Functional Correctness via Refinement

Deepak D'Souza

Department of Computer Science and Automation
Indian Institute of Science, Bangalore.

10 February 2020

Outline

© Motivation

© Overview

© Abstract Data Types
@ Refinement

© ADT Transition Systems

Motivation

Motivation for Functional Correctness

@ ER models and model-checking stop short of addressing full
functional correctness

@ Refinement is a standard way of reasoning about functional
correctness.

@ Technique used is “deductive” in nature, rather than exploring
reachable states.

Motivation

Motivating Example: C implementation of a queue

1: int A[MAXLEN]; 11: void enq(int t) {

2: unsigned beg, 12: if (len == MAXLEN)
end, len; 13: assert (0);

3: // exception

4: void init() { 14: Alend] = t;

5: beg = 0; 15: if (end < MAXLEN-1)

6: end = 0; 16: end++;

7: len = 0; 17: else

8: } 18: end = 0;

9: 19: len++;

10: int deq(O {...} 20: }

beg end end beg

Motivation

Motivating example: FreeRTOS

FreeRTOS embedded OS.

Motivation

Extracts from code: TaskDelay()

void TaskDelay(portTickType xTicksToDelay){
portTickType xTimeToWake;
signed portBASE_TYPE xAlreadyYielded = pdFALSE;

if (xTicksToDelay > (portTickType) 0){

vTaskSuspendAll();

/* Calculate the time to wake - this may overflow but this
is not a problem. */

xTimeToWake = xTickCount + xTicksToDelay;

/* We must remove ourselves from the ready list before adding
ourselves to the blocked list as the same list item is used
for both lists. */

vListRemove ((xListItem *) &(pxCurrentTCB->xGenericListItem));

/* The list item will be inserted in wake time order. */

1istSET_LIST_ITEM_VALUE (& (pxCurrentTCB->xGenericListItem),

xTimeToWake) ;

portYIELD_WITHIN_API();

Motivation

Abstract model of the scheduler in Z

— Scheduler
maxPrio, maxNumVal, tickCount, topReadyPriority : N
tasks : P TASK

priority : TASK ++ N

running_task, idle : TASK

ready : seq (iseq TASK)

delayed : seq TASK x N

blocked : seq TASK

idle € tasks A idle € ran " /(ran ready)

running_task € tasks A topReadyPriority € dom ready

Vi,j : dom delayed | (i < j) e delayed(i).2 < delayed(j).2

V ten : ran delayed | tcn.2 > tickCount

running_task = head ready (topReadyPriority)

dom priority = tasks A tickCount < maxNumVal

Vi,j: dom blocked | (i < j) = priority(blocked(i)) > priority (blocked(j))

Motivation

Z model of TaskDelay operation

— TaskDelay
AScheduler
delay? : N
delayedPrefix, delayedSuffix : seq TASK x N
running! : TASK

delay > 0 A delay < maxNumVal A running_task # idle

tail ready (topReadyPriority) # () N delayed = delayedPrefix delayedSuffix

V tcn : ran delayedPrefix | tcn.2 < (tickCount + delay?)

delayedSuffix # () = (head delayedSuffix).2 > (tickCount + delay?)
running_task’ = head tail ready(topReadyPriority)

ready’ = ready @ { (topReadyPriority — tail ready (topReadyPriority)) }
delayed’ = delayedPrefix ™ {(running_task, (tickCount + delay?))) ™ delayedSuffix

Overview

Overview of plan for functional correctness

Theory Tools
e ADTs @ Rodin
o Z-style refinement o Models
o Equivalent Refinement o Assertions
Condition e Proof
e VCC

@ Transition system based ADTs

e ADT transition system o Floyd-Hoare style

annotations and proofs
o Ghost language
constructs
e Encoding Refinement
Conditions in VCC

Abstract Data Types

An ADT type is a finite set N of operation names.

@ Each operation name n in N has an associated input type I,
and an output type Op, each of which is simply a set of values.

