitz, Reps, and Binkley’s work on interprocedural slicing
[43,46]. In both cases, only limited forms of CFL-reachability are employed, namely various kinds of
matched-parenthesis (Dyck) languages, and neither paper relates the work to the more general concept of
CFL-reachability. (Dyck languages had been used in earlier work on interprocedural dataflow analysis by
Sharir and Pnueli to specify that the contributions of certain kinds of infeasible execution paths should be
filtered out [90]; however, the dataflow-analysis algorithms given by Sharir and Pnueli are based on
machinery other than pure graph reachability.)

Dyck-language reachability was shown by Reps, Sagiv, and Horwitz to be of utility for a wide variety of
interprocedural program-analysis problems [76]. These ideas were elaborated on in a sequence of papers
[77,81,49], and also applied to the shape-analysis problem [80].

All of these papers use only very limited forms of CFL-reachability, namely variations on Dyck-
language reachability. Although the author became aware of the connection to the more general concept of
CFL-reachability sometime in the fall of 1994, of the papers mentioned above, only [80] mentions CFL-
reachability explicitly and references Yannakakis’s paper [100]. The construction of Melski’s presented in
Section 4.4, as well as the constructions of Melski and Reps for converting set-constraint problems to
CFL-reachability problems [66,67] show that CFL-reachability using path languages other than Dyck
languages is also of utility for program analysis.

Both the IFDS framework for interprocedural dataflow analysis [76,81,49,48] as well as the IDE frame-
work for interprocedural dataflow analysis [88], which are summarized in Sections 4.1 and 6, respectively,
are related to earlier interprocedural dataflow-analysis frameworks defined by Sharir and Pnueli [90] and
Knoop and Steffen [55]. The IFDS and IDE frameworks are both basically variants of the Sharir-Pnueli
framework with three modifications:

(i) In the case of the IFDS framework, the dataflow domain is restricted to be a subset domain 2D, where
D is a finite set; in the case of the IDE framework, the dataflow domain is restricted to be a domain of
environments.

(ii) The dataflow functions are required to be distributive.
(iii) The edge from a call node to the corresponding return-site node can have an associated dataflow func-

tion.

Conditions (i) and (ii) are restrictions that make the IFDS and IDE frameworks less general than the full
Sharir-Pnueli framework. Condition (iii), however, generalizes the Sharir-Pnueli framework and permits it
to cover programming languages in which recursive procedures have local variables and parameters (which
the Sharir-Pnueli framework does not). (A different generalization to handle recursive procedures with
local variables and parameters was proposed by Knoop and Steffen [55].)

IFDS and IDE problems can be solved by a number of previous algorithms, including the “elimination”,
“iterative”, and “call-strings” algorithms given by Sharir and Pnueli, and the algorithm of Cousot and

− 25 −

Cousot [26]. However, for general IFDS and IDE problems, both the iterative and call-strings algorithms
can take exponential time in the worst case. Knoop and Steffen [55] give an algorithm similar to Sharir
and Pnueli’s “elimination” algorithm. The efficiencies of the Sharir-Pnueli and Knoop-Steffen elimination
algorithms depend, among other things, on the way functions are represented. No representations are dis-
cussed in [90] and [55]; however, because the Sharir-Pnueli and Knoop-Steffen algorithms manipulate
functions as a whole, rather than pointwise, they are not as efficient as the algorithms presented in [81] and
[88].

Recently, Ramalingam has shown how a framework very similar to the IDE framework can be used to
develop a theory of “dataflow frequency analysis”, in which information is obtained about how often and
with what probability a dataflow fact holds true during program execution [75].

Holley and Rosen investigated “qualified” dataflow analysis problems, where “qualifications” are a dev-
ice to specify that only certain paths in the flow graph are to be considered [42]. They employ an “expan-
sion” phase that has some similarities to the creation of the exploded supergraph described in Section 4.1.
However, Holley and Rosen do not take advantage of distributivity to do the expansion pointwise. Further-
more, for interprocedural problems the Holley-Rosen approach is equivalent to the Sharir-Pnueli call-
strings approach.

Until very recently, work on demand-driven dataflow analysis only considered the intraprocedural case
[11,102,29]. Besides the work based on CFL-reachability discussed in Section 5, other work on demand-
driven interprocedural dataflow analysis includes [79,78,30,88].

The fact that demand algorithms are obtained for free for any program-analysis problem expressed as a
CFL-reachability problem, means that demand algorithms also exist for the shape-analysis and points-to-
analysis problems described in Section 4.3 and 4.4, respectively, as well as for certain classes of set-
constraint problems (see Section 7.3).

7.2. The Use of Logic Programming for Analyzing Programs

The use of logic programming for performing interprocedural dataflow analysis—with particular emphasis
on obtaining demand algorithms—was described by Reps [79,78]. He presented a way in which algo-
rithms that solve demand versions of interprocedural analysis problems can be obtained automatically from
their exhaustive counterparts (expressed as logic programs) by making use of the “magic-sets transforma-
tion”, a general transformation developed in the logic-programming and deductive-database communities
for creating efficient demand versions of (bottom-up) logic programs [86,13,17,94]. Reps illustrated this
approach by showing how to obtain a demand algorithm for the interprocedural “locally separable
problems”—the interprocedural versions of classical “bit-vector” or “gen-kill” problems (e.g., reaching
definitions, available expressions, live variables, etc.).

