
Overview Hoare Triples Proving assertions Inductive Annotation Weakest Preconditions Completeness

Floyd-Hoare Style Program Verification

Deepak D’Souza

Department of Computer Science and Automation
Indian Institute of Science, Bangalore.

2 Nov 2017

Overview Hoare Triples Proving assertions Inductive Annotation Weakest Preconditions Completeness

Outline of these lectures

1 Overview

2 Hoare Triples

3 Proving assertions

4 Inductive Annotation

5 Weakest Preconditions

6 Completeness

Overview Hoare Triples Proving assertions Inductive Annotation Weakest Preconditions Completeness

Floyd-Hoare Style of Program Verification

Robert W. Floyd: “Assigning meanings to programs” Proceedings
of the American Mathematical Society Symposia on Applied
Mathematics (1967)

C A R Hoare: “An axiomatic basis for computer programming”,
Communications of the ACM (1969).

Overview Hoare Triples Proving assertions Inductive Annotation Weakest Preconditions Completeness

Floyd-Hoare Logic

A way of asserting properties of programs.

Hoare triple: {A}P{B} asserts that “Whenever program P is
started in a state satisfying condition A, if it terminates, it will
terminate in a state satisfying condition B.”

Example assertion: {n ≥ 0} P {a = n + m}, where P is the
program:

int a := m;

int x := 0;

while (x < n) {

a := a + 1;

x := x + 1;

}

Inductive Annotation (“consistent interpretation”) (due to
Floyd)

A proof system (due to Hoare) for proving such assertions.

A way of reasoning about such assertions using the notion of
“Weakest Preconditions” (due to Dijkstra).

Overview Hoare Triples Proving assertions Inductive Annotation Weakest Preconditions Completeness

A simple programming language

skip

x := e (assignment)

if b then S elseT (if-then-else)

while b do S (while)

S ; T (sequencing)

Overview Hoare Triples Proving assertions Inductive Annotation Weakest Preconditions Completeness

Programs as State Transformers

View program P as a partial map [P] : Stores → Stores. (Assume
that Stores = Var → Z.)

All States

State s

State t

P

〈x 7→ 2, y 7→ 10, z 7→ 3〉

y := y + 1;

z := x + y

〈x 7→ 2, y 7→ 11, z 7→ 13〉

Overview Hoare Triples Proving assertions Inductive Annotation Weakest Preconditions Completeness

Predicates on States

All States

States satisfying

Predicate A
A

Eg. 0 ≤ x ∧ x < y

Overview Hoare Triples Proving assertions Inductive Annotation Weakest Preconditions Completeness

Assertion of “Partial Correctness” {A}P{B}

{A}P{B} asserts that “Whenever program P is started in a state
satisfying condition A, either it will not terminate, or it will
terminate in a state satisfying condition B.”

All States

P

A

B

{10 ≤ y}

y := y + 1;

z := x + y

{x < z}

Overview Hoare Triples Proving assertions Inductive Annotation Weakest Preconditions Completeness

Mathematical meaning of a Hoare triple

View program P as a relation

[P] ⊆ Stores× Stores.

so that (s, t) ∈ [P] iff it is possible to start P in the state s
and terminate in state t.

As usual here elements of Stores are maps from variables to
integers.

[P] is possibly non-determinisitic, in case we also want to
model non-deterministic assignment etc.

Then the Hoare triple {A} P {B} is true iff for all states s
and t: whenever s |= A and (s, t) ∈ [P], then t |= B.

In other words Post [P]([A]) ⊆ [B].

Overview Hoare Triples Proving assertions Inductive Annotation Weakest Preconditions Completeness

Example programs and pre/post conditions

// Pre: true

if (a <= b)

min := a;

else

min := b;

// Post: min <= a && min <= b

// Pre: 0 <= n

int a := m;

int x := 0;

while (x < n) {

a := a + 1;

x := x + 1;

}

// Post: a = m + n

Overview Hoare Triples Proving assertions Inductive Annotation Weakest Preconditions Completeness

Hoare’s view: Program as a composition of statements

int a := m;

int x := 0;

while (x < n) {

a := a + 1;

x := x + 1;

}

S1: int a := m;

S2: int x := 0;

S3: while (x < n) {

a := a + 1;

x := x + 1;

}

Program is S1;S2;S3

Overview Hoare Triples Proving assertions Inductive Annotation Weakest Preconditions Completeness

Hoare’s view: Program as a composition of statements

int a := m;

int x := 0;

while (x < n) {

a := a + 1;

x := x + 1;

}

S1: int a := m;

S2: int x := 0;

S3: while (x < n) {

a := a + 1;

x := x + 1;

}

Program is S1;S2;S3

Overview Hoare Triples Proving assertions Inductive Annotation Weakest Preconditions Completeness

Proof rules of Hoare Logic

Axiom of Valid formulas:

A

provided “|= A” (i.e. A is a valid logical formula, eg.
x > 10 =⇒ x > 0).

