Rodin and refinement

Deepak D'Souza

Department of Computer Science and Automation
Indian Institute of Science, Bangalore.

17 February 2020

Rodin

Rodin tool

@ Provides an environment for developing a system design by
succcessive refinement.

@ Uses Event-B modelling language.
@ Provides Features
o Checking consistency of models.
o Are expressions well-defined. For example if x := y/z then is
z non-zero? As another example, if x < y then are both x
and y of type integer?
@ Does the initialization event always result in a state satisfying
the state invariants?
e Does an event always restore the state invariants?
o Checking refinement between models.
o BB refines A iff there exists a gluing relation by which A can
simulate B.

o Generates proof obligations to check if one machine B refines
another A.

Refinement conditions in Rodin

Refinement conditions in Rodin

Guard strengthening: Simulation:
aop e ar ao a
[] [] [] []
4 A Ze 1
! | °
‘\\ el \\\ e/ \\\
\. —_— \. —_— \.
[)) C1 [«)) C1
If a concrete event is enabled in a If a concrete event e’ takes us
concrete state then the corresponding from ¢y to ¢y, then there should
abstract event is also enabled in the be a transition from the abstract
abstract representation of the state. representation of ¢y to the

abstract representation of ¢;, on
the corresponding abstract event.

Refinement conditions in Rodin

Refinement conditions imply simulation property

and

[]
’
e
\ \
[e ——————= @

<o C1 <o (5]
clearly implies that the abstract can simulate the concrete:

op1 op2 op1
Abstract agp EN a as
A A 4 4
! ! 1 !
| | | |
1 1 1 1
1 1 1 1
I I I I
\ \ | \
\ \ \ \
\ \ \ \
\ \ \ \
\ \ N \
N op1 N op2 N op1 N
Concrete o) c [e) c3

Refinement conditions in Rodin

Proof obligations generated by Rodin

MACHINE counter2

REFINES counter
CONTEXT ctx1l

SEES ctx1
CONSTANTS VARIABLES count2
red

INVARIANTS ...J...
green

EVENTS
SETS

INITIALIZATION ...T_init...
COLOURS -
AXTOMS Event inc2

any param
when H_inc2

type: partition(COLOURS, {red}, {green}) then ...T. inc2...

A

Event inc2
any param’
when H_inc2 then ...T_inc2...

Refinement conditions in Rodin

Main proof obligations generated by Rodin

@ Initialization
(A/\ Tinit) = J.

e Events (guard strengthening)
(ANINJANH) = G.
@ Events (invariant preservation)

(ANIANIJAHAT) = JIV/v,w'/w].

Refinement conditions in Rodin

Proof obligations generated by Rodin for theorems

@ In Axioms (A¢nm), where Ay is axioms appearing before Agppm:
Ap = Awum.

@ In event guards (Hium), where Hy, is guards appearing before
Htnm:
(A/\I/\J/\ Hb) = Him.

@ In invariants (Jim), where Jp is invariants appearing before
Jthm:
(ANTADY) = Jihm-

Refinement conditions in Rodin

Proof obligations for our notion of refinement

@ Initialization
(A/\ T;,,,'t) = J.

e Events (guard weakening)
(ANINJANG) = H.
@ Events (invariant preservation)
(ANIAIANGAT) = JIV /v, w'/w].

Assert these as theorems.

Rodin Demo

Demo in Rodin

@ Counter example demonstrating
e Proof obligations generated by consistency checks
@ Counter models demonstrating

e Proof obligations generated by Rodin’s notion of refinement
e Theorems that assert our notion of refinement.
e Using the Prover perspective to help Rodin complete a proof.

Queue example for refinement

A C implementation of a queue

1: typedef struct queue { 12: void task enqg(task t){ 1: task resched(
2: task A[MAXLEN]; 13: if (q->len == MAXLEN) task cur){
3: int begin, end, len; 14: assert(0); /*exceptionx/ 2 task t;
4: } queue; 156: g->A[g->end] = t; 3: enq(cur);
5: 16: if (gq->end < MAXLEN-1) 4: t = deq();
6: queue q; 17: q->end++; 5 return t;
18: else 6
7: void init() { 19: g->end = 0;
8: q->begin = 0; 20: q->len++;
9: gq->end = 0; 21: }
10: g->len = 0; 22:
11:} 23: task deq() { ... }
(a) (b)
C a

! ! ! !

beg end end beg

Queue example for refinement

A high-level specification of the queue functionality

QADTk = (Qa U? Ea {Opn}HEQT}/Pe) where
Q — {JUUL, B U{E}
e,ok) ifg#E
E,e) otherwise.
q-a,ok) ifg#Eand|d <k

Opinit(qa a) E
(
(E,e) otherwise.
(
(

OPeng(q,a) = {
Opdeq(qaa) = {

Il
—

q,b) ifg#Eandg=0b-¢
E,e) otherwise.

Would like to argue that C implementation provides the same
functionality as abstract queue specification.

	Rodin
	Refinement conditions in Rodin
	Rodin Demo
	Queue example for refinement