@ We require that the set of operations N includes a designated
initialization operation called init.

Abstract Data Types

ADT definition

An ADT of type N is a structure of the form

./4 = (Q, Ua {Opn}nEN)

where

@ Q@ is the set of states of the ADT,

@ U € Q@ is an arbitrary state in Q used as an uninitialized state,

e Each op,, is a (possibly non-deterministic) realisation of the
operation n given by op, C (Q x I) x (Q x Op)

o Further, we require that the init operation depends only on its
argument and not on the originating state: thus
init(p,a) = init(q, a) for each p,q € Q and a € ;.

Abstract Data Types

ADT type example: Queue

ADT type QType = {init, enq, deq} with

linie = A{nil},
Oinit = {0k},

/enq = B,

Oeng = {0k, fail},
/deq = {ni/}a

Odeq =]B%U{fail}.

Here B is the set of bit values {0,1}, and nil is a "dummy"”
argument for the operations init and deq.

Abstract Data Types

ADT example: Queue of length k of type QType

QADT

QADTk = (Qa Ua {OPn}neQType) Where

Q = {efuUL, B

OPimi i given by op(q. nil, e, 0k), Vg € Q
OPeng IS given by op.n,(q,a,q-a,0k), Vg€ Q,acB,|q|q k
OPgeq IS given by opge,(b - q,nil,q,b), VbeB, b-qe Q

Abstract Data Types

Language of sequences of operation calls of an ADT

e An ADT A = (Q, U,{op,}nen) of type N induces a
(deterministic) transition system S4 = (Q, Xy, U, A) where
o Xy=1{(na,b) | neN,acl, be O,} is the set of
operation call labels corresponding to the ADT type N. The
action label (n, a, b) represents a call to operation n with input
a that returns the value b.
e A is given by

(p,(n,a,b),q) € Aiff op,(p,a,q,b).

@ We define the language of initialised sequences of operation
calls of A, denoted Ljnjt(A), to be L(S4) N ((init,—, =) - X}).

Abstract Data Types

Example: Transition system induced by QADT,

TS induced by QADT»

v
i (init, nil, ok)
o)

(deq, nil, 0) (deq, nil, 1)
(e"q,) enq, 70k)

deg, nil, 1)
deq nll 0

(deq,ml 0) (deq, nil, 1)
(eng, 0 (enq, 1, 0ky”"(enq, 0,6k) _(2pa, 1, ok)

Refinement

Idea behind refinement definition we will use

@ A client program interacts with an
ADT via a sequence of calls. If the
ADT is called with an operation that
is undefined in its current state, then
it is assumed to “break” and return
any possible value (including L); A
thereafter any sequence of calls/ret
vals is possible.

enq, 0, ok

@ Linit(AT) is the possible sequences a
client of A can see.

o B < A iff whatever the client can see
with B, it could also have seen with A.

This notion of refinement is from Hoare, He, Sanders et al, Data
Refinement Refined, Oxford Univ Report, 1985.

Client
Program

P

Refinement

Totalized version of a relation

b—— = "';:;b
d v d
1 REy]
R = {(a,a),(a,b),(b,b),(b,c)}.
Rt = {(a,a),(a b),(b,b),(b,c)} U{(c,a),(c,b),(c,c),(c,d),(c,L),
(d,a),(d,b),(d,c),(d,d),(d, L), (L, a), (L, b),(L,c),(L,d), (L, L)}

R adds a new element L to domain and co-domain, and makes R total on all
elements outside the domain of R.

Relation S refines relation R iff St C Rt. Thus S is “more defined” than R, and may

resolve some non-determinism in R.

Refinement

Totalized version of an ADT A

Given an ADT A = (Q, U, {op,}ncn) over a data type N, define the
totalized version of A, to be an ADT A™ of type N*:

AT = (QU{E}, U,{op; }nen), where

@ N7 has input type /, and output type O, = O, U {1}, where L is
a new output value.