Skip:

{A} skip {A}
Assignment

{A[e/x]} x := e {A}

Overview Hoare Triples Proving assertions Inductive Annotation Weakest Preconditions Completeness

Proof rules of Hoare Logic

If-then-else:

{P ∧ b} S {Q}, {P ∧ ¬b} T {Q}
{P} if b then S else T {Q}

While (here P is called a loop invariant)

{P ∧ b} S {P}
{P} while b do S {P ∧ ¬b}

Sequencing:
{P} S {Q}, {Q} T {R}

{P} S;T {R}
Weakening:

P =⇒ Q, {Q} S {R}, R =⇒ T

{P} S {T}

Overview Hoare Triples Proving assertions Inductive Annotation Weakest Preconditions Completeness

Loop invariants

A predicate P is a loop invariant for the
while loop:

while (b) {

S

}

if {P ∧ b} S {P} holds.

If P is a loop invariant then we can infer
that:

{P} while b do S {P ∧ ¬b}

P

b

S

Overview Hoare Triples Proving assertions Inductive Annotation Weakest Preconditions Completeness

Some examples to work on

Use the rules of Hoare logic to prove the following assertions:

1 {x ≥ 3} x := x + 2 {x ≥ 5}
2 {(y ≤ 0)∧ (x > −1)} if (y < 0) then x:=x+1 else x:=y

{x > 0}
3 {x ≤ 0} while (x ≤ 5) do x := x+1 {x = 6}

Overview Hoare Triples Proving assertions Inductive Annotation Weakest Preconditions Completeness

Exercise

Prove using Hoare logic:

{n ≥ 1} P {a = n!},

where P is the program:

S1:

x := n;

S2:

a := 1;

S3:

while (x ≥ 1) {

S4:

a := a * x;

S5:

x := x - 1

}

Assume that factorial is defined as follows:

n! =


n × (n − 1)× · · · × 1 if n ≥ 1
1 if n = 0
−1 if n < 0

Overview Hoare Triples Proving assertions Inductive Annotation Weakest Preconditions Completeness

Exercise

Prove using Hoare logic:

{n ≥ 1} P {a = n!},

where P is the program:

S1: x := n;

S2: a := 1;

S3: while (x ≥ 1) {
S4: a := a * x;

S5: x := x - 1

}

Assume that factorial is defined as follows:

n! =


n × (n − 1)× · · · × 1 if n ≥ 1
1 if n = 0
−1 if n < 0

Overview Hoare Triples Proving assertions Inductive Annotation Weakest Preconditions Completeness

Solution

Need a loop invariant P satisfying:

1 {n ≥ 1} S1;S2 {P}
2 {P ∧ (x ≥ 1)} S4;S5 {P}
3 (P ∧ ¬(x ≥ 1)) =⇒ (a = n!)

A potential P: (x ≥ 0) ∧ (a× x! = n!).

Overview Hoare Triples Proving assertions Inductive Annotation Weakest Preconditions Completeness

Floyd’s style of proof: Inductive Annotation

Overview Hoare Triples Proving assertions Inductive Annotation Weakest Preconditions Completeness

Inductive annotation based proof of a pre/post specification

Annotate each
program point i with
a predicate Ai

Successive
annotations must be
inductive:
Ai ∧ [Si] =⇒ A′i+1.

Annotation is
adequate:
Pre =⇒ A1 and
An =⇒ Post.

