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Floyd-Hoare Style of Program Verification

Robert W. Floyd: “Assigning meanings to programs” Proceedings
of the American Mathematical Society Symposia on Applied
Mathematics (1967)

C A R Hoare: “An axiomatic basis for computer programming”,
Communications of the ACM (1969).
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Floyd-Hoare Logic

A way of asserting properties of programs.

Hoare triple: {A}P{B} asserts that “Whenever program P is
started in a state satisfying condition A, if it terminates, it will
terminate in a state satisfying condition B.”

Example assertion: {n ≥ 0} P {a = n + m}, where P is the
program:

int a := m;

int x := 0;

while (x < n) {

a := a + 1;

x := x + 1;

}

Inductive Annotation (“consistent interpretation”) (due to
Floyd)

A proof system (due to Hoare) for proving such assertions.

A way of reasoning about such assertions using the notion of
“Weakest Preconditions” (due to Dijkstra).
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A simple programming language

skip

x := e (assignment)

if b then S elseT (if-then-else)

while b do S (while)

S ; T (sequencing)
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Programs as State Transformers

View program P as a partial map [P] : Stores → Stores. (Assume
that Stores = Var → Z.)

All States

State s

State t

P

〈x 7→ 2, y 7→ 10, z 7→ 3〉

y := y + 1;

z := x + y

〈x 7→ 2, y 7→ 11, z 7→ 13〉
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Predicates on States

All States

States satisfying

Predicate A
A

Eg. 0 ≤ x ∧ x < y
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Assertion of “Partial Correctness” {A}P{B}

{A}P{B} asserts that “Whenever program P is started in a state
satisfying condition A, either it will not terminate, or it will
terminate in a state satisfying condition B.”

All States

P

A

B

{10 ≤ y}

y := y + 1;

z := x + y

{x < z}
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Mathematical meaning of a Hoare triple

View program P as a relation

[P] ⊆ Stores× Stores.

so that (s, t) ∈ [P] iff it is possible to start P in the state s
and terminate in state t.

As usual here elements of Stores are maps from variables to
integers.

[P] is possibly non-determinisitic, in case we also want to
model non-deterministic assignment etc.

Then the Hoare triple {A} P {B} is true iff for all states s
and t: whenever s |= A and (s, t) ∈ [P], then t |= B.

In other words Post [P]([A]) ⊆ [B].
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Example programs and pre/post conditions

// Pre: true

if (a <= b)

min := a;

else

min := b;

// Post: min <= a && min <= b

// Pre: 0 <= n

int a := m;

int x := 0;

while (x < n) {

a := a + 1;

x := x + 1;

}

// Post: a = m + n
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Hoare’s view: Program as a composition of statements

int a := m;

int x := 0;

while (x < n) {

a := a + 1;

x := x + 1;

}

S1: int a := m;

S2: int x := 0;

S3: while (x < n) {

a := a + 1;

x := x + 1;

}

Program is S1;S2;S3
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Hoare’s view: Program as a composition of statements
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a := a + 1;

x := x + 1;

}

S1: int a := m;

S2: int x := 0;

S3: while (x < n) {

a := a + 1;

x := x + 1;

}

Program is S1;S2;S3
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Proof rules of Hoare Logic

Axiom of Valid formulas:

A

provided “|= A” (i.e. A is a valid logical formula, eg.
x > 10 =⇒ x > 0).

Skip:

{A} skip {A}
Assignment

{A[e/x ]} x := e {A}
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Proof rules of Hoare Logic

If-then-else:

{P ∧ b} S {Q}, {P ∧ ¬b} T {Q}
{P} if b then S else T {Q}

While (here P is called a loop invariant)

{P ∧ b} S {P}
{P} while b do S {P ∧ ¬b}

Sequencing:
{P} S {Q}, {Q} T {R}

{P} S;T {R}
Weakening:

P =⇒ Q, {Q} S {R}, R =⇒ T

{P} S {T}
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Loop invariants

A predicate P is a loop invariant for the
while loop:

while (b) {

S

}

if {P ∧ b} S {P} holds.

