

Floyd-Hoare Style Program Verification

Deepak D'Souza

Department of Computer Science and Automation
Indian Institute of Science, Bangalore.

2 Nov 2017

Outline of these lectures

1 Overview

2 Hoare Triples

3 Proving assertions

4 Inductive Annotation

5 Weakest Preconditions

6 Completeness

Floyd-Hoare Style of Program Verification

Robert W. Floyd: “Assigning meanings to programs” *Proceedings of the American Mathematical Society Symposia on Applied Mathematics* (1967)

C A R Hoare: “An axiomatic basis for computer programming”, *Communications of the ACM* (1969).

Floyd-Hoare Logic

- A way of asserting properties of programs.
- Hoare triple: $\{A\}P\{B\}$ asserts that “**Whenever program P is started in a state satisfying condition A , if it terminates, it will terminate in a state satisfying condition B .**”
- Example assertion: $\{n \geq 0\} P \{a = n + m\}$, where P is the program:

```
int a := m;
int x := 0;
while (x < n) {
    a := a + 1;
    x := x + 1;
}
```

- Inductive Annotation (“consistent interpretation”) (due to Floyd)
- A proof system (due to Hoare) for proving such assertions.
- A way of reasoning about such assertions using the notion of “**Weakest Preconditions**” (due to Dijkstra).

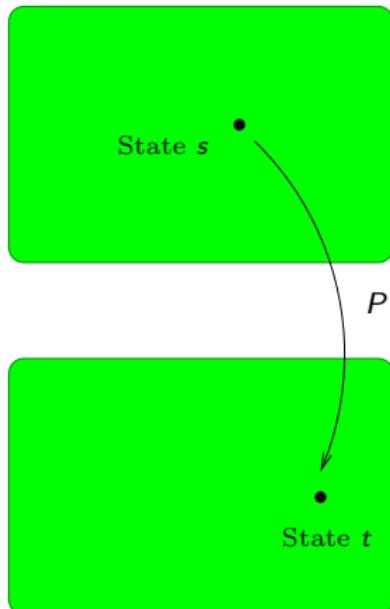
A simple programming language

- skip
- $x := e$ (assignment)
- if b then S else T (if-then-else)
- while b do S (while)
- $S ; T$ (sequencing)

Programs as State Transformers

View program P as a **partial** map $[P] : Stores \rightarrow Stores$. (Assume that $Stores = Var \rightarrow \mathbb{Z}$.)

All States



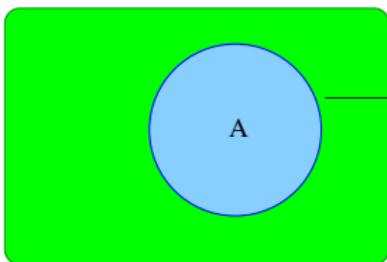
$\langle x \mapsto 2, y \mapsto 10, z \mapsto 3 \rangle$

$y := y + 1;$
 $z := x + y$

$\langle x \mapsto 2, y \mapsto 11, z \mapsto 13 \rangle$

Predicates on States

All States

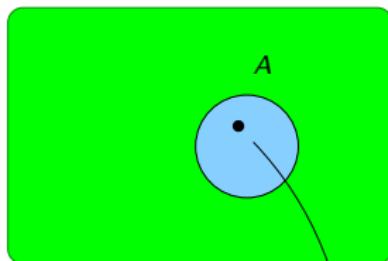


States satisfying
Predicate A
Eg. $0 \leq x \wedge x < y$

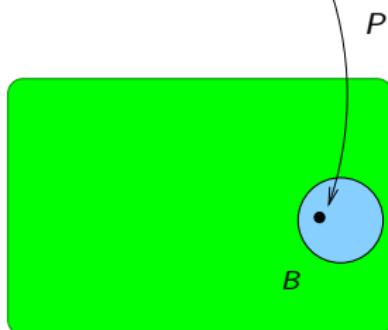
Assertion of “Partial Correctness” $\{A\}P\{B\}$

$\{A\}P\{B\}$ asserts that “Whenever program P is started in a state satisfying condition A , either it will not terminate, or it will terminate in a state satisfying condition B .”