@ E is a new “error’ state

@ op; is the completed version of operation op,,, obtained as follows:
o If (g,a) & pre (op,), then add (q, a, E, b’) to op; for each
b e O;f.
o Add (E,a,E,b') € op, for each a€ I, and b’ € O;F.
Here pre (op,) is the set of state-input pairs on which op,, is defined. Thus

(p, a) € pre (op,) iff 3q, b such that op,(p, a, q, b).
If op,, is invoked outside this precondition, the data-structure is assumed to “break”
and allow any possible interaction sequence after that.

A represents the interaction sequences that a client of A may encounter while using

A 3¢ 3 data-structure.

Refinement

Example: Transition system induced by QADT S

TS induced by QADTS

U
(init, nil, ok)

O%Oe

€

(deq, nil, 0 (degq, nil, 1)
enq, s eq, nil, ehq, 1, ok)
O . E
(deq, nil, 0) (deq, nil, 1)
(enq, 0,/0k)/ (enq, 1) end, 0 k) (eng, 1, ok)

00 (eng,0, — (enq,0, *) 11
(enq,1, — (enq,1, —)

Refinement

Refinement between ADTs

Let A and B be ADTs of type N. We say B refines A, written
B=A,

iff
Linit(BT) C Linit(AT).

Examples of refinement:
@ QADT3 refines QADT 5.
o Let QADTY be the version of QADT, where we check for

emptiness/fullness of queue and return fail instead of being
undefined. Then QADT refines QADT .

Refinement

Exercise

Is it true that
@ QADT; refines QADT3?
e QADT, refines QADT}?

Refinement

Transitivity of refinement

It follows immediately from its definition that refinement is
transitive:

Proposition

Let A, B, and C be ADT's of type N, such that C < B, and
B=<A. ThenC < A.

Refinement

Refinement Condition (RC)

Let A= (Q, U,{opn}nen) and A" = (Q', U',{opn}ncn) be ADTs
of type N. We give a sufficient condition for A’ to refine A, based
on an “abstraction relation” that relates states of A’ and A.

We say A and A’ satisfy condition (RC) if there exists a relation
p C @ x Q such that:

(init) Let a € linir and let (g, b) be a resultant state and output
after an init(a) operation in A’. Then either a & pre (init 4),
or there exists g, such that (qa, b) € init 4/(a), with p(q}, qa).

(g-weak) Foreach ne N,a€l,, be O, p€ Q and p’ € Q', with
(p',p) € p, if (p,a) € pre (op,) in A, then (p', a) € pre (op,)
in A’. (guard weakening).

(sim) Foreachne N, a€ l,, b€ O,, p€ Q and p' € Q’, with

(n,a,b)

(p', p) € p; whenever p’ ———= ¢’ and (p, a) € pre (op,) in

b
A, then there exists g € Q such that p M g with

(d',q) €p.

Refinement

lllustrating condition (RC)

(init, a, b)
Aa
O
(RC-init): ¢
— 0
(init, a, b) (init, a, b)
o— >0, o——— 50 1
q, 9a
(n, a, b) (n, a, b)
PO—— = PO— =
//f /4
(RC-g-weak): ! /!
P — P
N\ N (n,ab)
p/ O p/ - o
(n,a,b")
_— (n, 3, b)
PO PO——=04
(RC-sim-2): K ’ K
P = L P L P
AN (n,a, b) N (n,a,b)
o=
' Oyq p O q

Refinement

Exercise

Find an abstraction relation p for which QADT, and QADT3
satisfy condition (RC).

