REQUIREMENTS ANALYSIS/ALLOY MODEL-CHECKING /SPIN

00000 0000000000

E0:272 Formal Methods in Software
Engineering
3:1, January - April 2022
M-W 2:00 - 3:50
http://www. csa.itsc.ac. in/"deepakd/fmse2022

Deepak D'Souza K. V. Raghavan
CSA, lISc

05 January 2022

Motivation

Software is increasingly used in a wide range of domains:
business, personal, scientific, embedded control.
Therefore, software development ought to

® be efficient and predictable

® result in high quality (i.e., correct and reliable) software
The way to achieve this is to use automated analysis tools

Methodology of the course: Hands-on study of a series of
advanced tools
Knowledge of such tools gives

® Exposure to practical uses of various analysis techniques
® Generates research ideas for developing better tools
® Prepares one for career in software-development industry

Software development is hard

Average software-development project [Barry Boehm, ICSE '06
keynote] incurs:

® 90% cost overrun
® 121% time overrun

e delivers only 61% of initially promised functionality

Software defects

® Most large software is buggy

® They cause user dissatisfaction, and sometimes catastrophe
(e.g., Ariane 5 rocket explosion)

¢ Finding and fixing bugs consumes 50% of the total effort in
software development!

REQUIREMENTS ANALYSIS/ALLOY MODEL-CHECKING

Causes of software defects

® User's requirements not specified properly.

® Software does not meet user's requirements.
® |mplementation errors
® Low-level errors, such as null-pointer dereference, array out of
bounds

® Different components of the software (or software and
libraries) evolve separately, and become inconsistent.

two kinds of design

requirements
problem structure
domains &
assumptions

behavioural design

conceptual structure

states & operations
properties

conceptual
models

conceptual
models

interface design

interfaces
representation
design patterns

testing
suite generation
stubs & drivers
test execution
coverage analysis

coding
building
extending
fixing
refactoring

REQUIREMENTS ANALYSIS/ALLOY MODEL-CHECKING

The solution to the problem: tools

® Tools are available for all stages of software development
® Benefits of tools

® Tackle complexity by providing abstract views of software
Identify errors by exhaustive analysis

Provide reliable way to make changes

Make software development more like engineering, and less of
an art

® Our focus is mostly on
® Formal tools, that provide definitive guarantees, and
® |nvolve non-trivial capability for analysis or transformation.
® We will cover only a small selection of the tools available!

Methods and tools covered in this course

Systematic Testing
(JPF/AFL)

Functional Correctness

Tools

(Rodin, VCC)

Model-Checking

(Spin)

Analysing Requirements

Requirements Design Coding

Software Development Stages

(Alloy)

DA

REQUIREMENTS ANALYSIS/ALLOY MODEL-CHECKING /SPIN
00000 0000000000

Tools for conceptual modeling and design

e Alloy (Conceptual modeling)
® Formalize key entities in the domain, their relationships
between them, and the operations that can be performed on
them.
® Helps identify inconsistencies and incompleteness in
requirements.
¢ Rodin (Modeling/design)
® Step-wise refinement of a conceptual model, with guarantee of
preservation of all properties.
® Ultimately: refine to code level.
¢ Spin (Modeling/design)
® Specify states in the system, and the transitions between them.
® |dentify the properties of the sequences of states that can arise.

REQUIREMENTS ANALYSIS/ALLOY
00000

Overview of Alloy

® Formal modeling of entities and relationships, using sets and
relations

¢ Modeling of invariants/constraints on the entities

® Analyzing consistency of the model, and identifying errors

REQUIREMENTS ANALYSIS/ALLOY

00e00

MODEL-CHECKING

0000000000

Ezxample — keeping track of famaily relationships

F aren fs

*

Pe. rsom

) $Pou.s¢

T T

0-1

Man

Womm\

Examples of desired constraints

Every person has two parents, one man and one woman

Parents of any child are married

Cannot marry a sibling or a parent

Every person is married to at most one person

a married to b = b is married to a

A man can only marry a woman, and vice versa

SPIN

REQUIREMENTS ANALYSIS/ALLOY
000@0

Key elements of Alloy model

® abstract sig Person
® Person is a abstract entity (i.e., with no concrete instances).
® sig Man, Woman extends Person {}

® Man, Woman are subtypes of Person.
® No other subtypes. Therefore, every instance of Person is an
instance of either Man or Woman.

® spouse is a relation mapping each Person to zero or one Person

® parents is a relation mapping each Person to zero or more
Persons
® Constraints

fact {
all p: Person | one mother: Woman | one father: Man |
p.parents = mother + father // every person has a mother and father
spouse = “spouse // spouse is symmetric
Man.spouse in Woman && Woman.spouse in Man
// a man’s spouse is a woman and vice versa

REQUIREMENTS ANALYSIS/ALLOY
0000e

Results of using Alloy on above example

® Qur rules are too relaxed. They allow instances wherein a
person is their own grandparent.