The work by D.S. Warren and others concerning the use of tabulation techniques in top-down evaluation
of logic programs [96] provides an alternative method for obtaining demand algorithms for such program-
analysis problems. Rather than applying the magic-sets transformation to a Horn-clause encoding of the
(exhaustive) dataflow-analysis algorithm and then using a bottom-up evaluator, the original
(untransformed) Horn-clause encoding can simply be evaluated by an OLDT (top-down, tabulating)
evaluator. Thus, another way to obtain implementations of demand algorithms for interprocedural dataflow
analysis, interprocedural slicing, and other CFL-reachability problems is to make use of the SUNY-Stony
Brook XSB system [97].

The algorithms described in [81] and [88] for the IFDS and IDE frameworks, respectively, have straight-
forward implementations as logic programs. Thus, demand algorithms for these frameworks can be
obtained either by applying the magic-sets transformation or by using a tabulating top-down evaluator.

There has been some previous work in which intraprocedural dataflow-analysis problems have been
expressed using Horn clauses. For instance, one of the examples in Ullman’s book shows how a logic
database can be used to solve the intraprocedural reaching-definitions problem [94, pp. 984-987].
Assmann has examined a variety of other intraprocedural program-analysis problems [10]. Although
Assmann expresses these problems using a certain kind of graph grammar, he points out that this formalism
is equivalent to Datalog.

7.3. Relationship of CFL-Reachability Problems to Set-Constraint Problems

Following earlier work by Reynolds [85] and Jones and Muchnick [50], a number of people in recent years
have explored the use of set constraints for analyzing programs. Set constraints are typically used to col-
lect a superset of the set of values that the program’s variables may hold during execution. Typically, a set

− 26 −

variable is created for each program variable at each program point; set constraints are generated that
approximate the program’s behavior; program analysis then becomes a problem of finding the least solu-
tion of the set-constraint problem. Set constraints have been used both for program analysis
[85,50,5,40,41], and for type inference [6,7].

In some papers in the literature, the value of converting set-constraint problems to graph-reachability
problems has been exploited, both from the conceptual standpoint [70], as well as from the implementation
standpoint [31].

Melski and Reps have obtained a number of results on the relationship between set constraints and graph
reachability [66]. Their results establish a relationship in both directions: They showed that CFL-
reachability problems and a subclass of what have been called definite set constraints [39] are equivalent.
That is, given a CFL-reachability problem, it is possible to construct a set-constraint problem whose answer
gives the solution to the CFL-reachability problem; likewise, given a set-constraint problem, it is possible
to construct a CFL-reachability problem whose answer gives the solution to the set-constraint problem. In
[67], these results have been extended to cover a class of set constraints that is known to be useful for
analyzing programs written in higher-order languages [40].

There are several benefits that are gained from knowing that CFL-reachability problems and certain
classes of set-constraint problems are interconvertible:

� There is an advantage from the conceptual standpoint: When confronted with a program-analysis prob-
lem, one can think and reason in terms of whichever paradigm is most appropriate. (This is analogous to
the situation one has in formal-language theory with finite-state automata and regular expressions, or
with pushdown automata and context-free grammars.) For example, as we have seen in Sections 4.1
and 4.2, CFL-reachability leads to natural formulations of interprocedural dataflow analysis and interpro-
cedural slicing. Set constraints lead to natural formulations of shape analysis [85,50]. Each of these
problems could be formulated using the (respective) opposite formalism, but it may be awkward.

� As discussed in Section 1, the interconvertibility of the two formalisms offers some insight into the
“O (n 3) bottleneck” for various program-analysis problems.

� The interconvertibility of the two formalisms allows results previously obtained for CFL-reachability
problems to be applied to set-constraint problems, and vice versa:

− CFL-reachability is known to be log-space complete for polynomial time (or “PTIME-complete”)
[1,93,82]. Because the CFL-reachability-to-set-constraint construction can be performed in log-space,
the set-constraint problems considered in [66] are also PTIME-complete. Because PTIME-complete
problems are believed not to be efficiently parallelizable (i.e., cannot be solved in polylog time on a
polynomial number of processors), this extends the class of program-analysis problems that are
unlikely to have efficient parallel algorithms.

− As discussed in Section 5, a demand algorithm computes a partial solution to a problem, when only
part of the full answer is needed. Because CFL-reachability problems can be solved in a demand-
driven fashion, Melski and Reps’s results show that, in principle, set-constraint problems can also be
solved in a demand-driven fashion. To the best of our knowledge, this had not been previously inves-
tigated in the literature on set constraints.