All States



$\{10 \leq y\}$



$y := y + 1;$
 $z := x + y$

$\{x < z\}$

Mathematical meaning of a Hoare triple

- View program P as a relation

$$[P] \subseteq \text{Stores} \times \text{Stores}.$$

so that $(s, t) \in [P]$ iff it is possible to start P in the state s and terminate in state t .

- As usual here elements of Stores are maps from variables to integers.
- $[P]$ is possibly non-deterministic, in case we also want to model non-deterministic assignment etc.
- Then the Hoare triple $\{A\} P \{B\}$ is true iff for all states s and t : whenever $s \models A$ and $(s, t) \in [P]$, then $t \models B$.
- In other words $\text{Post}_{[P]}([A]) \subseteq [B]$.

Example programs and pre/post conditions

```
// Pre: true // Pre: 0 <= n
```

```
if (a <= b)
    min := a;
else
    min := b;
```

```
// Post: min <= a && min <= b
```

```
int a := m;
int x := 0;
while (x < n) {
    a := a + 1;
    x := x + 1;
}
```

```
// Post: a = m + n
```

Hoare's view: Program as a composition of statements

```
int a := m;  
int x := 0;  
while (x < n) {  
    a := a + 1;  
    x := x + 1;  
}
```

Hoare's view: Program as a composition of statements

```
int a := m;  
int x := 0;  
while (x < n) {  
    a := a + 1;  
    x := x + 1;  
}
```

```
S1: int a := m;  
S2: int x := 0;  
S3: while (x < n) {  
    a := a + 1;  
    x := x + 1;  
}
```

Program is S1;S2;S3

Proof rules of Hoare Logic

Axiom of Valid formulas:

$$\overline{A}$$

provided “ $\models A$ ” (i.e. A is a valid logical formula, eg. $x > 10 \implies x > 0$).

Skip:

$$\overline{\{A\} \text{ skip } \{A\}}$$

Assignment

$$\overline{\{A[e/x]\} \text{ x } := \text{ e } \{A\}}$$

Proof rules of Hoare Logic

If-then-else:

$$\frac{\{P \wedge b\} \ S \ \{Q\}, \ \{P \wedge \neg b\} \ T \ \{Q\}}{\{P\} \text{ if } b \text{ then } S \text{ else } T \ \{Q\}}$$

While (here P is called a *loop invariant*)

$$\frac{\{P \wedge b\} \ S \ \{P\}}{\{P\} \text{ while } b \text{ do } S \ \{P \wedge \neg b\}}$$

Sequencing:

$$\frac{\{P\} \ S \ \{Q\}, \ \{Q\} \ T \ \{R\}}{\{P\} \ S; T \ \{R\}}$$

Weakening:

$$\frac{P \implies Q, \ \{Q\} \ S \ \{R\}, \ R \implies T}{\{P\} \ S \ \{T\}}$$

Loop invariants

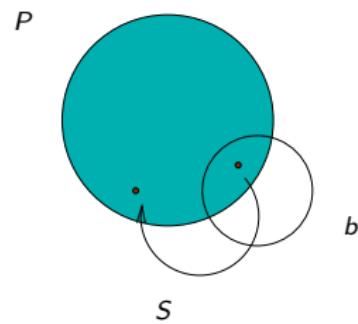
A predicate P is a **loop invariant** for the while loop:

```
while (b) {  
    S  
}
```

if $\{P \wedge b\} S \{P\}$ holds.

If P is a loop invariant then we can infer that:

```
 $\{P\}$  while  $b$  do  $S \{P \wedge \neg b\}$ 
```



Some examples to work on

Use the rules of Hoare logic to prove the following assertions:

- ① $\{x \geq 3\} \quad x := x + 2 \quad \{x \geq 5\}$
- ② $\{(y \leq 0) \wedge (x > -1)\} \text{ if } (y < 0) \text{ then } x := x + 1 \text{ else } x := y$
 $\{x > 0\}$
- ③ $\{x \leq 0\} \text{ while } (x \leq 5) \text{ do } x := x + 1 \quad \{x = 6\}$

Exercise

Prove using Hoare logic:

$$\{n \geq 1\} \ P \ \{a = n!\},$$

where P is the program:

```
x := n;  
a := 1;  
while (x ≥ 1) {  
    a := a * x;  
    x := x - 1  
}
```

