Floyd-Hoare Style Program Verification

Deepak D'Souza

Department of Computer Science and Automation
Indian Institute of Science, Bangalore.

2 Nov 2017

Outline of these lectures

© Overview

© Hoare Triples

© Proving assertions

@ Inductive Annotation
© Weakest Preconditions

@ Completeness

Overview

Floyd-Hoare Style of Program Verification

Robert W. Floyd: “Assigning meanings to programs” Proceedings
of the American Mathematical Society Symposia on Applied
Mathematics (1967)

C A R Hoare: "An axiomatic basis for computer programming”,
Communications of the ACM (1969).

Overview

Floyd-Hoare Logic

A way of asserting properties of programs.

Hoare triple: {A}P{B} asserts that “Whenever program P is
started in a state satisfying condition A, if it terminates, it will
terminate in a state satisfying condition B."

Example assertion: {n >0} P {a = n+ m}, where P is the
program:

int a := m;

int x := 0;

while (x < n) {
a a+ 1;
b4 x + 1;

}

Inductive Annotation (“consistent interpretation”) (due to
Floyd)

A proof system (due to Hoare) for proving such assertions.

A way of reasoning about such assertions using the notion of
“Weakest Preconditions” (due to Dijkstra).

Hoare Triples

A simple programming language

skip

x := e (assignment)

if b then S elseT (if-then-else)
while b do S (while)

S ; T (sequencing)

Hoare Triples
Programs as State Transformers

View program P as a partial map [P] : Stores — Stores. (Assume
that Stores = Var — Z.)

All States

(x+—2, y— 10, z+ 3)

y 1=y + 1;
z :=x+y

(x =2, y— 11, z+— 13)

Hoare Triples

Predicates on States

All States

States satisfying
Predicate A
Eg. 0<xAx<y

Hoare Triples

Assertion of “Partial Correctness” {A}P{B}

{A}P{B} asserts that “Whenever program P is started in a state
satisfying condition A, either it will not terminate, or it will
terminate in a state satisfying condition B."

All States

{10 <y}
y 1=y + 1;
zZ :=x +y

{x < z}

Hoare Triples

Mathematical meaning of a Hoare triple

View program P as a relation
[P] C Stores x Stores.

so that (s, t) € [P] iff it is possible to start P in the state s
and terminate in state t.

As usual here elements of Stores are maps from variables to
integers.

[P] is possibly non-determinisitic, in case we also want to
model non-deterministic assignment etc.

Then the Hoare triple {A} P {B} is true iff for all states s
and t: whenever s = A and (s, t) € [P], then t |= B.

In other words Postp([A]) € [B].

Proving assertions

Example programs and pre/post conditions

// Pre: 0 <= n
// Pre: true

int a := m;
if (a <= b) int x := 0;
min := a; while (x < n) {
else a :=a+1;
min := b; X :=x + 1;
}

// Post: min <= a && min <= b
// Post: a=m+n

Proving assertions

Hoare's view: Program as a composition of statements

int a := m;
int x := 0;
while (x < n) {
a:=a+1;
X :=x + 1;

}

Proving assertions

Hoare's view: Program as a composition of statements

int a := m; S1: int a := m;

int x := 0; S2: int x := 0;

while (x < n) { S83: while (x < n) {
a :=a+1; a:=a+1;
X 1= x + 1; X :=x + 1;

} }

Program is S1;582;83

Proving assertions
Proof rules of Hoare Logic

Axiom of Valid formulas:

A

provided “= A" (i.e. Ais a valid logical formula, eg.
x>10 = x >0).

Skip:

{A} skip {A}
Assignment

{Ale/x]} x := e {A}

Proving assertions
Proof rules of Hoare Logic

If-then-else:

{PAb} S{Q}, {PA-b} T {Q}
{P} if b then S else T {Q}

While (here P is called a loop invariant)

{PAb} S {P}
{P} while b do S {P A —b}
Sequencing:
{P} S {Q}, {Q} T {R}
{P} S; T {R}
Weakening:

P= Q {Q}S{RLR=T
{PySAT}

Proving assertions
Loop invariants

A predicate P is a loop invariant for the
while loop:

while (b) { P
S
}

if {PAb} S {P} holds.