Adequate annotation
constitutes a proof of
{Pre} Prog {Post}.

a := m;

x := 0

while (x < n) {

x := x + 1

a := a + 1

n ≥ 0 ∧ a = m

n ≥ 0

a = m + x ∧ x ≤ n

n ≥ 0

a = m + n

Overview Hoare Triples Proving assertions Inductive Annotation Weakest Preconditions Completeness

Example of inductive annotation

To prove: {y > 10} y := y+1; z := x+y {z > x}

y := y + 1

z := x + y

y ≥ 1

y ≥ 0

y ≥ 1 ∧ z = x + y

z > x

y > 10

Overview Hoare Triples Proving assertions Inductive Annotation Weakest Preconditions Completeness

Weakest Precondition WP(P,B)

WP(P,B) is “a predicate that describes the exact set of states s
such that when program P is started in s, if it terminates it will
terminate in a state satisfying condition B.”
All States

P

B

A

WP(P,B)

{10 < y}

y := y + 1;

z := x + y;

{x < z}

Overview Hoare Triples Proving assertions Inductive Annotation Weakest Preconditions Completeness

Exercise: Give “weakest” preconditions

1 {?

x ≥ 3

} x := x + 2 {x ≥ 5}

2

{?

(y < 0 ∧ x > −1) ∨ (y > 0)

}
if (y < 0) then x := x+1 else x := y

{x > 0}

3 {?

x ≤ 6

} while (x ≤ 5) do x := x+1 {x = 6}

Overview Hoare Triples Proving assertions Inductive Annotation Weakest Preconditions Completeness

Exercise: Give “weakest” preconditions

1 {

?

x ≥ 3} x := x + 2 {x ≥ 5}

2

{?

(y < 0 ∧ x > −1) ∨ (y > 0)

}
if (y < 0) then x := x+1 else x := y

{x > 0}

3 {?

x ≤ 6

} while (x ≤ 5) do x := x+1 {x = 6}

Overview Hoare Triples Proving assertions Inductive Annotation Weakest Preconditions Completeness

Exercise: Give “weakest” preconditions

1 {

?

x ≥ 3} x := x + 2 {x ≥ 5}

2

{

?

(y < 0 ∧ x > −1) ∨ (y > 0)}
if (y < 0) then x := x+1 else x := y

{x > 0}

3 {?

x ≤ 6

} while (x ≤ 5) do x := x+1 {x = 6}

Overview Hoare Triples Proving assertions Inductive Annotation Weakest Preconditions Completeness

Exercise: Give “weakest” preconditions

1 {

?

x ≥ 3} x := x + 2 {x ≥ 5}

2

{

?

(y < 0 ∧ x > −1) ∨ (y > 0)}
if (y < 0) then x := x+1 else x := y

{x > 0}

3 {

?

x ≤ 6} while (x ≤ 5) do x := x+1 {x = 6}

Overview Hoare Triples Proving assertions Inductive Annotation Weakest Preconditions Completeness

Exercise: How will you define WP(P,B)?

All States

P

B

WP(P,B)

WP(P,B) = {s | ∀t : (s, t) ∈ [P] we have t |= B}

Overview Hoare Triples Proving assertions Inductive Annotation Weakest Preconditions Completeness

Exercise: How will you define WP(P,B)?

All States

P

B

WP(P,B)

WP(P,B) = {s | ∀t : (s, t) ∈ [P] we have t |= B}

Overview Hoare Triples Proving assertions Inductive Annotation Weakest Preconditions Completeness

Rules for Computing Weakest Precondition

For assignment statement x = e:

{B[e/x]}

x = e;

{B}

{(x + y) > 0 ∧ y = 0}

z = x + y;

{z > 0 ∧ y = 0}

Overview Hoare Triples Proving assertions Inductive Annotation Weakest Preconditions Completeness

Rules for Computing Weakest Precondition

For assignment statement x = e:

{B[e/x]}

x = e;

{B}

{(x + y) > 0 ∧ y = 0}

z = x + y;

{z > 0 ∧ y = 0}

Overview Hoare Triples Proving assertions Inductive Annotation Weakest Preconditions Completeness

Rules for Computing Weakest Precondition

If-then-else statement if c then S1 else S2:

{(c ∧WP(S1,B)) ∨
(¬c ∧WP(S2,B))}

if (c)

S1;

else

S2;

{B}

{((x < y) ∧ (y > w)) ∨
((x ≥ y) ∧ (x > w))}

if (x < y)

z = y;

else

z = x;

{z > w}

Overview Hoare Triples Proving assertions Inductive Annotation Weakest Preconditions Completeness

Rules for Computing Weakest Precondition

If-then-else statement if c then S1 else S2:

{(c ∧WP(S1,B)) ∨
(¬c ∧WP(S2,B))}

if (c)

S1;

else

S2;

{B}

{((x < y) ∧ (y > w)) ∨
((x ≥ y) ∧ (x > w))}

if (x < y)

z = y;

else

z = x;

{z > w}

Overview Hoare Triples Proving assertions Inductive Annotation Weakest Preconditions Completeness

WP rule for sequencing

WP(S ;T , B) = WP(S ,WP(T ,B)).