Assume that factorial is defined as follows:

$$n! = \begin{cases} n \times (n-1) \times \cdots \times 1 & \text{if } n \geq 1 \\ 1 & \text{if } n = 0 \\ -1 & \text{if } n < 0 \end{cases}$$

Exercise

Prove using Hoare logic:

$$\{n \geq 1\} \ P \ \{a = n!\},$$

where P is the program:

```
S1: x := n;  
S2: a := 1;  
S3: while (x ≥ 1) {  
    S4:     a := a * x;  
    S5:     x := x - 1  
}
```

Assume that factorial is defined as follows:

$$n! = \begin{cases} n \times (n-1) \times \cdots \times 1 & \text{if } n \geq 1 \\ 1 & \text{if } n = 0 \\ -1 & \text{if } n < 0 \end{cases}$$

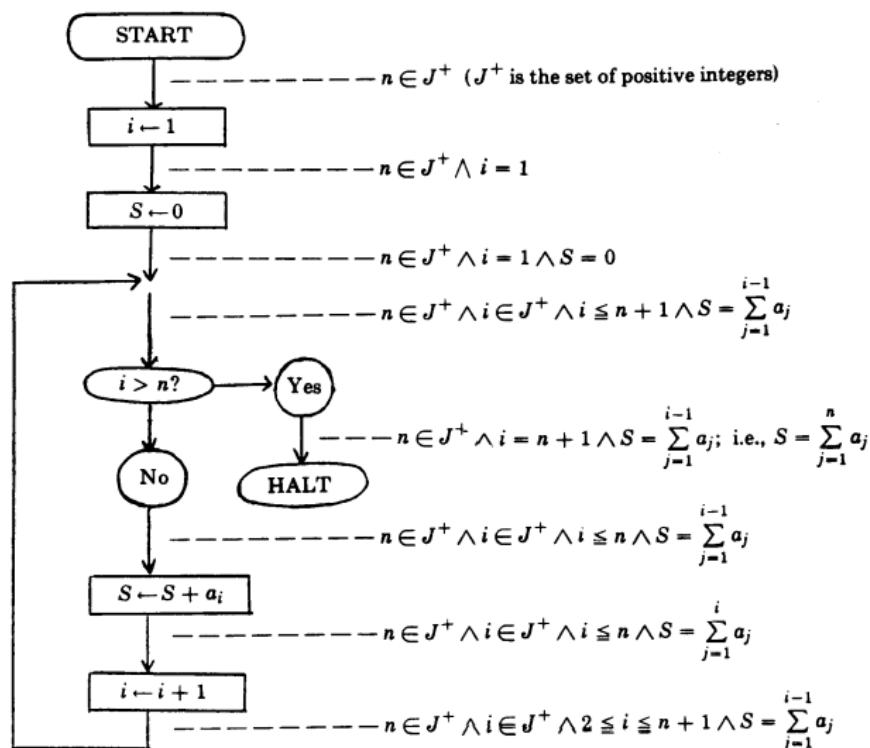
Solution

Need a loop invariant P satisfying:

- ① $\{n \geq 1\} \ S1; S2 \ \{P\}$
- ② $\{P \wedge (x \geq 1)\} \ S4; S5 \ \{P\}$
- ③ $(P \wedge \neg(x \geq 1)) \implies (a = n!)$

A potential P : $(x \geq 0) \wedge (a \times x! = n!)$.