− Set constraints have been used for analyzing programs written in higher-order languages, whereas
applications of CFL-reachability to program analysis have been limited to first-order languages. How-
ever, recent work on the interconvertibility of CFL-reachability problems and the class of set con-
straints used in [40] for analyzing programs written in higher-order languages, shows that the CFL-
reachability framework is capable of expressing analysis problems, such as program slicing and shape
analysis, for higher-order languages [67]. In particular, one of the constructions given in [67] shows
how CFL-reachability can be applied to the problem of slicing programs written in a higher-order
language that manipulates heap-allocated data structures (but does not permit destructive updating of
fields). This problem had not been previously addressed in the literature on program slicing.

7.4. Other Applications of CFL-Reachability

Yannakakis surveys the literature up to 1990 on applications of graph-theoretic methods in database theory
[100]. He discusses many types of graph-reachability problems, including CFL-reachability.

Dolev, Even, and Karp used CFL-reachability to devise a formal model for studying the vulnerability to
intrusion by a third party of a class of two-party (“ping-pong”) protocols in distributed systems to intrusion
by a third party [28]. Although messages in the system are protected by public-key encryption, in the set-
ting studied by Dolev, Even, and Karp, the intruder

− 27 −

. . . may be a legitimate user in the network. He can intercept and alter messages, impersonate other
users or initiate instances of the protocol between himself and other users, in order to use their
responses. It is possible that through such complex manipulations he can read messages, which are
supposed to be protected, without cracking the cryptographic systems in use.

Dolev, Even, and Karp reduce the security-validation problem to a single-source/single-target CFL-
reachability problem in which labeled edges represent possible operations, and the context-free language
captures natural laws of cancellation between pairs of actions that can take place during the protocol:
encryption via user X’s encryption function cancels with decryption via X’s decryption function; decryption
via X’s decryption function cancels with encryption via X’s encryption function; the action of sender X
appending his name (i.e., X) to a message cancels with the action of a recipient stripping off the name
appended to a message and comparing the name with X; etc. A protocol is shown to be insecure if and only
if the graph contains a path whose word is in a certain language—namely, the language whose words
correspond to sequences of actions that an intruder could provoke that would reveal the contents of the
unencrypted message.

Horwitz, Reps, and Binkley pointed out a correspondence between the call structure of a program and a
context-free grammar, and between the intraprocedural transitive dependences among a PDG’s parameter
nodes and the dependences among attributes in an attribute grammar [46]. They exploited this correspon-
dence to compute the summary edges used in the hybrid (i.e., partly exhaustive, partly demand) scheme for
interprocedural slicing discussed in Section 5. More generally, the computation of IO graphs of attribute
grammars [52,27,69] and other similar approximations to the characteristic graphs of an attribute
grammar’s nonterminals that can be computed in polynomial time, such as TDS graphs of ordered attribute
grammars [51] can be expressed as CFL-reachability problems.

CFL-reachability also provides useful algorithms for a number of problems in formal-language theory,
including the following:

� Determining whether the regular language resulting from the intersection of a regular language and a
context-free language is empty. (CFL-reachability is particularly useful if the regular language is given
as a finite-state automaton, and the context-free language is given as a context-free grammar.)

� Solving the recognition problem for two-way pushdown automata, which has applications to certain
string-matching problems [56,3,4]. A two-way pushdown automaton is a pushdown automaton in which
the head reading the input tape is permitted to move in both directions (i.e., in the course of a single tran-
sition of the machine, the input head may remain where it was, move one square to the right, or move
one square to the left). A two-way pushdown automaton can either be deterministic (2DPDA) or non-
deterministic (2NPDA). The problem of 2DPDA-recognition (resp., 2NPDA-recognition) is: Given a
2DPDA (resp., 2NPDA) M and a string ω, determine whether ω ∈ L (M).

� Determining whether an input-free (deterministic or non-deterministic) pushdown automaton accepts.

Acknowledgements
This paper is based, in part, on joint work with S. Horwitz, M. Sagiv, G. Rosay, and D. Melski. Section 4.4
is based on a heretofore unpublished result by D. Melski. J. Kleinberg pointed out the use of CFL-
reachability in reference [28].

References
1. Afrati, F. and Papadimitriou, C. H., “The parallel complexity of simple chain queries,” pp. 210-214 in Proc. of

the Sixth ACM Symp. on Princ. of Database Syst., (San Diego, CA, Mar. 1987), (1987).
2. Agrawal, H., “On slicing programs with jump statements,” Proc. of the ACM SIGPLAN 94 Conf. on Prog. Lang.

Design and Implementation, (Orlando, FL, June 22-24, 1994), SIGPLAN Not. 29(6) pp. 302-312 (June 1994).
3. Aho, A.V., Hopcroft, J.E., and Ullman, J.D., The Design and Analysis of Computer Algorithms, Addison-Wesley,

Reading, MA (1974).
4. Aho, A.V., “Algorithms for finding patterns in strings,” pp. 255-300 in Handbook of Theor. Comp. Sci., Vol. A:

Algorithms and Complexity, ed. J. van Leeuwen,The M.I.T. Press, Cambridge, MA (1990).
5. Aiken, A. and Murphy, B.R., “Implementing regular tree expressions,” pp. 427-447 in Func. Prog. and Comp.

