

Functional Correctness via Refinement

Deepak D'Souza

Department of Computer Science and Automation
Indian Institute of Science, Bangalore.

10 February 2020

Outline

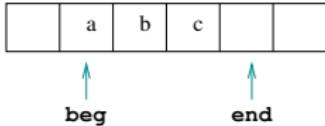
- 1 Motivation
- 2 Overview
- 3 Abstract Data Types
- 4 Refinement
- 5 ADT Transition Systems

Motivation for Functional Correctness

- ER models and model-checking stop short of addressing full functional correctness
- Refinement is a standard way of reasoning about functional correctness.
- Technique used is “deductive” in nature, rather than exploring reachable states.

Motivating Example: C implementation of a queue

```
1: int A[MAXLEN];      11: void enq(int t) {  
2: unsigned beg,        12:   if (len == MAXLEN)  
    end, len;          13:     assert(0);  
3:                      // exception  
4: void init() {        14:   A[end] = t;  
5:   beg = 0;            15:   if (end < MAXLEN-1)  
6:   end = 0;            16:     end++;  
7:   len = 0;            17:   else  
8: }                    18:     end = 0;  
9:                      19:   len++;  
10: int deq() {...}    20: }
```



Motivating example: FreeRTOS

FreeRTOS embedded OS.

Extracts from code: TaskDelay()

```
void TaskDelay(portTickType xTicksToDelay){
    portTickType xTimeToWake;
    signed portBASE_TYPE xAlreadyYielded = pdFALSE;

    if( xTicksToDelay > (portTickType) 0){
        vTaskSuspendAll();
        /* Calculate the time to wake - this may overflow but this
           is not a problem. */
        xTimeToWake = xTickCount + xTicksToDelay;
        /* We must remove ourselves from the ready list before adding
           ourselves to the blocked list as the same list item is used
           for both lists. */
        vListRemove((xListItem *) &(pxCurrentTCB->xGenericListItem));
        /* The list item will be inserted in wake time order. */
        listSET_LIST_ITEM_VALUE(&(pxCurrentTCB->xGenericListItem),
                               xTimeToWake);
        ....
        portYIELD_WITHIN_API();
    }
}
```

Abstract model of the scheduler in Z

Scheduler

maxPrio, maxNumVal, tickCount, topReadyPriority : \mathbb{N}

tasks : \mathbb{P} TASK

priority : TASK $\rightarrow \mathbb{N}$

running_task, idle : TASK

ready : seq (iseq TASK)

delayed : seq TASK $\times \mathbb{N}$

blocked : seq TASK

...

idle \in tasks \wedge idle \in ran \cap / (ran ready)

running_task \in tasks \wedge topReadyPriority \in dom ready

$\forall i, j : \text{dom delayed} \mid (i < j) \bullet \text{delayed}(i).2 \leq \text{delayed}(j).2$

$\forall tcn : \text{ran delayed} \mid tcn.2 > \text{tickCount}$

running_task = head ready(topReadyPriority)

dom priority = tasks \wedge tickCount \leq maxNumVal

$\forall i, j : \text{dom blocked} \mid (i < j) \implies \text{priority}(\text{blocked}(i)) \geq \text{priority}(\text{blocked}(j))$

...

Z model of TaskDelay operation

TaskDelay

$\Delta Scheduler$

$delay? : \mathbb{N}$

$delayedPrefix, delayedSuffix : \text{seq } TASK \times \mathbb{N}$
 $running! : TASK$

$delay > 0 \wedge delay \leq maxNumVal \wedge running_task \neq idle$

$tail ready(topReadyPriority) \neq \langle \rangle \wedge delayed = delayedPrefix \cap delayedSuffix$

$\forall tcn : \text{ran } delayedPrefix \mid tcn.2 \leq (tickCount + delay?)$

$delayedSuffix \neq \langle \rangle \implies (\text{head } delayedSuffix).2 > (tickCount + delay?)$

$running_task' = \text{head } tail ready(topReadyPriority)$

$ready' = ready \oplus \{ (topReadyPriority \mapsto tail ready(topReadyPriority)) \}$

$delayed' = delayedPrefix \cap \langle (running_task, (tickCount + delay?)) \rangle \cap delayedSuffix$

...