Floyd's style of proof: Inductive Annotation

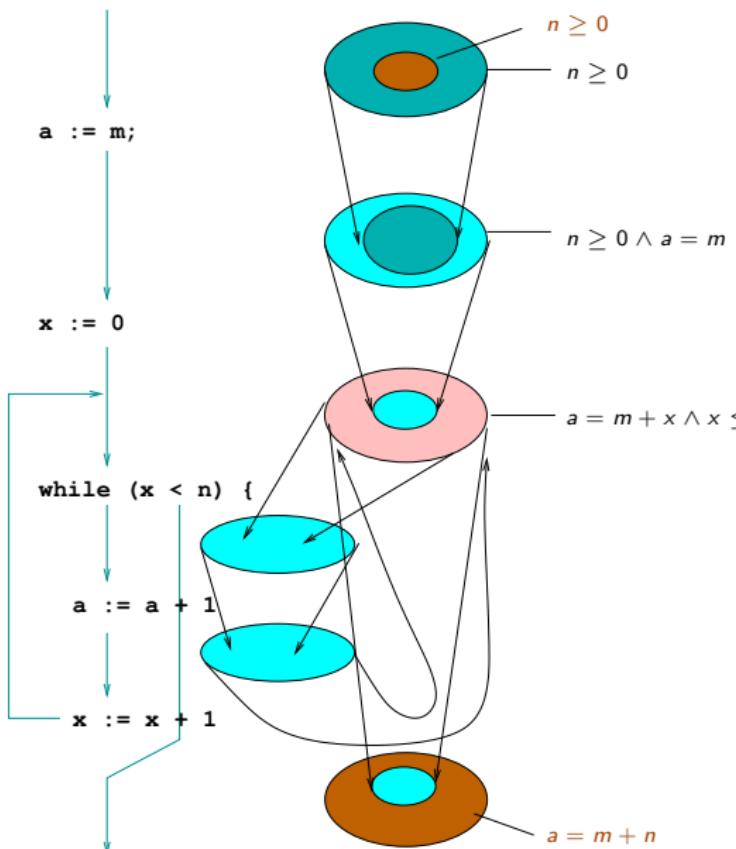


Inductive annotation based proof of a pre/post specification

- Annotate each program point i with a predicate A_i
- Successive annotations must be **inductive**:

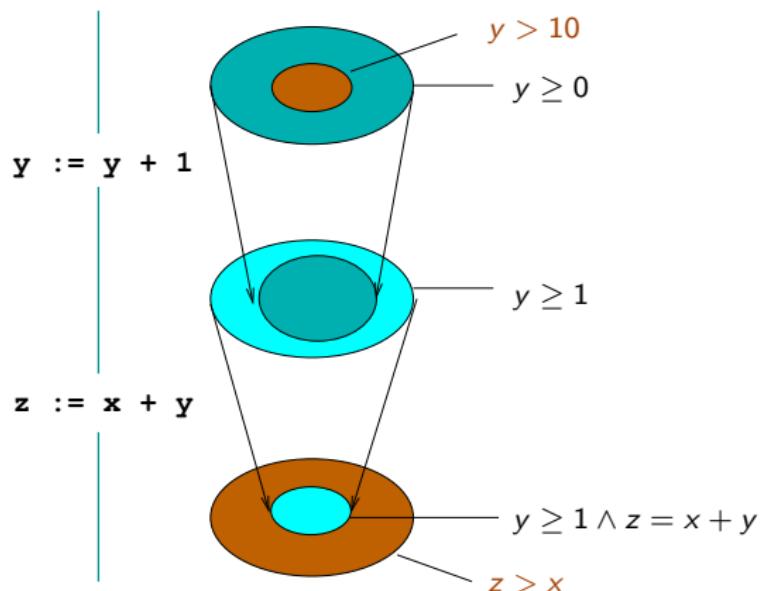
$$A_i \wedge [S_i] \implies A'_{i+1}.$$
- Annotation is **adequate**:

$$\text{Pre} \implies A_1 \text{ and } A_n \implies \text{Post}.$$
- Adequate annotation constitutes a proof of $\{\text{Pre}\} \text{ Prog } \{\text{Post}\}$.



Example of inductive annotation

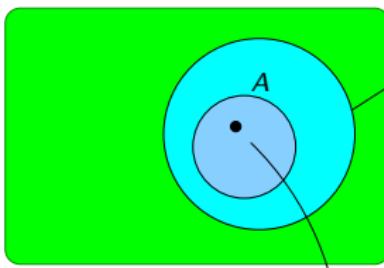
To prove: $\{y > 10\} \ y := y+1; z := x+y \ \{z > x\}$



Weakest Precondition $WP(P, B)$

$WP(P, B)$ is “a predicate that describes the exact set of states s such that when program P is started in s , if it terminates it will terminate in a state satisfying condition B .”