If P is a loop invariant then we can infer
that:

{P} while b do S {P ∧ ¬b}

P

b

S
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Some examples to work on

Use the rules of Hoare logic to prove the following assertions:

1 {x ≥ 3} x := x + 2 {x ≥ 5}
2 {(y ≤ 0)∧ (x > −1)} if (y < 0) then x:=x+1 else x:=y

{x > 0}
3 {x ≤ 0} while (x ≤ 5) do x := x+1 {x = 6}
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Exercise

Prove using Hoare logic:

{n ≥ 1} P {a = n!},

where P is the program:

S1:

x := n;

S2:

a := 1;

S3:

while (x ≥ 1) {

S4:

a := a * x;

S5:

x := x - 1

}

Assume that factorial is defined as follows:

n! =


n × (n − 1)× · · · × 1 if n ≥ 1
1 if n = 0
−1 if n < 0
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Exercise

Prove using Hoare logic:

{n ≥ 1} P {a = n!},

where P is the program:

S1: x := n;

S2: a := 1;

S3: while (x ≥ 1) {
S4: a := a * x;

S5: x := x - 1

}

Assume that factorial is defined as follows:

n! =


n × (n − 1)× · · · × 1 if n ≥ 1
1 if n = 0
−1 if n < 0
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Solution

Need a loop invariant P satisfying:

1 {n ≥ 1} S1;S2 {P}
2 {P ∧ (x ≥ 1)} S4;S5 {P}
3 (P ∧ ¬(x ≥ 1)) =⇒ (a = n!)

A potential P: (x ≥ 0) ∧ (a× x! = n!).
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Floyd’s style of proof: Inductive Annotation
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Inductive annotation based proof of a pre/post specification

Annotate each
program point i with
a predicate Ai

Successive
annotations must be
inductive:
Ai ∧ [Si ] =⇒ A′i+1.

Annotation is
adequate:
Pre =⇒ A1 and
An =⇒ Post.

Adequate annotation
constitutes a proof of
{Pre} Prog {Post}.

a := m;

x := 0

while (x < n) {

x := x + 1

a := a + 1

n ≥ 0 ∧ a = m

n ≥ 0

a = m + x ∧ x ≤ n

n ≥ 0

a = m + n
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Example of inductive annotation

To prove: {y > 10} y := y+1; z := x+y {z > x}

y := y + 1

z := x + y

y ≥ 1

y ≥ 0

y ≥ 1 ∧ z = x + y

z > x

y > 10
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Weakest Precondition WP(P,B)

WP(P,B) is “a predicate that describes the exact set of states s
such that when program P is started in s, if it terminates it will
terminate in a state satisfying condition B.”
All States

P

B

A

WP(P,B)

{10 < y}

y := y + 1;

z := x + y;

{x < z}
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Exercise: Give “weakest” preconditions

1 {?

x ≥ 3

} x := x + 2 {x ≥ 5}

2

{?

(y < 0 ∧ x > −1) ∨ (y > 0)

}
if (y < 0) then x := x+1 else x := y

{x > 0}

3 {?

x ≤ 6

} while (x ≤ 5) do x := x+1 {x = 6}
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Exercise: Give “weakest” preconditions

1 {

?

x ≥ 3} x := x + 2 {x ≥ 5}

2

{?

(y < 0 ∧ x > −1) ∨ (y > 0)

}
if (y < 0) then x := x+1 else x := y

{x > 0}

3 {?

x ≤ 6

} while (x ≤ 5) do x := x+1 {x = 6}
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Exercise: Give “weakest” preconditions

1 {

?

x ≥ 3} x := x + 2 {x ≥ 5}

2

{

?

(y < 0 ∧ x > −1) ∨ (y > 0)}
if (y < 0) then x := x+1 else x := y

{x > 0}

3 {?

x ≤ 6

} while (x ≤ 5) do x := x+1 {x = 6}



Overview Hoare Triples Proving assertions Inductive Annotation Weakest Preconditions Completeness

Exercise: Give “weakest” preconditions

1 {

?

x ≥ 3} x := x + 2 {x ≥ 5}

2

{

?

(y < 0 ∧ x > −1) ∨ (y > 0)}
if (y < 0) then x := x+1 else x := y

{x > 0}

3 {

?

x ≤ 6} while (x ≤ 5) do x := x+1 {x = 6}
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Exercise: How will you define WP(P,B)?