Overview of plan for functional correctness

Theory

- ADTs
- Z-style refinement
 - Equivalent Refinement Condition
- Transition system based ADTs
 - ADT transition system

Tools

- Rodin
 - Models
 - Assertions
 - Proof
- VCC
 - Floyd-Hoare style annotations and proofs
 - Ghost language constructs
 - Encoding Refinement Conditions in VCC

ADT type

An *ADT type* is a finite set N of *operation names*.

- Each operation name n in N has an associated *input type* I_n and an *output type* O_n , each of which is simply a set of values.
- We require that the set of operations N includes a designated *initialization operation* called *init*.

ADT definition

An *ADT* of type N is a structure of the form

$$\mathcal{A} = (Q, U, \{op_n\}_{n \in N})$$

where

- Q is the set of states of the ADT,
- $U \in Q$ is an arbitrary state in Q used as an *uninitialized* state,
- Each op_n is a (possibly non-deterministic) *realisation* of the operation n given by $op_n \subseteq (Q \times I_n) \times (Q \times O_n)$
- Further, we require that the *init* operation depends only on its argument and not on the originating state: thus $init(p, a) = init(q, a)$ for each $p, q \in Q$ and $a \in I_{init}$.

ADT type example: Queue

QType

ADT type $QType = \{init, enq, deq\}$ with

$$\begin{aligned}I_{init} &= \{nil\}, \\O_{init} &= \{ok\}, \\I_{enq} &= \mathbb{B}, \\O_{enq} &= \{ok, fail\}, \\I_{deq} &= \{nil\}, \\O_{deq} &= \mathbb{B} \cup \{fail\}.\end{aligned}$$

Here \mathbb{B} is the set of bit values $\{0, 1\}$, and nil is a “dummy” argument for the operations $init$ and deq .

ADT example: Queue of length k of type $QType$

$QADT_k$

$QADT_k = (Q, U, \{op_n\}_{n \in QType})$ where

$$Q = \{\epsilon\} \cup \bigcup_{i=1}^k \mathbb{B}^i$$

op_{init} is given by $op_{init}(q, nil, \epsilon, ok), \forall q \in Q$

op_{enq} is given by $op_{enq}(q, a, q \cdot a, ok), \forall q \in Q, a \in \mathbb{B}, |q| < k$

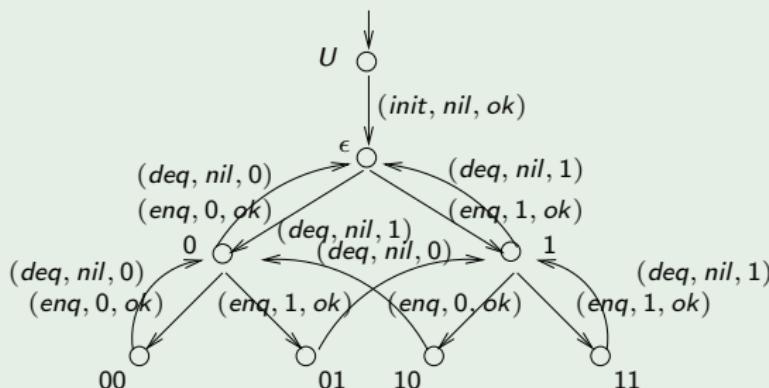
op_{deq} is given by $op_{deq}(b \cdot q, nil, q, b), \forall b \in \mathbb{B}, b \cdot q \in Q$

Language of sequences of operation calls of an ADT

- An ADT $\mathcal{A} = (Q, U, \{op_n\}_{n \in N})$ of type N induces a (deterministic) transition system $\mathcal{S}_{\mathcal{A}} = (Q, \Sigma_N, U, \Delta)$ where
 - $\Sigma_N = \{(n, a, b) \mid n \in N, a \in I_n, b \in O_n\}$ is the set of *operation call* labels corresponding to the ADT type N . The action label (n, a, b) represents a call to operation n with input a that returns the value b .
 - Δ is given by
$$(p, (n, a, b), q) \in \Delta \text{ iff } op_n(p, a, q, b).$$
- We define the language of *initialised sequences of operation calls* of \mathcal{A} , denoted $L_{init}(\mathcal{A})$, to be $L(\mathcal{S}_{\mathcal{A}}) \cap ((init, -, -) \cdot \Sigma_N^*)$.