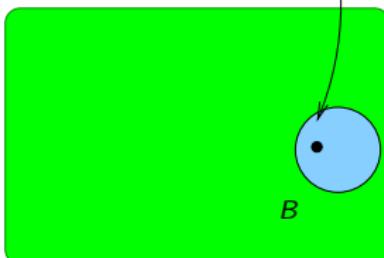
All States



$WP(P, B)$

$\{10 < y\}$

$y := y + 1;$
 $z := x + y;$



$\{x < z\}$

Exercise: Give “weakest” preconditions

1 $\{?\} x := x + 2 \{x \geq 5\}$

Exercise: Give “weakest” preconditions

1 $\{x \geq 3\} x := x + 2 \{x \geq 5\}$

2 $\{?$ }
if ($y < 0$) then $x := x+1$ else $x := y$
 $\{x > 0\}$

Exercise: Give “weakest” preconditions

1 $\{x \geq 3\} \ x := x + 2 \ \{x \geq 5\}$

2 $\{ (y < 0 \wedge x > -1) \vee (y > 0) \}$
if $(y < 0)$ then $x := x+1$ else $x := y$
 $\{x > 0\}$

3 $\{? \} \text{ while } (x \leq 5) \text{ do } x := x+1 \ \{x = 6\}$

Exercise: Give “weakest” preconditions

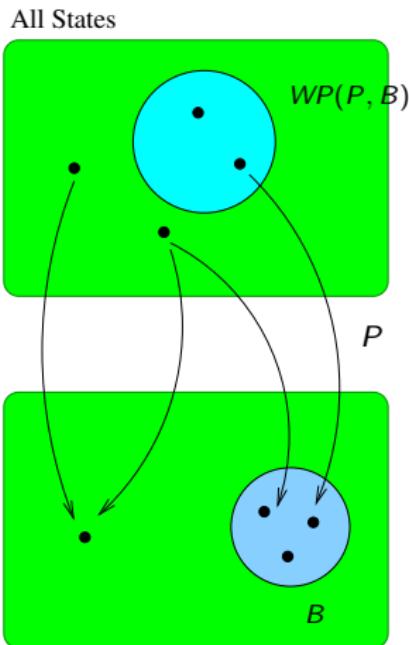
1 $\{x \geq 3\} \ x := x + 2 \ \{x \geq 5\}$

2 $\{ (y < 0 \wedge x > -1) \vee (y > 0) \}$

if $(y < 0)$ then $x := x+1$ else $x := y$
 $\{x > 0\}$

3 $\{x \leq 6\}$ while $(x \leq 5)$ do $x := x+1$ $\{x = 6\}$

Exercise: How will you define $WP(P, B)$?



Exercise: How will you define $WP(P, B)$?



$$WP(P, B) = \{s \mid \forall t : (s, t) \in [P] \text{ we have } t \models B\}$$

Rules for Computing Weakest Precondition

For assignment statement $x = e$:

$$\{B[e/x]\}$$

$x = e;$

$$\{B\}$$

Rules for Computing Weakest Precondition

For assignment statement $x = e$:

$$\{B[e/x]\}$$

$x = e;$

$$\{(x + y) > 0 \wedge y = 0\}$$

$z = x + y;$

$$\{B\}$$

$$\{z > 0 \wedge y = 0\}$$

Rules for Computing Weakest Precondition

If-then-else statement $\text{if } c \text{ then } S_1 \text{ else } S_2$:

$$\{(c \wedge WP(S_1, B)) \vee (\neg c \wedge WP(S_2, B))\}$$

```
if (c)
    S1;
else
    S2;
```

$$\{B\}$$

Rules for Computing Weakest Precondition

If-then-else statement $\text{if } c \text{ then } S_1 \text{ else } S_2$:

$$\{(c \wedge WP(S_1, B)) \vee (\neg c \wedge WP(S_2, B))\}$$

```
if (c)
  S1;
else
  S2;
```

$$\{B\}$$

$$\{((x < y) \wedge (y > w)) \vee ((x \geq y) \wedge (x > w))\}$$

```
if (x < y)
  z = y;
else
  z = x;
```