Arch., Fifth ACM Conf., (Cambridge, MA, Aug. 26-30, 1991), Lec. Notes in Comp. Sci., Vol. 523, ed. J.
Hughes,Springer-Verlag, New York, NY (1991).

6. Aiken, A. and Murphy, B.R., “Static type inference in a dynamically typed language,” pp. 279-290 in Conf. Rec.
of the Eighteenth ACM Symp. on Princ. of Prog. Lang., (Orlando, FL, Jan. 1991), ACM, New York, NY (1991).

− 28 −

7. Aiken, A. and Wimmers, E.L., “Type inclusion constraints and type inference,” pp. 31-41 in Sixth Conf. on Func.
Prog. and Comp. Arch., (Copenhagen, Denmark), (June 1993).

8. Allen, R., Baumgartner, D., Kennedy, K., and Porterfield, A., “PTOOL: A semi-automatic parallel programming
assistant,” pp. 164-170 in Proc. of the 1986 Int. Conf. on Parallel Processing, IEEE Comp. Soc. Press, Wash.,
DC (1986).

9. Andersen, L.O., “Program analysis and specialization for the C programming language,” Ph.D. diss. and Report
TOPPS D-203, Datalogisk Institut, Univ. of Copenhagen, Copenhagen, Denmark (May 1994).

10. Assmann, U., “On edge addition rewrite systems and their relevance to program analysis,” in Proc. of the 5th
Workshop on Graph Grammars and their Application to Comp. Sci., (Williamsburg, VA, Nov. 1994), Lec. Notes
in Comp. Sci., Vol. 1073, ed. J. Cuny,Springer-Verlag, New York, NY (1995).

11. Babich, W.A. and Jazayeri, M., “The method of attributes for data flow analysis: Part II. Demand analysis,” Acta
Inf. 10(3) pp. 265-272 (Oct. 1978).

12. Ball, T. and Horwitz, S., “Slicing programs with arbitrary control flow,” pp. 206-222 in Proc. of the First Int.
Workshop on Automated and Algorithmic Debugging, (Linko

..
ping, Sweden, May 1993), Lec. Notes in Comp. Sci.,

Vol. 749, Springer-Verlag, New York, NY (1993).
13. Bancilhon, F., Maier, D., Sagiv, Y., and Ullman, J., “Magic sets and other strange ways to implement logic pro-

grams,” pp. 1-15 in Proc. of the Fifth ACM Symp. on Princ. of Database Syst., (Cambridge, MA, Mar. 1986),
(1986).

14. Bannerjee, U., “Speedup of ordinary programs,” Ph.D. diss. and Tech. Rep. R-79-989, Dept. of Comp. Sci.,
Univ. of Illinois, Urbana, IL (Oct. 1979).

15. Banning, J.P., “An efficient way to find the side effects of procedure calls and the aliases of variables,” pp. 29-41
in Conf. Rec. of the Sixth ACM Symp. on Princ. of Prog. Lang., (San Antonio, TX, Jan. 29-31, 1979), ACM,
New York, NY (1979).

16. Bates, S. and Horwitz, S., “Incremental program testing using program dependence graphs,” pp. 384-396 in Conf.
Rec. of the Twentieth ACM Symp. on Princ. of Prog. Lang., (Charleston, SC, Jan. 10-13, 1993), ACM, New
York, NY (1993).

17. Beeri, C. and Ramakrishnan, R., “On the power of magic,” pp. 269-293 in Proc. of the Sixth ACM Symp. on
Princ. of Database Syst., (San Diego, CA, Mar. 1987), (1987).

18. Binkley, D., “Using semantic differencing to reduce the cost of regression testing,” pp. 41-50 in Proc. of the
IEEE Conf. on Softw. Maint. (Orlando, FL, Nov. 9-12, 1992), IEEE Comp. Soc., Wash., DC (1992).

19. Binkley, D. and Gallagher, K., “Program slicing,” in Advances in Computers, Vol. 43, ed. M.
Zelkowitz,Academic Press, San Diego, CA (1996).

20. Callahan, D., “The program summary graph and flow-sensitive interprocedural data flow analysis,” Proc. of the
ACM SIGPLAN 88 Conf. on Prog. Lang. Design and Implementation, (Atlanta, GA, June 22-24, 1988), SIG-
PLAN Not. 23(7) pp. 47-56 (July 1988).

21. Chase, D.R., Wegman, M., and Zadeck, F.K., “Analysis of pointers and structures,” Proc. of the ACM SIGPLAN
90 Conf. on Prog. Lang. Design and Implementation, (White Plains, NY, June 20-22, 1990), SIGPLAN Not.
25(6) pp. 296-310 (June 1990).

22. Choi, J.-D. and Ferrante, J., “Static slicing in the presence of GOTO statements,” ACM Trans. Program. Lang.
Syst. 16(4) pp. 1097-1113 (July 1994).