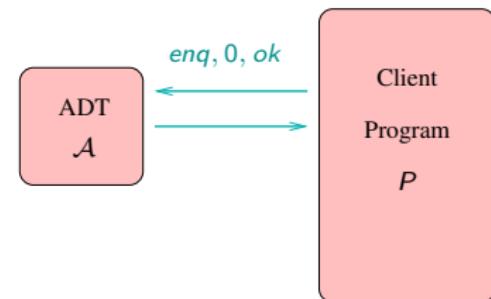
Example: Transition system induced by $QADT_2$

TS induced by $QADT_2$



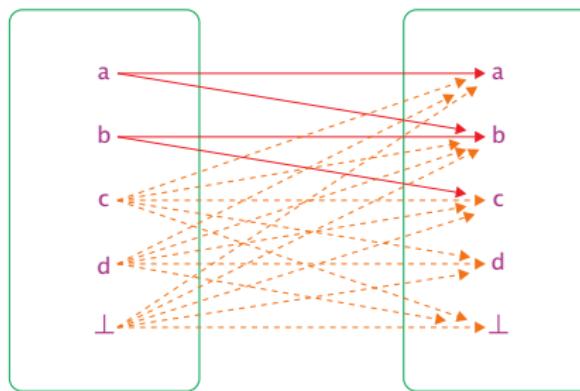
Idea behind refinement definition we will use

- A client program interacts with an ADT via a sequence of calls. If the ADT is called with an operation that is undefined in its current state, then it is assumed to “**break**” and return **any possible value (including \perp)**; thereafter any sequence of calls/ret vals is possible.
- $L_{init}(\mathcal{A}^+)$ is the possible sequences a client of \mathcal{A} can see.
- $\mathcal{B} \preceq \mathcal{A}$ iff whatever the client can see with \mathcal{B} , it could also have seen with \mathcal{A} .



This notion of refinement is from Hoare, He, Sanders et al, *Data Refinement Refined*, Oxford Univ Report, 1985.

Totalized version of a relation



$$R = \{(a, a), (a, b), (b, b), (b, c)\}.$$

$$R^+ = \{(a, a), (a, b), (b, b), (b, c)\} \cup \{(c, a), (c, b), (c, c), (c, d), (c, \perp), (d, a), (d, b), (d, c), (d, d), (d, \perp), (\perp, a), (\perp, b), (\perp, c), (\perp, d), (\perp, \perp)\}$$

R^+ adds a new element \perp to domain and co-domain, and makes R **total** on all elements outside the domain of R .

Relation S **refines** relation R iff $S^+ \subseteq R^+$. Thus S is “more defined” than R , and may resolve some non-determinism in R .

Totalized version of an ADT \mathcal{A}

Given an ADT $\mathcal{A} = (Q, U, \{op_n\}_{n \in N})$ over a data type N , define the **totalized version** of \mathcal{A} , to be an ADT \mathcal{A}^+ of type N^+ :

$$\mathcal{A}^+ = (Q \cup \{E\}, U, \{op_n^+\}_{n \in N}), \text{ where}$$

- N^+ has input type I_n and output type $O_n^+ = O_n \cup \{\perp\}$, where \perp is a new output value.
- E is a new “error” state
- op_n^+ is the **completed** version of operation op_n , obtained as follows:
 - If $(q, a) \notin \text{pre}(op_n)$, then add (q, a, E, b') to op_n^+ for each $b' \in O_n^+$.
 - Add $(E, a, E, b') \in op_n^+$ for each $a \in I_n$ and $b' \in O_n^+$.