If P is a loop invariant then we can infer
that:

{P} while b do S {P A —b}

Proving assertions
Some examples to work on

Use the rules of Hoare logic to prove the following assertions:
Q {x>3}x :=x+2 {x>5}
Q@ {(y<0)A(x>-1)} if (y <0) then x:=x+1 else x:=y
{x >0}
© {x <0} while (x <5) dox :=x+1 {x=6}

Proving assertions
Exercise

Prove using Hoare logic:
{n>1} P {a=n!},

where P is the program:

X := n;

a := 1;

while (x > 1) {
a = a * x;
x :=x -1

Assume that factorial is defined as follows:
nx(n—1)x---x1 if n>1
nl = 1 if n=0
-1 if n<O

Proving assertions
Exercise

Prove using Hoare logic:
{n>1} P {a=n!},

where P is the program:

S1: x := n;

S2: a := 1;

S3: while (x > 1) {
S4. a := a *x x;
S5: Xx :=x -1

Assume that factorial is defined as follows:
nx(n—1)x---x1 if n>1
nl = 1 if n=0
-1 if n<O

Proving assertions
Solution

Need a loop invariant P satisfying:
@ {n>1} 51,52 {P}
Q@ {PA(x>1)} 54,55 {P}
Q@ (PA-(x>1) = (a=n!)
A potential P: (x > 0) A (a x x! = n!).

Inductive Annotation

Floyd’s style of proof: Inductive Annotation

nEJYAI=1AS=0
i-1
nEJtAIEJYAisSR+1IAS= g
j=1

i-1 n
———neJ*/\i=n+1/\S=Zaj; ie,S=3 a
j=1

jn

i-1

________ nedtAi€dTAisnAS= Y q
j=1
i

———————— neJTAIEJYAISRAS= T4
j=1

i-1
________ n€J+/\i€J+A2§i§n+l/\S-zlaj
=

Inductive Annotation

Inductive annotation based proof of a pre/post specification

@ Annotate each

program point / with
a predicate A;
n>0ANa=m
@ Successive
annotations must be ‘iz o

inductive:
AiNS] = A§+1.

a=m+xAx<
@ Annotation is
adequate:
Pre — A; and |
A, — Post. a :

while (x < n) {

@ Adequate annotation |
constitutes a proof of L x
{Pre} Prog {Post}.

a=m+n

Inductive Annotation

Example of inductive annotation

To prove: {y > 10} y :=y+1; z := x+y {z > x}

y>10
y=>0
y :=y+
y=>1
zZ :=x +y
y>21lAz=x+y
\

z>X

Weakest Preconditions

Weakest Precondition WP(P, B)

WP(P, B) is “a predicate that describes the exact set of states s
such that when program P is started in s, if it terminates it will

terminate in a state satisfying condition B."
All States
WP(P, B)

G {10 <y}

y 1=y +1;
X+y;

{x <z}

Weakest Preconditions

Exercise: Give “weakest” preconditions

Qo {7 }x :=x+ 2 {x>5}

Weakest Preconditions

Exercise: Give “weakest” preconditions

QO { x>3}x :=x+2 {x>5}

2]
{7 }
if (y < 0) then x := x+1 else x =y
{x >0}

Weakest Preconditions

Exercise: Give “weakest” preconditions

Q@ { x>3}x :=x+ 2 {x>5}

{(y<0Ax>-1)V(y>0)}
if (y < 0) then x := x+1 else x =y
{x >0}

Q {7 } while (x <5) do x :=x+1 {x =06}

Weakest Preconditions

Exercise: Give “weakest” preconditions

QO { x>3}x :=x+2 {x>5}

{(y<0Ax>-1)V(y>0)}
if (y < 0) then x := x+1 else x =y
{x >0}

© { x <6} while (x <5) dox:=x+1 {x=06}

Weakest Preconditions

Exercise: How will you define WP(P, B)?