® We could add an extra rule (i.e., fact) that no person be
their own grandparent. However, with this, there are no
non-trivial instances!

MODEL-CHECKING

MODEL-CHECKING /SPIN
©000000000

Model checking using Spin

® Given an abstract model like a state machine, and a
specification of desired behaviour of all traces (typically in
temporal logic), the tool tries to verify that the model satisifes
the property.

® |f not, it produces a counterexample: a behaviour of the
model that violates the property.

® Similar to Alloy, but checks traces of a state machine rather
than entities and relationships.

REQUIREMENTS ANALYSIS/ALLOY MODEL-CHECKING /SPIN
00000 0®00000000

Model-Checking and Spin

Spin is a model-checking tool, in which we can
® Describe transition system models.
® Suited for concurrent protocols, supports different
synchronization constructs.
® Simulate them, explore paths in them.
® Describe desirable properties of the system in temporal logic.
® Check that the system satisfies these properties.

® Proves that property is satisfied
® Produces counter-examples (execution that violates property).

REQUIREMENTS ANALYSIS/ALLOY MODEL-CHECKING /SPIN
00000 000000000

Example transition system: a mod-/4 counter

Diagrammatic representation

/ﬂ\

}
Example run:

count = 3

count = 3 count = 0

REQUIREMENTS ANALYSIS/ALLOY MODEL-CHECKING /SPIN
00000 000@000000

Example properties for counter model

byte count = 0;

proctype counter() {
do
:: true -> count = (count + 1) ¥ 4;
assert (count <= 3);
od
}

init {
run counter();

}

1t1l propl { [1(count <= 3) };

1tl inc { [1((count == 1) -> X(count == 2)) }

1tl prop3 { ((count == 0) || (count == 1)) U (count == 2));
1tl prop4 { [](count == 0) };

MODEL-CHECKING /SPIN
0000®00000

Tools for implementation and testing

e \/erification tools [VCC]
® Guarantee that a program returns correct output in all runs.
® Programmer needs to specify formally correctness of program
output
® Programmer also needs to specify intermediate properties that
need to hold at various program locations in order for final
output to be correct. Otherwise, tool may fail to work or may
report false warnings.
e Automated testing tools [JPF, AFL]
® Based on actually executing the program on test-cases.
® Both tools automatically generate test inputs one after the
other, to try to reach more and more parts of the program.
® Developer would need to specify a way to check correctness of
output from each run. However, developer need not annotate
intermediate program locations with intermediate properties.
® All bugs found are true bugs.
® However, can miss bugs.

MODEL-CHECKING /SPIN
00000@0000

Prerequisites

Discrete structures such as sets, relations, partially ordered
sets, functions

Mathematical logic (propositional, first-order)

General mathematical maturity: comfort with notation,
understanding and writing proofs

Familiarity with languages C/C++ and Java

(Moderate) programming experience

REQUIREMENTS ANALYSIS/ALLOY MODEL-CHECKING /SPIN
00000 0000008000

Lecture format

® Theory and algorithms behind the tools

® Demo of tools

REQUIREMENTS ANALYSIS/ALLOY MODEL-CHECKING /SPIN
00000 0000000800

Assignments and exams (tentative)

e Assignments (60%). Each assignment will involve

® applying one or more tools practically, and
® 3 few written problems

® Exams: mid-sem (20%), final (20%).

® Will have practical (lab) component.

REQUIREMENTS ANALYSIS/ALLOY MODEL-CHECKING /SPIN
0000000080

Misconduct policy

® Academic misconduct (e.g., copying) will not be tolerated
® Discussion in exams = automatic fail grade for both students
® Assignments

® Work individually.

® If necessary, you can seek clarifications on basic concepts from other
students.

However, you must develop the solutions to the given problems on your

own (without discussions), and write the programs or answers on your
own.

® No looking at others solutions, no showing your solution to others!
® If you refer to materials other than class lecture notes and text books,
mention them.

® Penalties

® For each instance of a violation of above policy =

Zero for the entire assignment, plus one grade-point reduction in final
grade (for the one who copied).

® Grade-point reductions over multiple violations will accumulate.

® Grading: Your marks for each assignment will be based on your
written answers and on a subsequent viva.

REQUIREMENTS ANALYSIS/ALLOY MODEL-CHECKING /SPIN
00000 000000000e

Late submission policy for assignments

® For each late day 20% penalty on the assignment marks.
(Weekends and weekdays treated the same.)

MODEL-CHECKING /SPIN
0000000000

Attendance

e Students are expected to have at least 75% attendance. As
per Institute rules students with less than 75% attendance are
liable to get an F grade.

	Requirements Analysis/Alloy
	Model-Checking/Spin