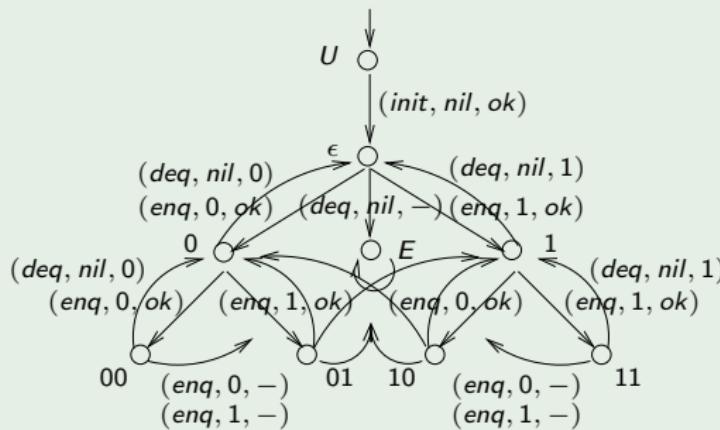
Here $\text{pre}(op_n)$ is the set of state-input pairs on which op_n is defined. Thus $(p, a) \in \text{pre}(op_n)$ iff $\exists q, b$ such that $op_n(p, a, q, b)$.

If op_n is invoked outside this precondition, the data-structure is assumed to “break” and allow any possible interaction sequence after that.

\mathcal{A}^+ represents the interaction sequences that a client of \mathcal{A} may encounter while using \mathcal{A} as a data-structure.

Example: Transition system induced by $QADT_2^+$

TS induced by $QADT_2^+$



Refinement between ADTs

Let \mathcal{A} and \mathcal{B} be ADTs of type N . We say \mathcal{B} **refines** \mathcal{A} , written

$$\mathcal{B} \preceq \mathcal{A},$$

iff

$$L_{init}(\mathcal{B}^+) \subseteq L_{init}(\mathcal{A}^+).$$

Examples of refinement:

- $QADT_3$ refines $QADT_2$.
- Let $QADT'_2$ be the version of $QADT_2$ where we check for emptiness/fullness of queue and return *fail* instead of being undefined. Then $QADT'_2$ refines $QADT_2$.

Exercise

Exercise

Is it true that

- $QADT_2$ refines $QADT_3$?
- $QADT_2$ refines $QADT'_2$?

Transitivity of refinement

It follows immediately from its definition that refinement is transitive:

Proposition

Let \mathcal{A} , \mathcal{B} , and \mathcal{C} be ADT's of type N , such that $\mathcal{C} \preceq \mathcal{B}$, and $\mathcal{B} \preceq \mathcal{A}$. Then $\mathcal{C} \preceq \mathcal{A}$.

Refinement Condition (RC)

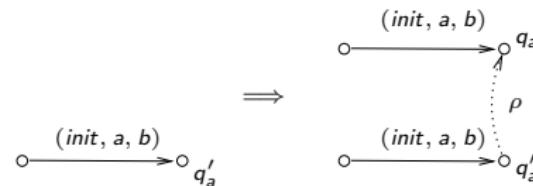
Let $\mathcal{A} = (Q, U, \{op_n\}_{n \in N})$ and $\mathcal{A}' = (Q', U', \{op_n\}_{n \in N})$ be ADTs of type N . We give a *sufficient* condition for \mathcal{A}' to refine \mathcal{A} , based on an “abstraction relation” that relates states of \mathcal{A}' and \mathcal{A} .

We say \mathcal{A} and \mathcal{A}' satisfy condition (RC) if there exists a relation $\rho \subseteq Q' \times Q$ such that:

- (init) Let $a \in I_{init}$ and let (q'_a, b) be a resultant state and output after an $init(a)$ operation in \mathcal{A}' . Then either $a \notin \text{pre}(init_{\mathcal{A}})$, or there exists q_a such that $(q_a, b) \in init_{\mathcal{A}'}(a)$, with $\rho(q'_a, q_a)$.
- (g-weak) For each $n \in N$, $a \in I_n$, $b \in O_n$, $p \in Q$ and $p' \in Q'$, with $(p', p) \in \rho$, if $(p, a) \in \text{pre}(op_n)$ in \mathcal{A} , then $(p', a) \in \text{pre}(op_n)$ in \mathcal{A}' . (**guard weakening**).
- (sim) For each $n \in N$, $a \in I_n$, $b \in O_n$, $p \in Q$ and $p' \in Q'$, with $(p', p) \in \rho$; whenever $p' \xrightarrow{(n,a,b)} q'$ and $(p, a) \in \text{pre}(op_n)$ in \mathcal{A} , then there exists $q \in Q$ such that $p \xrightarrow{(n,a,b)} q$ with $(q', q) \in \rho$.