Overview Hoare Triples Proving assertions Inductive Annotation Weakest Preconditions Completeness

Weakest Precondition for while statements

We can “approximate” WP(while b do c).

WP i (w ,A) = the set of states from which the body c of the
loop is either entered more than i times or we exit the loop in
a state satisfying A.

WP i defined inductively as follows:

WP0 = b ∨ A
WP i+1 = (¬b ∧ A) ∨ (b ∧WP(c ,WP i))

Then WP(w ,A) can be shown to be the “limit” or least
upper bound of the chain WP0(w ,A), WP1(w ,A), . . . in a
suitably defined lattice (here the join operation is “And” or
intersection).

Overview Hoare Triples Proving assertions Inductive Annotation Weakest Preconditions Completeness

Illustration of WP i through example

Consider the program w below:

while (x ≥ 10) do

x := x - 1

What is the weakest precondition of w with respect to the
postcondition (x ≤ 0)?

Compute WP0(w , (x ≤ 0)), WP1(w , (x ≤ 0)),

0 10

Postcondition x ≤ 0

WP0

WP2

WP3

WP1

Overview Hoare Triples Proving assertions Inductive Annotation Weakest Preconditions Completeness

Illustration of WP i through example

Consider the program w below:

while (x ≥ 10) do

x := x - 1

What is the weakest precondition of w with respect to the
postcondition (x ≤ 0)?

Compute WP0(w , (x ≤ 0)), WP1(w , (x ≤ 0)),

0 10

Postcondition x ≤ 0

WP0

WP2

WP3

WP1

Overview Hoare Triples Proving assertions Inductive Annotation Weakest Preconditions Completeness

Using weakest preconditions in inductive proofs

Weakest preconditions give us a way to:

Check inductiveness of annotations

{Ai} Si {Ai+1} iff Ai =⇒ WP(Si ,Ai+1)

Reduce the amount of user-annotation needed

Programs without loops don’t need any user-annotation
For programs with loops, user only needs to provide loop
invariants

Overview Hoare Triples Proving assertions Inductive Annotation Weakest Preconditions Completeness

Checking {A} P {B} using WP

y := y + 1

z := x + y

y > 0

y > −1

y > 10

z > x

Check that
(y > 10) =⇒ WP(P, z > x)

Overview Hoare Triples Proving assertions Inductive Annotation Weakest Preconditions Completeness

Example proof of add program

a := m;

x := 0

while (x < n) {

x := x + 1

a := a + 1

n ≥ 0 ∧ a = m

n ≥ 0

a = m + x ∧ x ≤ n

n ≥ 0

a = m + n

Overview Hoare Triples Proving assertions Inductive Annotation Weakest Preconditions Completeness

Reducing verification to satisfiability: Generating Verification
Conditions

To check:

{y > 10}

y := y + 1;

z := x + y;

{x < z}

Use the weakest precondition rules to generate the verification
condition:

(y > 10) =⇒ (y > −1).

Check the verification condition by asking a theorem prover / SMT
solver if the formula

(y > 10) ∧ ¬(y > −1).

is satisfiable.

Overview Hoare Triples Proving assertions Inductive Annotation Weakest Preconditions Completeness

What about while loops?

Pre: 0 <= n

int a := m;

int x := 0;

while (x < n) {

a := a + 1;

x := x + 1;

}

Post: a = m + n

Overview Hoare Triples Proving assertions Inductive Annotation Weakest Preconditions Completeness

Adequate loop invariant

What is a “good” loop invariant for this program?

if (x >= 0)

while (x < 10) {

x := 0;

x := x + 1;

else

x := x − 1;

}

assert(x <= 11);

Overview Hoare Triples Proving assertions Inductive Annotation Weakest Preconditions Completeness

Adequate loop invariant

if (x >= 0)

while (x < 10) {

x := 0;

x := x + 1;

else

x := x − 1;

}

assert(x <= 11);