23. Cooper, K.D. and Kennedy, K., “Interprocedural side-effect analysis in linear time,” Proc. of the ACM SIGPLAN
88 Conf. on Prog. Lang. Design and Implementation, (Atlanta, GA, June 22-24, 1988), SIGPLAN Not. 23(7) pp.
57-66 (July 1988).

24. Cooper, K.D. and Kennedy, K., “Fast interprocedural alias analysis,” pp. 49-59 in Conf. Rec. of the Sixteenth
ACM Symp. on Princ. of Prog. Lang., (Austin, TX, Jan. 11-13, 1989), ACM, New York, NY (1989).

25. Cousot, P. and Cousot, R., “Abstract interpretation: A unified lattice model for static analysis of programs by
construction or approximation of fixpoints,” pp. 238-252 in Conf. Rec. of the Fourth ACM Symp. on Princ. of
Prog. Lang., (Los Angeles, CA, Jan. 17-19, 1977), ACM, New York, NY (1977).

26. Cousot, P. and Cousot, R., “Static determination of dynamic properties of recursive procedures,” pp. 237-277 in
Formal Descriptions of Programming Concepts, (IFIP WG 2.2, St. Andrews, Canada, Aug. 1977), ed. E.J.
Neuhold,North-Holland, New York, NY (1978).

27. Deransart, P., Jourdan, M., and Lorho, B., Attribute Grammars: Definitions, Systems and Bibliography, Lec.
Notes in Comp. Sci., Vol. 323, Springer-Verlag, New York, NY (1988).

28. Dolev, D, Even, S., and Karp, R.M., “On the security of ping-pong protocols,” Information and Control 55(1-
3) pp. 57-68 (1982).

29. Duesterwald, E., Gupta, R., and Soffa, M.L., “Demand-driven program analysis,” Tech. Rep. TR-93-15, Dept. of
Comp. Sci., Univ. of Pittsburgh, Pittsburgh, PA (Oct. 1993).

− 29 −

30. Duesterwald, E., Gupta, R., and Soffa, M.L., “Demand-driven computation of interprocedural data flow,” pp.
37-48 in Conf. Rec. of the Twenty-Second ACM Symp. on Princ. of Prog. Lang., (San Francisco, CA, Jan. 23-25,
1995), ACM, New York, NY (1995).

31. Fa
..
hndrich, M., Foster, J.S., Su, Z., and Aiken, A., “Partial online cycle elimination in inclusion constraint

graphs,” Proc. of the ACM SIGPLAN 98 Conf. on Prog. Lang. Design and Implementation, (Montreal, Canada,
June 17-19, 1998), pp. 85-96 ACM Press, (1998).

32. Ferrante, J., Ottenstein, K., and Warren, J., “The program dependence graph and its use in optimization,” ACM
Trans. Program. Lang. Syst. 9(3) pp. 319-349 (July 1987).

33. Fischer, C.N. and LeBlanc, R.J., Crafting a Compiler, Benjamin/Cummings Publishing Company, Inc., Menlo
Park, CA (1988).

34. Gallagher, K.B. and Lyle, J.R., “Using program slicing in software maintenance,” IEEE Trans. on Softw. Eng.
SE-17(8) pp. 751-761 (Aug. 1991).

35. Giegerich, R., Mo
..
ncke, U., and Wilhelm, R., “Invariance of approximative semantics with respect to program

transformation,” pp. 1-10 in GI 81: 11th GI Conf., Inf.-Fach. 50, Springer-Verlag, New York, NY (1981).
36. Goff, G., Kennedy, K., and Tseng, C.-W., “Practical dependence testing,” Proc. of the ACM SIGPLAN 91 Conf.

on Prog. Lang. Design and Implementation, (Toronto, Ontario, June 26-28, 1991), SIGPLAN Not. 26(6) pp.
15-29 (June 1991).

37. Grove, D. and Torczon, L., “Interprocedural constant propagation: A study of jump function implementation,”
pp. 90-99 in Proc. of the ACM SIGPLAN 93 Conf. on Prog. Lang. Design and Implementation, (Albuquerque,
NM, June 23-25, 1993), ACM, New York, NY (June 1993).

38. Hecht, M.S., Flow Analysis of Computer Programs, North-Holland, New York, NY (1977).
39. Heintze, N. and Jaffar, J., “A decision procedure for a class of set constraints,” Tech. Rep. CMU-CS-91-110,

School of Computer Science, Carnegie Mellon Univ., Pittsburgh, PA (1991).
40. Heintze, N., “Set-based analysis of ML programs,” Tech. Rep. CMU-CS-93-193, School of Computer Science,

Carnegie Mellon Univ., Pittsburgh, PA (July 1993).
41. Heintze, N. and Jaffar, J., “Set constraints and set-based analysis,” in 2nd Workshop on Principles and Practice

of Constraint Programming, (May 1994).
42. Holley, L.H. and Rosen, B.K., “Qualified data flow problems,” IEEE Trans. on Softw. Eng. SE-7(1) pp. 60-78

(Jan. 1981).
43. Horwitz, S., Reps, T., and Binkley, D., “Interprocedural slicing using dependence graphs,” Proc. of the ACM

SIGPLAN 88 Conf. on Prog. Lang. Design and Implementation, (Atlanta, GA, June 22-24, 1988), SIGPLAN Not.
23(7) pp. 35-46 (July 1988).