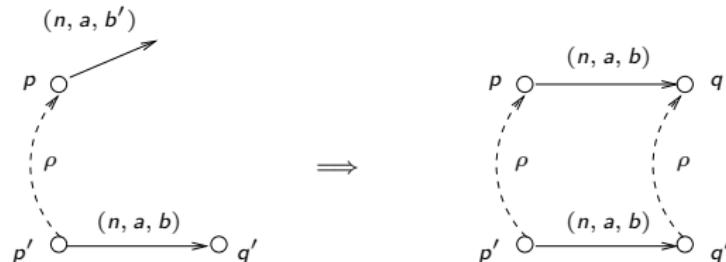
Illustrating condition (RC)

(RC-init):



(RC-g-weak):

(RC-sim-2):



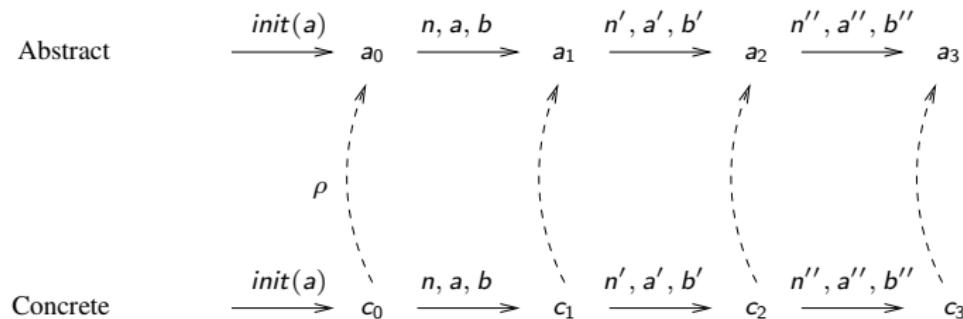
Exercise

Exercise

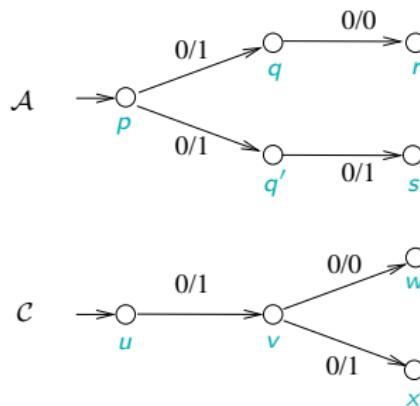
Find an abstraction relation ρ for which $QADT_2$ and $QADT_3$ satisfy condition (RC).

Condition (RC) is sufficient for refinement

If \mathcal{A} and \mathcal{C} are ADTs of the same type, and ρ is an abstraction relation from \mathcal{C} to \mathcal{A} satisfying condition (RC), then \mathcal{C} refines \mathcal{A} .



Example showing that RC conditions are not necessary for refinement



- \mathcal{C} refines \mathcal{A} . In fact both \mathcal{A} and \mathcal{C} refine each other, since $L_{init}(\mathcal{A}^+) = L_{init}(\mathcal{C}^+)$.
- However, there is **no** abstraction relation ρ from \mathcal{C} to \mathcal{A} that satisfies the conditions (RC).