All States

P

B

WP(P,B)

WP(P,B) = {s | ∀t : (s, t) ∈ [P] we have t |= B}
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Exercise: How will you define WP(P,B)?

All States

P

B

WP(P,B)

WP(P,B) = {s | ∀t : (s, t) ∈ [P] we have t |= B}
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Rules for Computing Weakest Precondition

For assignment statement x = e:

{B[e/x ]}

x = e;

{B}

{(x + y) > 0 ∧ y = 0}

z = x + y;

{z > 0 ∧ y = 0}
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Rules for Computing Weakest Precondition

For assignment statement x = e:

{B[e/x ]}

x = e;

{B}

{(x + y) > 0 ∧ y = 0}

z = x + y;

{z > 0 ∧ y = 0}
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Rules for Computing Weakest Precondition

If-then-else statement if c then S1 else S2:

{(c ∧WP(S1,B)) ∨
(¬c ∧WP(S2,B))}

if (c)

S1;

else

S2;

{B}

{((x < y) ∧ (y > w)) ∨
((x ≥ y) ∧ (x > w))}

if (x < y)

z = y;

else

z = x;

{z > w}
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Rules for Computing Weakest Precondition

If-then-else statement if c then S1 else S2:

{(c ∧WP(S1,B)) ∨
(¬c ∧WP(S2,B))}

if (c)

S1;

else

S2;

{B}

{((x < y) ∧ (y > w)) ∨
((x ≥ y) ∧ (x > w))}

if (x < y)

z = y;

else

z = x;

{z > w}
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WP rule for sequencing

WP(S ;T , B) = WP(S ,WP(T ,B)).
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Weakest Precondition for while statements

We can “approximate” WP(while b do c).

WP i (w ,A) = the set of states from which the body c of the
loop is either entered more than i times or we exit the loop in
a state satisfying A.

WP i defined inductively as follows:

WP0 = b ∨ A
WP i+1 = (¬b ∧ A) ∨ (b ∧WP(c ,WP i ))

Then WP(w ,A) can be shown to be the “limit” or least
upper bound of the chain WP0(w ,A), WP1(w ,A), . . . in a
suitably defined lattice (here the join operation is “And” or
intersection).
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Illustration of WP i through example

Consider the program w below:

while (x ≥ 10) do

x := x - 1

What is the weakest precondition of w with respect to the
postcondition (x ≤ 0)?

Compute WP0(w , (x ≤ 0)), WP1(w , (x ≤ 0)), . . ..

0 10

Postcondition x ≤ 0

WP0

WP2

WP3

WP1
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Illustration of WP i through example

Consider the program w below:

while (x ≥ 10) do

x := x - 1

What is the weakest precondition of w with respect to the
postcondition (x ≤ 0)?

Compute WP0(w , (x ≤ 0)), WP1(w , (x ≤ 0)), . . ..

0 10

Postcondition x ≤ 0

WP0

WP2

WP3

WP1
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Using weakest preconditions in inductive proofs

Weakest preconditions give us a way to:

Check inductiveness of annotations

{Ai} Si {Ai+1} iff Ai =⇒ WP(Si ,Ai+1)

Reduce the amount of user-annotation needed

Programs without loops don’t need any user-annotation
For programs with loops, user only needs to provide loop
invariants
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Checking {A} P {B} using WP

y := y + 1

z := x + y

y > 0

y > −1

y > 10

z > x

Check that
(y > 10) =⇒ WP(P, z > x)
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Example proof of add program

a := m;

x := 0

while (x < n) {

x := x + 1

a := a + 1

n ≥ 0 ∧ a = m

n ≥ 0

a = m + x ∧ x ≤ n

n ≥ 0

a = m + n
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Reducing verification to satisfiability: Generating Verification
Conditions

To check:

{y > 10}

y := y + 1;

z := x + y;

{x < z}

Use the weakest precondition rules to generate the verification
condition:

(y > 10) =⇒ (y > −1).

Check the verification condition by asking a theorem prover / SMT
solver if the formula

(y > 10) ∧ ¬(y > −1).

is satisfiable.
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What about while loops?