44. Horwitz, S., Pfeiffer, P., and Reps, T., “Dependence analysis for pointer variables,” Proc. of the ACM SIGPLAN
89 Conf. on Prog. Lang. Design and Implementation, (Portland, OR, June 21-23, 1989), SIGPLAN Not. 24(7) pp.
28-40 (July 1989).

45. Horwitz, S., Prins, J., and Reps, T., “Integrating non-interfering versions of programs,” ACM Trans. Program.
Lang. Syst. 11(3) pp. 345-387 (July 1989).

46. Horwitz, S., Reps, T., and Binkley, D., “Interprocedural slicing using dependence graphs,” ACM Trans. Program.
Lang. Syst. 12(1) pp. 26-60 (Jan. 1990).

47. Horwitz, S., “Identifying the semantic and textual differences between two versions of a program,” Proc. of the
ACM SIGPLAN 90 Conf. on Prog. Lang. Design and Implementation, (White Plains, NY, June 20-22, 1990),
SIGPLAN Not. 25(6) pp. 234-245 (June 1990).

48. Horwitz, S., Reps, T., and Sagiv, M., “Demand interprocedural dataflow analysis,” TR-1283, Comp. Sci. Dept.,
Univ. of Wisconsin, Madison, WI (Aug. 1995).

49. Horwitz, S., Reps, T., and Sagiv, M., “Demand interprocedural dataflow analysis,” SIGSOFT 95: Proc. of the
Third ACM SIGSOFT Symp. on the Found. of Softw. Eng., (Wash., DC, Oct. 10-13, 1995), ACM SIGSOFT Softw.
Eng. Notes 20(4) pp. 104-115 (1995).

50. Jones, N.D. and Muchnick, S.S., “Flow analysis and optimization of Lisp-like structures,” pp. 102-131 in Pro-
gram Flow Analysis: Theory and Applications, ed. S.S. Muchnick and N.D. Jones,Prentice-Hall, Englewood
Cliffs, NJ (1981).

51. Kastens, U., “Ordered attribute grammars,” Acta Inf. 13(3) pp. 229-256 (1980).
52. Kennedy, K. and Warren, S.K., “Automatic generation of efficient evaluators for attribute grammars,” pp. 32-49

in Conf. Rec. of the Third ACM Symp. on Princ. of Prog. Lang., (Atlanta, GA, Jan. 19-21, 1976), ACM, New
York, NY (1976).

53. Khedker, U.P. and Dhamdhere, D.M., “A generalized theory of bit vector data flow analysis,” ACM Trans. Pro-
gram. Lang. Syst. 16(5) pp. 1472-1511 (Sept. 1994).

54. Kildall, G., “A unified approach to global program optimization,” pp. 194-206 in Conf. Rec. of the First ACM
Symp. on Princ. of Prog. Lang., ACM, New York, NY (1973).

− 30 −

55. Knoop, J. and Steffen, B., “The interprocedural coincidence theorem,” pp. 125-140 in Proc. of the Fourth Int.
Conf. on Comp. Construct., (Paderborn, FRG, Oct. 5-7, 1992), Lec. Notes in Comp. Sci., Vol. 641, ed. U. Kastens
and P. Pfahler,Springer-Verlag, New York, NY (1992).

56. Knuth, D.E., Morris, J.H., and Pratt, V.R., “Fast pattern matching in strings,” SIAM J. Computing 6(2) pp.
323-350 (1977).

57. Kou, L.T., “On live-dead analysis for global data flow problems,” J. ACM 24(3) pp. 473-483 (July 1977).
58. Kuck, D.J., Kuhn, R.H., Leasure, B., Padua, D.A., and Wolfe, M., “Dependence graphs and compiler optimiza-

tions,” pp. 207-218 in Conf. Rec. of the Eighth ACM Symp. on Princ. of Prog. Lang., (Williamsburg, VA, Jan.
26-28, 1981), ACM, New York, NY (1981).

59. Landi, W. and Ryder, B.G., “Pointer-induced aliasing: A problem classification,” pp. 93-103 in Conf. Rec. of the
Eighteenth ACM Symp. on Princ. of Prog. Lang., (Orlando, FL, Jan. 1991), ACM, New York, NY (1991).

60. Larus, J.R. and Hilfinger, P.N., “Detecting conflicts between structure accesses,” Proc. of the ACM SIGPLAN 88
Conf. on Prog. Lang. Design and Implementation, (Atlanta, GA, June 22-24, 1988), SIGPLAN Not. 23(7) pp.
21-34 (July 1988).

61. Lyle, J. and Weiser, M., “Experiments on slicing-based debugging tools,” in Proc. of the First Conf. on Empiri-
cal Studies of Programming, (June 1986), Ablex Publishing Co. (1986).