ADT Transition System

An *ADT transition system* of type N is of the form

$$\mathcal{S} = (Q_c, Q_I, \Sigma_I, U, \{\delta_n\}_{n \in N})$$

where

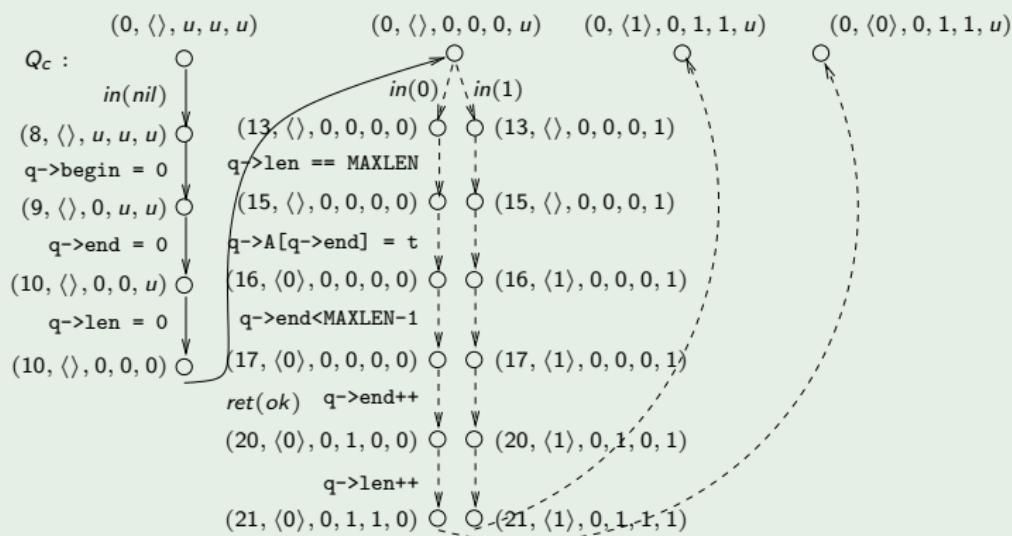
- Q_c is the set of “complete” states of the ADT (where an ADT operation is complete) and Q_I is the set of “incomplete” or “local” states of the ADT. The set of states Q of the ADT TS is the disjoint union of Q_c and Q_I .
- Σ_I is a finite set of *internal* or *local* action labels.
 - Let $\Gamma_N^i = \{in(a) \mid n \in N \text{ and } a \in I_n\}$ be the set of *input* labels corresponding to the ADT of type N . The action $in(a)$ represents reading an argument with value a .
 - Let $\Gamma_N^o = \{ret(b) \mid n \in N \text{ and } b \in O_n\}$ be the set of *return* labels corresponding to the ADT of type N . The action $ret(b)$ represents a return of the value b .
 - Let Σ be the disjoint union of Σ_I , Γ_N^i and Γ_N^o .

ADT Transition System, contd.

- For each $n \in N$, δ_n is a transition relation of the form:
 $\delta_n \subseteq Q \times \Sigma \times Q$, that implements the operation n . It must satisfy the following constraints:
 - it is complete for the input actions in Γ_N^i .
 - Each transition labelled by an input action in Γ_N^i begins from a Q_c state and each transition labelled by a return action in Γ_N^o ends in a Q_c state. All other transitions begin and end in a Q_l state.

Example: ADT Transition System induced by queue.c

Part of the ADT TS induced by queue.c, showing init and enq opns



ADT induced by an ADT TS

An ADT transition system like \mathcal{S} above induces an ADT $\mathcal{A}_{\mathcal{S}}$ of type N given by $\mathcal{A}_{\mathcal{S}} = (Q_c, U, \{op_n\}_{n \in N})$ where for each $n \in N$, $p \in Q_c$, and $a \in I_n$, we have $op_n(p, a, q, b)$ iff there exists a path of the form $p \xrightarrow{in(a)} r_1 \xrightarrow{l_1} \dots \xrightarrow{l_{k-1}} r_k \xrightarrow{ret(b)} q$ in \mathcal{S} .

We say that an ADT TS \mathcal{S}' refines another ADT TS \mathcal{S} iff $\mathcal{A}_{\mathcal{S}'}$ refines $\mathcal{A}_{\mathcal{S}}$.

Phrasing refinement conditions in VCC

```
typedef struct AC {
    abstract state
    invariants on abs state
    concrete state
    invariants on conc state
    gluing invariant on joint abs-conc state
} AC;

operation n(AC *p, arg a)
    _requires \wrapped(p) // glued joint state
    _requires G // precondition G of abs op
    _ensures \wrapped(p) // restores glued state
    _decreases 0 // conc op terminates whenever G is true
{
    _unwrap(p)
    // abs op body
    // conc op body
    _wrap(p)
}

init(*p)
    _ensures \wrapped(p)) {...}
```