All States

Weakest Preconditions

Exercise: How will you define WP(P, B)?

All States

WP(P,B) = {s | Vt: (s, t) € [P] we have t = B}

Weakest Preconditions

Rules for Computing Weakest Precondition

For assignment statement x = e:

{Ble/x|}

Weakest Preconditions

Rules for Computing Weakest Precondition

For assignment statement x = e:

{Ble/x]} {(xty)>0ny=0}

zZ=3x+Yy;

{z>0Ay =0}

Weakest Preconditions

Rules for Computing Weakest Precondition

If-then-else statement if c¢ then 57 else S

{(c N WP(51,B)) v
(mc AN WP(52,B))}

if (c)
S1;

else
S2;

{B}

Weakest Preconditions

Rules for Computing Weakest Precondition

If-then-else statement if c¢ then 57 else S

{(c N WP(51,B)) v
(mc AN WP(52,B))}

if (c)
S1;

else
S2;

{B}

{(x<y)Aly>w)) v
(x=y) A (x> w))}

if (x <y)

zZ =y;
else
Z = X;

{z > w}

Weakest Preconditions
WP rule for sequencing

WP(S;T, B) = WP(S, WP(T, B)).

Weakest Preconditions
Weakest Precondition for while statements

@ We can “approximate” WP(while b do c).

o WP;(w, A) = the set of states from which the body c of the
loop is either entered more than i times or we exit the loop in
a state satisfying A.

o WRP; defined inductively as follows:

WPq = bVA
WPi11 = (=bANA)V (bAWP(c, WP}))

@ Then WP(w, A) can be shown to be the “limit” or least
upper bound of the chain WPy(w, A), WP1(w,A),...ina
suitably defined lattice (here the join operation is “And” or
intersection).

Weakest Preconditions
lllustration of WP; through example

Consider the program w below:

while (x > 10) do
x:=x-1

@ What is the weakest precondition of w with respect to the
postcondition (x < 0)7?

e Compute WPy(w, (x <0)), WP1(w, (x <0)),

Weakest Preconditions
lllustration of WP; through example

Consider the program w below:

while (x > 10) do
x:=x-1

@ What is the weakest precondition of w with respect to the
postcondition (x < 0)7?

e Compute WPy(w, (x <0)), WP1(w, (x <0)),

WPy
wP,
wpPy
WPy

Postcondition x < 0

Weakest Preconditions

Using weakest preconditions in inductive proofs

Weakest preconditions give us a way to:

@ Check inductiveness of annotations
{A,} S; {Ai+1} iff A;, — WP(S,‘,AH_]_)

@ Reduce the amount of user-annotation needed

e Programs without loops don’t need any user-annotation
o For programs with loops, user only needs to provide loop
invariants

Weakest Preconditions

Checking {A} P {B} using WP

y>10

y>-1

y : =y +1

zZ>X

Check that
(y >10) = WP(P,z > x)

Weakest Preconditions

Example proof of add program

a=m+xAx<n

while (x < n) {

Weakest Preconditions

Reducing verification to satisfiability: Generating Verification
Conditions

To check:

{y > 10}

y =y +1;
Z =X +ty;

{x <z}
Use the weakest precondition rules to generate the verification

condition:
(y >10) = (y > —1).

Check the verification condition by asking a theorem prover / SMT
solver if the formula

(y >10)A—(y > -1).

is satisfiable.

Weakest Preconditions

What about while loops?