Refinement

Condition (RC) is sufficient for refinement

If A and C are ADTs of the same type, and p is an abstraction
relation from C to A satisfying condition (RC), then C refines A.

init(a) n,a, b n,a, b n’, a", b"
Abstract ao a a as
A 4 4 A
! ! 1 !
| | | |
1 1 1 1
1 1 1 1
I I I
P | | |
\ \ \ \
\ \ \ \
\ \ \ \
. N
init(a) n,a, b von,al b von el b
<o 1 (&2} 3

Concrete

Refinement

Example showing that RC conditions are not necessary for
refinement

A —0O
P
%HO
A
q s
0/0_-O
0/1 o/ w
cC —0
u v

@ C refines A. In fact both A and C refine eachother, since
Linit(AT) = Linit(CT).

@ However, there is no abstraction relation p from C to A that
satisfies the conditions (RC).

ADT Transition Systems

ADT Transition System
An ADT transition system of type N is of the form

S = (QC7 QI7 2/7 U7 {6H}HEN)

where
@ Q is the set of “complete” states of the ADT (where an ADT
operation is complete) and Q; is the set of “incomplete” or “local”
states of the ADT. The set of states Q of the ADT TS is the
disjoint union of Q. and Q.
@ Y, is a finite set of internal or local action labels.

o Let i, ={in(a)| n€ N and ac€ I,} be the set of input
labels corresponding to the ADT of type N. The action in(a)
represents reading an argument with value a.

o LetI'}, = {ret(b) | n€ N and b€ O,} be the set of return
labels corresponding to the ADT of type N. The action ret(b)
represents a return of the value b.

o Let X be the disjoint union of ¥;, I'}, and I'§;.

ADT Transition Systems

ADT Transition System, contd.

@ For each n€ N, 6, is a transition relation of the form:
0, € Q@ X ¥ x Q, that implements the operation n. It must satisfy
the following constraints:

e it is complete for the input actions in T'},.

e Each transition labelled by an input action in F;\, begins from a
Q. state and each transition labelled by a return action in I'§,
ends in a Q. state. All other transitions begin and end in a @,
state.

ADT Transition Systems

Example: ADT Transition System induced by queue.c

Part of the ADT TS induced by queue.c, showing init and enq

opns
0, (), u, u, u) (0,(),0,0,0,u) (0,(1),0,1,1,u) (0,(0),0,1,1, u)
Q: Q 5 q :
in(nil) in(0), \in(1) \ |
(8, (), u, u, u) (13, (),0,0,0,1)
q->begin = 0 Ly \ §
© 0,0, u,u) & [15,0,0,0,0,00 8 & (15,(),0,0,0,1) | :
gq->end = 0 p i
v ; !
(10, (),0,0,u) O [16,(0),0,0,0,0) O O (16,(1),0,0,0,1) ;
q->len = 0 q->end<MAXLEN-1 | f

(10, (),0,0,0) O
ret(ok) g->end++ 3
(20, (0),0,1,0,0) O

i
q->lent++

v

Q

v 5
17,(0),0,0,0,0) © O (17,(1),0,0,0,1)

v

O (20, (1),0,170,1)

v

Q

(21,(0),0,1,1,0) Q

ADT Transition Systems

ADT induced by an ADT TS

An ADT transition system like S above induces an ADT Ag of
type N given by As = (Qc, U, {opn}nen) where for each n € N,

p € Qc, and a € I,, we have op,(p, a, q, b) iff there exists a path of

i le b
theformpﬂirlg---grkm)qiné‘.

We say that an ADT TS &’ refines another ADT TS S iff Ag/
refines Asg.

ADT Transition Systems

Phrasing refinement conditions in VCC

typedef struct AC {

abstract state

invariants on abs state

concrete state

invariants on conc state

gluing invariant on joint abs-conc state
} AC;

operation n(AC *p, arg a)
_(requires \wrapped(p)) // glued joint state
_(requires G) // precondition G of abs op
_(ensures \wrapped(p)) // restores glued state
_(decreases 0) // conc op terminates whenever G is true
{

_(unwrap p)

// abs op body

// conc op body

_(wrap p)
}

init (xp)
_(ensures \wrapped(p)) {...}

	Motivation
	Overview
	Abstract Data Types
	Refinement
	ADT Transition Systems