Pre: 0 <= n

int a := m;

int x := 0;

while (x < n) {

a := a + 1;

x := x + 1;

}

Post: a = m + n
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Adequate loop invariant

What is a “good” loop invariant for this program?

if (x >= 0)

while (x < 10) {

x := 0;

x := x + 1;

else

x := x − 1;

}

assert(x <= 11);
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Adequate loop invariant

if (x >= 0)

while (x < 10) {

x := 0;

x := x + 1;

else

x := x − 1;

}

assert(x <= 11);

Not−inv
Invariant

Inv,not−ind Inv,ind,not−adeq Inv,ind,adeq

5 10 5 10 5 10

Canonical

5 10

5 10

0 ≤ x ≤ 10 5 ≤ x −1 ≤ x 0 ≤ x ≤ 12 0 ≤ x ≤ 11
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Adequate loop invariant

a := m;

x := 0

while (x < n) {

x := x + 1

a := a + 1

n ≥ 0 ∧ a = m

n ≥ 0

a = m + x ∧ x ≤ n

n ≥ 0

a = m + n

An adequate loop invariant needs to satisfy:

{n ≥ 0} a := m; x := 0

{a = m + x ∧ x ≤ n}.
{a = m + x ∧ x ≤ n ∧ x < n} a := a+1;

x := x+1 {a = m + x ∧ x ≤ n}.
{a = m + x ∧ x ≤ n ∧ x ≥ n} skip
{a = m + n}.

Verification conditions are generated
accordingly.

Note that a = m + x is not an adequate loop

invariant.
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Generating Verification Conditions for a program

while (b) {

assume Pre

}

assert Post

invariant Inv

S2

S1

S3

The following VCs are generated:

Pre ∧ [S1] =⇒ Inv ′

Or: Pre =⇒ WP(S1, Inv)

Inv ∧ b ∧ [S2] =⇒ Inv ′

Or: (Inv ∧ b) =⇒ WP(S2, Inv)

Inv ∧ ¬b ∧ [S3] =⇒ Post′

Or: Inv ∧ ¬b =⇒ WP(S3,Post)
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Soundness and Completeness of Hoare logic

Hoare logic is sound (i.e. if we can prove “{A} P {B}” in the
logic, then {A} P {B} is true.)

Prove that each axiom and each rule is sound

Conversely, is it complete? That is, if {A} P {B} is true for a
program P and pre/post-conditions A and B, does there exists
a proof tree for {A} P {B} using the rules of Hoare logic?

Yes, provided the assertion logic L can express all “weakest
preconditions” (for all programs, and post-conditions
expressed in L).
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Relative completeness of Hoare logic

Theorem (Cook 1974)

Hoare logic is complete provided the assertion language L can
express the WP for any program P and post-condition B.

Proof uses WP predicates and proceeds by induction on the
structure of the program P.

Suppose {A} skip {B} holds. Then it must be the case that
A =⇒ B is true. By Skip rule we know that {B} skip {B}.
Hence by Weakening rule, we get that {A} skip {B} holds.

Suppose {A} x := e {B} holds. Then it must be the case
that A =⇒ B[e/x ]. By Assignment rule we know that
{B[e/x ]} x := e {B} is true. Hence by Weakening rule, we
get that {A} x := e {B} holds.

Similarly for if-then-else.
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Relative completeness of Hoare logic

Suppose {A} while b do S {B} holds. Let
P = WP(while b do S,B). Then it is not difficult to check
that P is a loop invariant for the while statement. I.e
{P ∧ b} S {P} is true. By induction hypothesis, this triple
must be provable in Hoare logic. Hence we can conclude
using the While rule, that {P} while b do S {P ∧ ¬b}. But
since P was a valid precondition, it follows that
(P ∧ ¬b) =⇒ B. By the weakening rule, we have a proof of
{A} while b do S {B}.
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Conclusion

Hoare’s style of proving programs views the program as a
sequential composition of programs and constructs a proof
tree.

Floyd’s style views the control-flow graph of the program,
with annotations at each program point.

Proofs in one style can be translated to the other.

Using weakest preconditions we can generate verification
conditions, to reduce verification to checking validity of a
logical formula.

Can be extended to handle functions (using function
contracts), arrays (quantification), concurrency
(Rely-Guarantee/Owicki-Gries styles).

Main challenge is the need for user annotation (adequate loop
invariants, function contracts).
Can be increasingly automated (using learning techniques).
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