62. Masinter, L.M., “Global program analysis in an interactive environment,” Tech. Rep. SSL-80-1, Xerox Palo Alto
Res. Cent., Palo Alto, CA (Jan. 1980).

63. Maydan, D.E., Hennessy, J.L., and Lam, M.S., “Efficient and exact data dependence analysis,” Proc. of the ACM
SIGPLAN 91 Conf. on Prog. Lang. Design and Implementation, (Toronto, Ontario, June 26-28, 1991), SIGPLAN
Not. 26(6) pp. 1-14 (June 1991).

64. McCarthy, J., “A basis for a mathematical theory of computation,” pp. 33-70 in Computer Programming and
Formal Systems, ed. Braffort and Hershberg,North-Holland, Amsterdam (1963).

65. Melski, D., Personal communication to T. Reps, Fall 1996.
66. Melski, D. and Reps, T., “Interconvertibility of set constraints and context-free language reachability,” pp. 74-89

in Proc. of the ACM SIGPLAN Symp. on Part. Eval. and Sem.-Based Prog. Manip. (PEPM 97), (Amsterdam, The
Netherlands, June 12-13, 1997), ACM, New York, NY (1997).

67. Melski, D. and Reps, T., “Interconvertibility of set constraints and context-free language reachability,” Theor.
Comp. Sci., (). (Accepted, pending minor revisions.)

68. Mogensen, T., “Separating binding times in language specifications,” pp. 12-25 in Fourth Int. Conf. on Func.
Prog. and Comp. Arch., (London, UK, Sept. 11-13, 1989), ACM, New York, NY (1989).

69. Mo
..
ncke, U. and Wilhelm, R., “Grammar flow analysis,” pp. 151-186 in Attribute Grammars, Applications and

Systems, (Int. Summer School SAGA, Prague, Czechoslovakia, June 1991), Lec. Notes in Comp. Sci., Vol. 545,
ed. H. Alblas and B. Melichar,Springer-Verlag, New York, NY (1991).

70. Nielson, F., Nielson, H.R., and Hankin, C., Principles of Program Analysis: Flows and Effects, Cambridge Univ.
Press, Cambridge, UK (). (In preparation.)

71. Ning, J.Q., Engberts, A., and Kozaczynski, W., “Automated support for legacy code understanding,” Commun.
ACM 37(5) pp. 50-57 (May 1994).

72. Ottenstein, K.J. and Ottenstein, L.M., “The program dependence graph in a software development environment,”
Proc. of the ACM SIGSOFT/SIGPLAN Softw. Eng. Symp. on Practical Softw. Develop. Env., (Pittsburgh, PA,
Apr. 23-25, 1984), SIGPLAN Not. 19(5) pp. 177-184 (May 1984).

73. Pugh, W., “The Omega test: A fast and practical integer programming algorithm for dependence analysis,” in
Supercomputing 1991, (Nov. 1991).

74. Pugh, W. and Wonnacott, D., “Eliminating false data dependences using the Omega test,” Proc. of the ACM SIG-
PLAN 92 Conf. on Prog. Lang. Design and Implementation, (San Francisco, CA, June 17-19, 1992), SIGPLAN
Not. 27(7) pp. 140-151 (July 1992).

75. Ramalingam, G., “Data flow frequency analysis,” Proc. of the ACM SIGPLAN 96 Conf. on Prog. Lang. Design
and Implementation, (Philadelphia, PA, May 21-24, 1996), pp. 267-277 ACM Press, (1996).

76. Reps, T., Sagiv, M., and Horwitz, S., “Interprocedural dataflow analysis via graph reachability,” TR 94-14,
Datalogisk Institut, Univ. of Copenhagen, Copenhagen, Denmark (Apr. 1994).

77. Reps, T., Horwitz, S., Sagiv, M., and Rosay, G., “Speeding up slicing,” SIGSOFT 94: Proc. of the Second ACM
SIGSOFT Symp. on the Found. of Softw. Eng., (New Orleans, LA, Dec. 7-9, 1994), ACM SIGSOFT Softw. Eng.
Notes 19(5) pp. 11-20 (Dec. 1994).

78. Reps, T., “Demand interprocedural program analysis using logic databases,” pp. 163-196 in Applications of Logic
Databases, ed. R. Ramakrishnan,Kluwer Academic Publishers, Boston, MA (1994).

79. Reps, T., “Solving demand versions of interprocedural analysis problems,” pp. 389-403 in Proc. of the Fifth Int.
Conf. on Comp. Construct., (Edinburgh, Scotland, Apr. 7-9, 1994), Lec. Notes in Comp. Sci., Vol. 786, ed. P.
Fritzson,Springer-Verlag, New York, NY (1994).

− 31 −

80. Reps, T., “Shape analysis as a generalized path problem,” pp. 1-11 in Proc. of the ACM SIGPLAN Symp. on Part.
Eval. and Sem.-Based Prog. Manip. (PEPM 95), (La Jolla, California, June 21-23, 1995), ACM, New York, NY
(1995).

