
Rodin Refinement conditions in Rodin Rodin Demo Queue example for refinement

Rodin and refinement

Deepak D’Souza

Department of Computer Science and Automation
Indian Institute of Science, Bangalore.

17 February 2020

Rodin Refinement conditions in Rodin Rodin Demo Queue example for refinement

Rodin tool

Provides an environment for developing a system design by
succcessive refinement.

Uses Event-B modelling language.

Provides Features
Checking consistency of models.

Are expressions well-defined. For example if x := y/z then is
z non-zero? As another example, if x < y then are both x

and y of type integer?
Does the initialization event always result in a state satisfying
the state invariants?
Does an event always restore the state invariants?

Checking refinement between models.

B refines A iff there exists a gluing relation by which A can
simulate B.
Generates proof obligations to check if one machine B refines
another A.

Rodin Refinement conditions in Rodin Rodin Demo Queue example for refinement

Refinement conditions in Rodin

Guard strengthening:

e′

e

c0 c1

a0 a1

If a concrete event is enabled in a

concrete state then the corresponding

abstract event is also enabled in the

abstract representation of the state.

Simulation:

e′

c0 c1

a0 a1

e

If a concrete event e′ takes us

from c0 to c1, then there should

be a transition from the abstract

representation of c0 to the

abstract representation of c1, on

the corresponding abstract event.

Rodin Refinement conditions in Rodin Rodin Demo Queue example for refinement

Refinement conditions imply simulation property

e′

e

c0 c1

a0 a1

and

e′

c0 c1

a0 a1

e

clearly implies that the abstract can simulate the concrete:

Abstract

Concrete

a0 a1 a2 a3

c0 c1 c2 c3

op1 op2 op1

op1 op2 op1

Rodin Refinement conditions in Rodin Rodin Demo Queue example for refinement

Proof obligations generated by Rodin

CONTEXT ctx1

CONSTANTS

red

green

SETS

COLOURS

AXIOMS

type: partition(COLOURS, {red}, {green})

... A ...

MACHINE counter2

REFINES counter

SEES ctx1

VARIABLES count2

INVARIANTS ...J...

EVENTS

INITIALIZATION ...T_init...

Event inc2

any param

when H_inc2

then ...T_inc2...

Event inc2

any param’

when H_inc2 then ...T_inc2...

Rodin Refinement conditions in Rodin Rodin Demo Queue example for refinement

Main proof obligations generated by Rodin

Initialization
(A ∧ Tinit) =⇒ J.

Events (guard strengthening)

(A ∧ I ∧ J ∧ H) =⇒ G .

Events (invariant preservation)

(A ∧ I ∧ J ∧ H ∧ T) =⇒ J[v ′/v ,w ′/w].

Rodin Refinement conditions in Rodin Rodin Demo Queue example for refinement

Proof obligations generated by Rodin for theorems

In Axioms (Athm), where Ab is axioms appearing before Athm:

Ab =⇒ Athm.

In event guards (Hthm), where Hb is guards appearing before
Hthm:

(A ∧ I ∧ J ∧ Hb) =⇒ Hthm.

In invariants (Jthm), where Jb is invariants appearing before
Jthm:

(A ∧ I ∧ Jb) =⇒ Jthm.

Rodin Refinement conditions in Rodin Rodin Demo Queue example for refinement

Proof obligations for our notion of refinement

Initialization
(A ∧ Tinit) =⇒ J.

Events (guard weakening)

(A ∧ I ∧ J ∧ G) =⇒ H.

Events (invariant preservation)

(A ∧ I ∧ J ∧ G ∧ T) =⇒ J[v ′/v ,w ′/w].

Assert these as theorems.

Rodin Refinement conditions in Rodin Rodin Demo Queue example for refinement

Demo in Rodin

Counter example demonstrating

Proof obligations generated by consistency checks

Counter models demonstrating

Proof obligations generated by Rodin’s notion of refinement
Theorems that assert our notion of refinement.
Using the Prover perspective to help Rodin complete a proof.

Rodin Refinement conditions in Rodin Rodin Demo Queue example for refinement

A C implementation of a queue

1: typedef struct queue { 12: void task enq(task t){ 1: task resched(

2: task A[MAXLEN]; 13: if (q->len == MAXLEN) task cur){

3: int begin, end, len; 14: assert(0); /*exception*/ 2: task t;

4: } queue; 15: q->A[q->end] = t; 3: enq(cur);

5: 16: if (q->end < MAXLEN-1) 4: t = deq();

6: queue q; 17: q->end++; 5: return t;

18: else 6: }

7: void init() { 19: q->end = 0;

8: q->begin = 0; 20: q->len++;

9: q->end = 0; 21: }

10: q->len = 0; 22:

11:} 23: task deq() { ... }

(a) (b)

c ba

begbeg

a b c

end end

Rodin Refinement conditions in Rodin Rodin Demo Queue example for refinement

A high-level specification of the queue functionality

QADT k

QADT k = (Q,U,E , {opn}n∈QType) where

Q = {ε} ∪
⋃k

i=1 Bi ∪ {E}

opinit(q, a) =

{
(ε, ok) if q 6= E
(E , e) otherwise.

openq(q, a) =

{
(q · a, ok) if q 6= E and |q| < k
(E , e) otherwise.

opdeq(q, a) =

{
(q′, b) if q 6= E and q = b · q′
(E , e) otherwise.

Would like to argue that C implementation provides the same
functionality as abstract queue specification.

	Rodin
	Refinement conditions in Rodin
	Rodin Demo
	Queue example for refinement