$$\{z > w\}$$

WP rule for sequencing

$$WP(S; T, B) = WP(S, WP(T, B)).$$

Weakest Precondition for while statements

- We can “approximate” $WP(\text{while } b \text{ do } c)$.
- $WP_i(w, A) =$ the set of states from which the body c of the loop is either entered more than i times or we exit the loop in a state satisfying A .
- WP_i defined inductively as follows:

$$WP_0 = b \vee A$$

$$WP_{i+1} = (\neg b \wedge A) \vee (b \wedge WP(c, WP_i))$$

- Then $WP(w, A)$ can be shown to be the “limit” or least upper bound of the chain $WP_0(w, A), WP_1(w, A), \dots$ in a suitably defined lattice (here the join operation is “And” or intersection).

Illustration of WP_i through example

Consider the program w below:

```
while (x ≥ 10) do
    x := x - 1
```

- What is the weakest precondition of w with respect to the postcondition $(x \leq 0)$?
- Compute $WP_0(w, (x \leq 0))$, $WP_1(w, (x \leq 0))$, ...

Illustration of WP_i through example

Consider the program w below:

```
while (x ≥ 10) do
  x := x - 1
```

- What is the weakest precondition of w with respect to the postcondition $(x \leq 0)$?
- Compute $WP_0(w, (x \leq 0))$, $WP_1(w, (x \leq 0))$, ...

Using weakest preconditions in inductive proofs

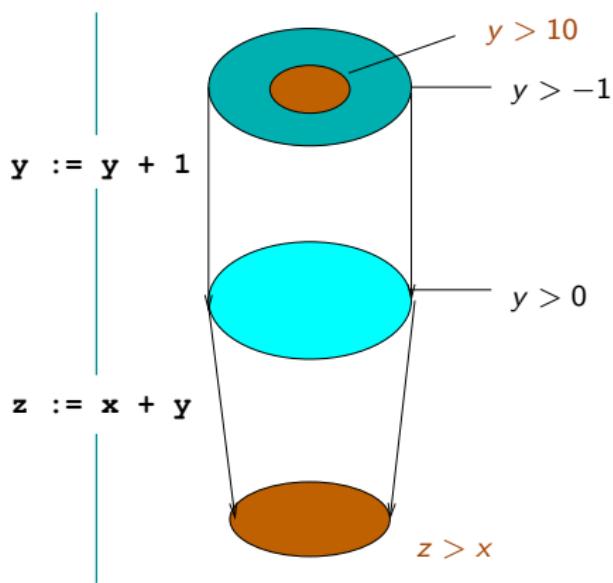
Weakest preconditions give us a way to:

- Check inductiveness of annotations

$$\{A_i\} \ S_i \ \{A_{i+1}\} \text{ iff } A_i \implies WP(S_i, A_{i+1})$$

- Reduce the amount of user-annotation needed
 - Programs **without loops** don't need any user-annotation
 - For programs with loops, user only needs to provide **loop invariants**