81. Reps, T., Horwitz, S., and Sagiv, M., “Precise interprocedural dataflow analysis via graph reachability,” pp.
49-61 in Conf. Rec. of the Twenty-Second ACM Symp. on Princ. of Prog. Lang., (San Francisco, CA, Jan. 23-25,
1995), ACM, New York, NY (1995).

82. Reps, T., “On the sequential nature of interprocedural program-analysis problems,” Acta Inf. 33 pp. 739-757
(1996).

83. Reps, T. and Turnidge, T., “Program specialization via program slicing,” pp. 409-429 in Proc. of the Dagstuhl
Seminar on Partial Evaluation, (Schloss Dagstuhl, Wadern, Ger., Feb. 12-16, 1996), Lec. Notes in Comp. Sci.,
Vol. 1110, ed. O. Danvy, R. Glueck, and P. Thiemann,Springer-Verlag, New York, NY (1996).

84. Reps, T., “Program analysis via graph reachability,” pp. 5-19 in Proc. of ILPS ′97: Int. Logic Program. Symp.,
(Port Jefferson, NY, Oct. 12-17, 1997), ed. J. Maluszynski,The M.I.T. Press, Cambridge, MA (1997).

85. Reynolds, J.C., “Automatic computation of data set definitions,” pp. 456-461 in Information Processing 68:
Proc. of the IFIP Congress 68, North-Holland, New York, NY (1968).

86. Rohmer, R., Lescoeur, R., and Kersit, J.-M., “The Alexander method, a technique for the processing of recursive
axioms in deductive databases,” New Generation Computing 4(3) pp. 273-285 (1986).

87. Ross, J.L. and Sagiv, M., “Building a bridge between pointer aliases and program dependences,” in Proc. of the
European Symp. on Programming, (Lisbon, Portugal, April 2-3, 1998), (1998).

88. Sagiv, M., Reps, T., and Horwitz, S., “Precise interprocedural dataflow analysis with applications to constant pro-
pagation,” Theor. Comp. Sci. 167 pp. 131-170 (1996).

89. Shapiro, M. and Horwitz, S., “Fast and accurate flow-insensitive points-to analysis,” in Conf. Rec. of the Twenty-
Fourth ACM Symp. on Princ. of Prog. Lang., (Paris, France, Jan. 15-17, 1997), ACM, New York, NY (1997).

90. Sharir, M. and Pnueli, A., “Two approaches to interprocedural data flow analysis,” pp. 189-233 in Program Flow
Analysis: Theory and Applications, ed. S.S. Muchnick and N.D. Jones,Prentice-Hall, Englewood Cliffs, NJ
(1981).

91. Steensgaard, B., “Points-to analysis in almost-linear time,” pp. 32-41 in Conf. Rec. of the Twenty-Third ACM
Symp. on Princ. of Prog. Lang., (St. Petersburg, FL, Jan. 22-24, 1996), ACM, New York, NY (1996).

92. Tip, F., “A survey of program slicing techniques,” J. Program. Lang. 3 pp. 121-181 (1995).
93. Ullman, J.D. and Van Gelder, A., “Parallel complexity of logical query programs,” pp. 438-454 in Proc. of the

Twenty-Seventh IEEE Symp. on Found. of Comp. Sci., IEEE Comp. Soc., Wash., DC (1986).
94. Ullman, J.D., Principles of Database and Knowledge-Base Systems, Vol. II: The New Technologies, Computer

Science Press, Rockville, MD (1989).
95. Valiant, L.G., “General context-free recognition in less than cubic time,” J. Comp. Syst. Sci. 10(2) pp. 308-315

(Apr. 1975).
96. Warren, D.S., “Memoing for logic programs,” Commun. ACM 35(3) pp. 93-111 (Mar. 1992).
97. Warren, D.S., “XSB Logic Programming System,” Software system, Comp. Sci. Dept., State Univ. of New

York, Stony Brook, NY (1993). (Available via ftp from sbcs.sunysb.edu.)
98. Weiser, M., “Program slicing,” IEEE Trans. on Softw. Eng. SE-10(4) pp. 352-357 (July 1984).
99. Wolfe, M.J., “Optimizing supercompilers for supercomputers,” Ph.D. diss. and Tech. Rep. R-82-1105, Dept. of

Comp. Sci., Univ. of Illinois, Urbana, IL (Oct. 1982).
100. Yannakakis, M., “Graph-theoretic methods in database theory,” pp. 230-242 in Proc. of the Ninth ACM Symp. on

Princ. of Database Syst., (1990).
101. Younger, D.H., “Recognition and parsing of context-free languages in time n**3,” Inf. and Cont. 10 pp. 189-208

(1967).
102. Zadeck, F.K., “Incremental data flow analysis in a structured program editor,” Proc. of the SIGPLAN 84 Symp. on

Comp. Construct., (Montreal, Can., June 20-22, 1984), SIGPLAN Not. 19(6) pp. 132-143 (June 1984).