Pre: 0 <= n

int a := m;
int x := 0;
while (x < n) {
a :=a+1;
X :1=x + 1;
}

Weakest Preconditions

Adequate loop invariant

What is a “good” loop invariant for this program?

x := 0;
while (x < 10) {
if (x >= 0)

x :=x + 1;
else
x = x - 1;

}

assert (x <= 11);

Weakest Preconditions

Adequate loop invariant

Canonical Not—inv Inv,not—ind Inv,ind,not—adeq Inv,ind,adeq
Invariant
x := 0;
while (x < 10) { 0<x<10 5<x —1<x 0<x<12 0<x<11

if (x >= 0)
X :=x + 1;

else

[

10
X = x - 1;

}

assert (x <= 11);

W

10 5 10 5 10 5 10

Weakest Preconditions

Adequate loop invariant

An adequate loop invariant needs to satisfy:

' @ {n>0}a :=m; x :=0
h>0Aa—m {a=m+xAx<n}
@ {a=m+xAx<nAx<n}a :=atl;
x =0 x 1= x+1 {a=m+xAx<n}.

while (x < n) {

(a=m+n

a=m+xAx<n

@ {a=m+xAx<nAx>n} skip
{a=m+ n}.

Verification conditions are generated
accordingly.

Note that a = m + x is not an adequate loop

invariant.

Weakest Preconditions

Generating Verification Conditions for a program

assume Pre

S

while (b) {

S

S3

assert Post

invariant |Inv

The following VCs are generated:
@ Pre A[S1] = InV/
Or: Pre = WP(Sy, Inv)
@ InvAbA[S] = Inv/
Or: (Inv A b) = WP(Sy, Inv)
@ Inv A-bA[S3] = Post’
Or: Inv A -b = WRP(S3, Post)

Completeness
Soundness and Completeness of Hoare logic

@ Hoare logic is sound (i.e. if we can prove “{A} P {B}" in the

logic, then {A} P {B} is true.)
e Prove that each axiom and each rule is sound

o Conversely, is it complete? That is, if {A} P {B} is true for a
program P and pre/post-conditions A and B, does there exists
a proof tree for {A} P {B} using the rules of Hoare logic?

@ Yes, provided the assertion logic L can express all “weakest
preconditions” (for all programs, and post-conditions
expressed in L).

Completeness
Relative completeness of Hoare logic

Theorem (Cook 1974)

Hoare logic is complete provided the assertion language L can
express the WP for any program P and post-condition B.

Proof uses WP predicates and proceeds by induction on the
structure of the program P.

@ Suppose {A} skip {B} holds. Then it must be the case that
A = B is true. By Skip rule we know that {B} skip {B}.
Hence by Weakening rule, we get that {A} skip {B} holds.

@ Suppose {A} x := e {B} holds. Then it must be the case
that A = BJe/x]|. By Assignment rule we know that
{Ble/x]} x := e {B} is true. Hence by Weakening rule, we
get that {A} x := e {B} holds.

@ Similarly for if-then-else.

Completeness
Relative completeness of Hoare logic

@ Suppose {A} while b do S {B} holds. Let
P = WP(while b do S,B). Then it is not difficult to check
that P is a loop invariant for the while statement. |l.e
{P A b} 8 {P} is true. By induction hypothesis, this triple
must be provable in Hoare logic. Hence we can conclude
using the While rule, that {P} while b do S {P A —b}. But
since P was a valid precondition, it follows that
(P A —b) = B. By the weakening rule, we have a proof of
{A} while b do S {B}.

Completeness

Conclusion

@ Hoare's style of proving programs views the program as a
sequential composition of programs and constructs a proof
tree.

@ Floyd's style views the control-flow graph of the program,
with annotations at each program point.

@ Proofs in one style can be translated to the other.

@ Using weakest preconditions we can generate verification
conditions, to reduce verification to checking validity of a
logical formula.

@ Can be extended to handle functions (using function
contracts), arrays (quantification), concurrency
(Rely-Guarantee/Owicki-Gries styles).

Main challenge is the need for user annotation (adequate loop
invariants, function contracts).
Can be increasingly automated (using learning techniques).

	Overview
	Hoare Triples
	Proving assertions
	Inductive Annotation
	Weakest Preconditions
	Completeness