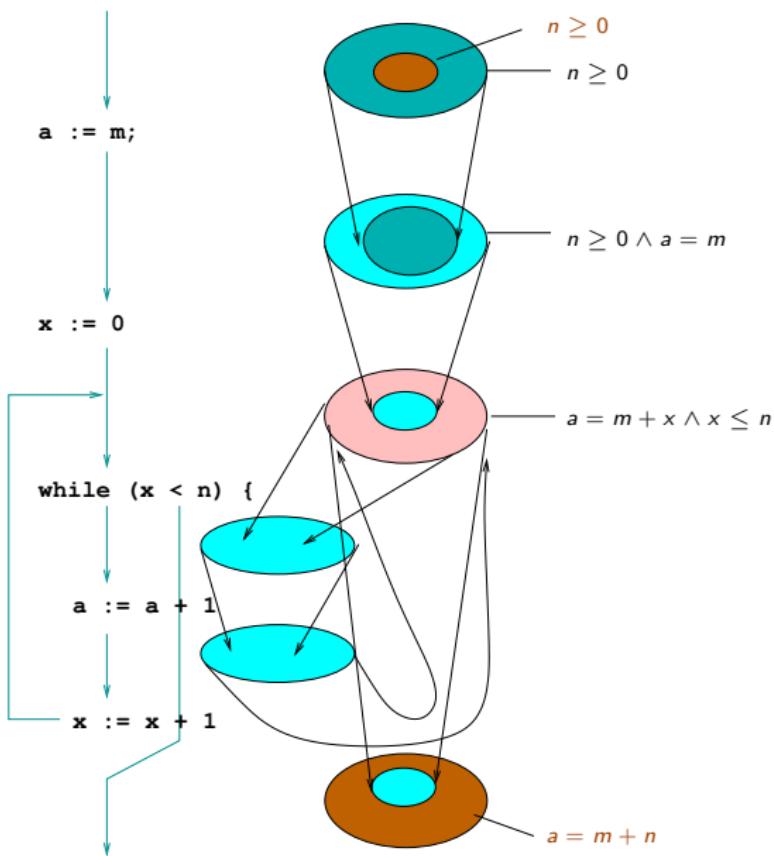
Checking $\{A\} P \{B\}$ using WP



Check that

$$(y > 10) \implies WP(P, z > x)$$

Example proof of add program



Reducing verification to satisfiability: Generating Verification Conditions

To check:

$$\{y > 10\}$$

```
y := y + 1;  
z := x + y;
```

$$\{x < z\}$$

Use the weakest precondition rules to generate the **verification condition**:

$$(y > 10) \implies (y > -1).$$

Check the verification condition by asking a theorem prover / SMT solver if the formula

$$(y > 10) \wedge \neg(y > -1).$$

is satisfiable.

What about while loops?

Pre: $0 \leq n$

```
int a := m;  
int x := 0;  
while (x < n) {  
    a := a + 1;  
    x := x + 1;  
}
```

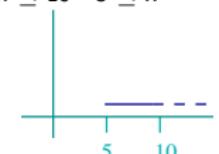
Post: $a = m + n$

Adequate loop invariant

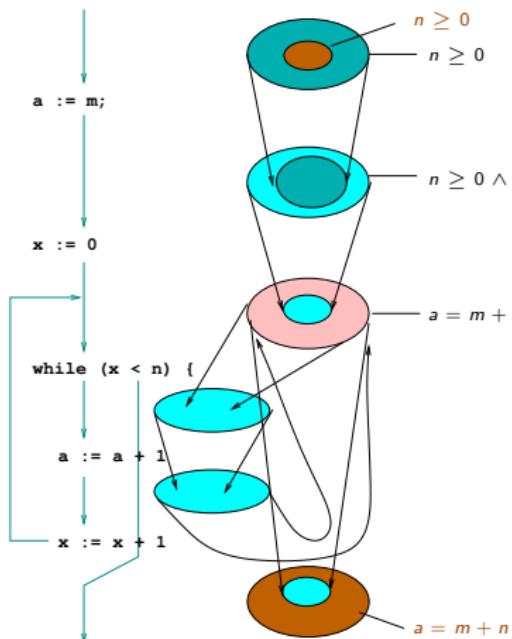
What is a “good” loop invariant for this program?

```
x := 0;
while (x < 10) {
    if (x >= 0)
        x := x + 1;
    else
        x := x - 1;
}
assert(x <= 11);
```

Adequate loop invariant

	<i>Canonical Invariant</i>	<i>Not-inv</i>	<i>Inv,not-ind</i>	<i>Inv,ind,not-adeq</i>	<i>Inv,ind,adeq</i>
<pre> x := 0; while (x < 10) { if (x >= 0) x := x + 1; else x := x - 1; } assert(x <= 11); </pre>	$0 \leq x \leq 10$ 	$5 \leq x$	$-1 \leq x$	$0 \leq x \leq 12$	$0 \leq x \leq 11$