Not−inv
Invariant

Inv,not−ind Inv,ind,not−adeq Inv,ind,adeq

5 10 5 10 5 10

Canonical

5 10

5 10

0 ≤ x ≤ 10 5 ≤ x −1 ≤ x 0 ≤ x ≤ 12 0 ≤ x ≤ 11

Overview Hoare Triples Proving assertions Inductive Annotation Weakest Preconditions Completeness

Adequate loop invariant

a := m;

x := 0

while (x < n) {

x := x + 1

a := a + 1

n ≥ 0 ∧ a = m

n ≥ 0

a = m + x ∧ x ≤ n

n ≥ 0

a = m + n

An adequate loop invariant needs to satisfy:

{n ≥ 0} a := m; x := 0

{a = m + x ∧ x ≤ n}.
{a = m + x ∧ x ≤ n ∧ x < n} a := a+1;

x := x+1 {a = m + x ∧ x ≤ n}.
{a = m + x ∧ x ≤ n ∧ x ≥ n} skip
{a = m + n}.

Verification conditions are generated
accordingly.

Note that a = m + x is not an adequate loop

invariant.

Overview Hoare Triples Proving assertions Inductive Annotation Weakest Preconditions Completeness

Generating Verification Conditions for a program

while (b) {

assume Pre

}

assert Post

invariant Inv

S2

S1

S3

The following VCs are generated:

Pre ∧ [S1] =⇒ Inv ′

Or: Pre =⇒ WP(S1, Inv)

Inv ∧ b ∧ [S2] =⇒ Inv ′

Or: (Inv ∧ b) =⇒ WP(S2, Inv)

Inv ∧ ¬b ∧ [S3] =⇒ Post′

Or: Inv ∧ ¬b =⇒ WP(S3,Post)

Overview Hoare Triples Proving assertions Inductive Annotation Weakest Preconditions Completeness

Soundness and Completeness of Hoare logic

Hoare logic is sound (i.e. if we can prove “{A} P {B}” in the
logic, then {A} P {B} is true.)

Prove that each axiom and each rule is sound

Conversely, is it complete? That is, if {A} P {B} is true for a
program P and pre/post-conditions A and B, does there exists
a proof tree for {A} P {B} using the rules of Hoare logic?

Yes, provided the assertion logic L can express all “weakest
preconditions” (for all programs, and post-conditions
expressed in L).

Overview Hoare Triples Proving assertions Inductive Annotation Weakest Preconditions Completeness

Relative completeness of Hoare logic

Theorem (Cook 1974)

Hoare logic is complete provided the assertion language L can
express the WP for any program P and post-condition B.

Proof uses WP predicates and proceeds by induction on the
structure of the program P.

Suppose {A} skip {B} holds. Then it must be the case that
A =⇒ B is true. By Skip rule we know that {B} skip {B}.
Hence by Weakening rule, we get that {A} skip {B} holds.

Suppose {A} x := e {B} holds. Then it must be the case
that A =⇒ B[e/x]. By Assignment rule we know that
{B[e/x]} x := e {B} is true. Hence by Weakening rule, we
get that {A} x := e {B} holds.

Similarly for if-then-else.

Overview Hoare Triples Proving assertions Inductive Annotation Weakest Preconditions Completeness

Relative completeness of Hoare logic

Suppose {A} while b do S {B} holds. Let
P = WP(while b do S,B). Then it is not difficult to check
that P is a loop invariant for the while statement. I.e
{P ∧ b} S {P} is true. By induction hypothesis, this triple
must be provable in Hoare logic. Hence we can conclude
using the While rule, that {P} while b do S {P ∧ ¬b}. But
since P was a valid precondition, it follows that
(P ∧ ¬b) =⇒ B. By the weakening rule, we have a proof of
{A} while b do S {B}.

Overview Hoare Triples Proving assertions Inductive Annotation Weakest Preconditions Completeness

Conclusion

Hoare’s style of proving programs views the program as a
sequential composition of programs and constructs a proof
tree.

Floyd’s style views the control-flow graph of the program,
with annotations at each program point.

Proofs in one style can be translated to the other.

Using weakest preconditions we can generate verification
conditions, to reduce verification to checking validity of a
logical formula.

Can be extended to handle functions (using function
contracts), arrays (quantification), concurrency
(Rely-Guarantee/Owicki-Gries styles).

Main challenge is the need for user annotation (adequate loop
invariants, function contracts).
Can be increasingly automated (using learning techniques).

	Overview
	Hoare Triples
	Proving assertions
	Inductive Annotation
	Weakest Preconditions
	Completeness