Adequate loop invariant



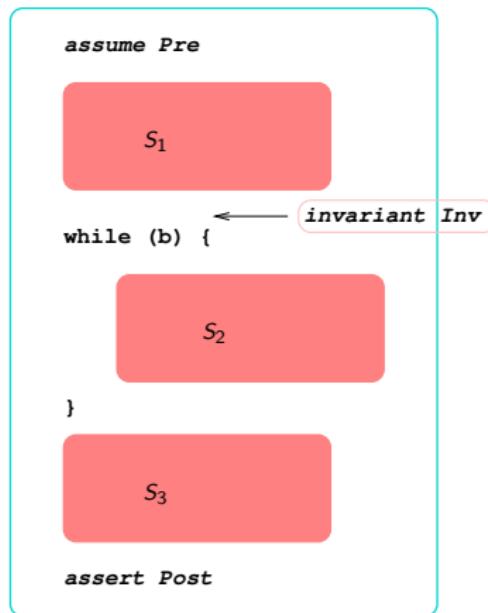
An **adequate** loop invariant needs to satisfy:

- $\{n \geq 0\} a := m; x := 0 \{a = m + x \wedge x \leq n\}$.
- $\{a = m + x \wedge x \leq n \wedge x < n\} a := a+1; x := x+1 \{a = m + x \wedge x \leq n\}$.
- $\{a = m + x \wedge x \leq n \wedge x \geq n\} \text{skip} \{a = m + n\}$.

Verification conditions are generated accordingly.

Note that $a = m + x$ is **not** an adequate loop invariant.

Generating Verification Conditions for a program



The following VCs are generated:

- $Pre \wedge [S_1] \implies Inv'$
Or: $Pre \implies WP(S_1, Inv)$
- $Inv \wedge b \wedge [S_2] \implies Inv'$
Or: $(Inv \wedge b) \implies WP(S_2, Inv)$
- $Inv \wedge \neg b \wedge [S_3] \implies Post'$
Or: $Inv \wedge \neg b \implies WP(S_3, Post)$

Soundness and Completeness of Hoare logic

- Hoare logic is **sound** (i.e. if we can prove “ $\{A\} P \{B\}$ ” in the logic, then $\{A\} P \{B\}$ is true.)
 - Prove that each axiom and each rule is sound
- Conversely, is it **complete**? That is, if $\{A\} P \{B\}$ is true for a program P and pre/post-conditions A and B , does there exist a proof tree for $\{A\} P \{B\}$ using the rules of Hoare logic?
- Yes, provided the assertion logic L can express all “weakest preconditions” (for all programs, and post-conditions expressed in L).

Relative completeness of Hoare logic

Theorem (Cook 1974)

Hoare logic is complete provided the assertion language L can express the WP for any program P and post-condition B .

Proof uses WP predicates and proceeds by induction on the structure of the program P .

- Suppose $\{A\} \text{ skip } \{B\}$ holds. Then it must be the case that $A \implies B$ is true. By Skip rule we know that $\{B\} \text{ skip } \{B\}$. Hence by Weakening rule, we get that $\{A\} \text{ skip } \{B\}$ holds.
- Suppose $\{A\} x := e \{B\}$ holds. Then it must be the case that $A \implies B[e/x]$. By Assignment rule we know that $\{B[e/x]\} x := e \{B\}$ is true. Hence by Weakening rule, we get that $\{A\} x := e \{B\}$ holds.
- Similarly for if-then-else.

Relative completeness of Hoare logic

- Suppose $\{A\} \text{ while } b \text{ do } S \{B\}$ holds. Let $P = WP(\text{while } b \text{ do } S, B)$. Then it is not difficult to check that P is a loop invariant for the while statement. I.e $\{P \wedge b\} S \{P\}$ is true. By induction hypothesis, this triple must be provable in Hoare logic. Hence we can conclude using the While rule, that $\{P\} \text{ while } b \text{ do } S \{P \wedge \neg b\}$. But since P was a valid precondition, it follows that $(P \wedge \neg b) \implies B$. By the weakening rule, we have a proof of $\{A\} \text{ while } b \text{ do } S \{B\}$.

Conclusion

- Hoare's style of proving programs views the program as a sequential composition of programs and constructs a proof tree.
- Floyd's style views the control-flow graph of the program, with annotations at each program point.
- Proofs in one style can be translated to the other.
- Using weakest preconditions we can generate verification conditions, to reduce verification to checking validity of a logical formula.
- Can be extended to handle functions (using function contracts), arrays (quantification), concurrency (Rely-Guarantee/Owicki-Gries styles).

Main challenge is the need for user annotation (adequate loop invariants, function contracts).

Can be increasingly automated (using learning techniques).