Motivation	Overview	Abstract Data Types	Refinement	ADT Transition Systems
000000	o	000000	00000000000	

Functional Correctness via Refinement

Deepak D'Souza

Department of Computer Science and Automation Indian Institute of Science, Bangalore.

09 February 2022

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Motivation 000000	Overview O	Abstract Data Types 000000	Refinement 00000000000	ADT Transition Systems
Outline				

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

3 Abstract Data Types

4 Refinement

Motivation	Overview	Abstract Data Types	Refinement	ADT Transition Systems
00000				

Motivation for Functional Correctness

- ER models and model-checking stop short of addressing full functional correctness
- Refinement is a standard way of reasoning about functional correctness.
- Technique used is "deductive" in nature, rather than exploring reachable states.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Motivation	Overview	Abstract Data Types	Refinement	ADT Transition Systems
00000				

Motivating Example: C implementation of a queue

1:	<pre>int A[MAXLEN];</pre>	11:	<pre>void enq(int t) {</pre>
2:	unsigned beg,	12:	if (len == MAXLEN)
	end, len;	13:	assert(0);
3:			<pre>// exception</pre>
4:	<pre>void init() {</pre>	14:	A[end] = t;
5:	beg = $0;$	15:	if (end < MAXLEN-1)
6:	end = $0;$	16:	end++;
7:	len = 0;	17:	else
8:	}	18:	end = $0;$
9:		19:	len++;
10:	<pre>int deq() {}</pre>	20:	}

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Motivation	Overview	Abstract Data Types	Refinement	ADT Transition Systems
000000				

Motivating example: FreeRTOS

FreeRTOS Real-Time Operating System.

Motivation	Overview	Abstract Data Types	Refinement	ADT Transition Systems
000000				

Extracts from code: TaskDelay()

```
void TaskDelay(portTickType xTicksToDelay){
    portTickType xTimeToWake;
    signed portBASE_TYPE xAlreadyYielded = pdFALSE;
    if( xTicksToDelay > (portTickType) 0){
        vTaskSuspendAll();
    /* Calculate the time to wake - this may overflow but this
       is not a problem. */
   xTimeToWake = xTickCount + xTicksToDelav:
    /* We must remove ourselves from the ready list before adding
       ourselves to the blocked list as the same list item is used
       for both lists. */
   vListRemove((xListItem *) &(pxCurrentTCB->xGenericListItem));
    /* The list item will be inserted in wake time order. */
    listSET_LIST_ITEM_VALUE(&(pxCurrentTCB->xGenericListItem),
                            xTimeToWake):
    . . . .
   portYIELD WITHIN API():
```

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

```
}
```

Motivation	Overview	Abstract Data Types	Refinement	ADT Transition Systems
000000		000000	00000000000	00000

Abstract model of the scheduler in Z

```
Scheduler
maxPrio, maxNumVal, tickCount, topReadyPriority : N
tasks : ℙ TASK
priority : TASK \rightarrow \mathbb{N}
running_task, idle : TASK
ready : seq (iseq TASK)
delayed : seq TASK \times \mathbb{N}
blocked : seq TASK
. . .
idle \in tasks \land idle \in ran \land /(ran ready)
running\_task \in tasks \land topReadyPriority \in dom ready
\forall i, j : \text{dom } delayed \mid (i < j) \bullet delayed(i).2 < delayed(j).2
\forall tcn : ran delayed | tcn.2 > tickCount
running_task = head ready(topReadyPriority)
dom priority = tasks \land tickCount < maxNumVal
\forall i, j : \text{dom blocked} \mid (i < j) \implies \text{priority}(\text{blocked}(i)) > \text{priority}(\text{blocked}(j))
. . .
```

Motivation	Overview	Abstract Data Types	Refinement	ADT Transition Systems
000000				

Z model of TaskDelay operation

```
TaskDelay _
\DeltaScheduler
delay?:\mathbb{N}
delayedPrefix, delayedSuffix : seg TASK \times \mathbb{N}
running! : TASK
delay > 0 \land delay < maxNumVal \land running_task \neq idle
tail ready(topReadyPriority) \neq \langle \rangle \wedge delayed = delayedPrefix \cap delayedSuffix
\forall tcn : ran delayedPrefix | tcn.2 \leq (tickCount + delay?)
delayedSuffix \neq \langle \rangle \implies (head \ delayedSuffix).2 > (tickCount + delay?)
running_task' = head tail ready(topReadyPriority)
ready' = ready \oplus \{ (topReadyPriority \mapsto tail ready(topReadyPriority)) \}
delayed' = delayedPrefix \land \langle (running_task, (tickCount + delay?)) \rangle \land delayedSuffix
. . .
```

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Abstract Data Types 000000

Refinement 000000000000 ADT Transition Systems

Overview of plan for functional correctness

Theory

- ADTs
- Z-style refinement
 - Equivalent Refinement Condition
- Transition system based ADTs
 - ADT transition system

Tools

- Rodin
 - Models
 - Assertions
 - Proof
- VCC
 - Floyd-Hoare style annotations and proofs
 - Ghost language constructs
 - Encoding Refinement Conditions in VCC

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Motivation	Overview	Abstract Data Types	Refinement	ADT Transition Systems
000000	O	•00000	000000000000	
ADT Ty	/pe			

An ADT type is a finite set N of operation names.

- Each operation name *n* in *N* has an associated *input type I_n* and an *output type O_n*, each of which is simply a set of values.
- We require that the set of operations *N* includes a designated *initialization operation* called *init*.

Motivation	Overview	Abstract Data Types	Refinement	ADT Transition Systems
000000	O	0●0000	00000000000	
ADT def	inition			

An ADT of type N is a structure of the form

$$\mathcal{A} = (Q, U, \{op_n\}_{n \in \mathbb{N}})$$

where

- Q is the set of states of the ADT,
- $U \in Q$ is an arbitrary state in Q used as an *uninitialized* state,
- Each op_n is a (possibly non-deterministic) realisation of the operation n given by op_n ⊆ (Q × I_n) × (Q × O_n)
- Further, we require that the *init* operation depends only on its argument and not on the originating state: thus *init*(*p*, *a*) = *init*(*q*, *a*) for each *p*, *q* ∈ *Q* and *a* ∈ *I_{init}*.

Motivation	Overview	Abstract Data Types	Refinement	ADT Transition Systems
		00000		

ADT type example: Queue

QType

ADT type $QType = \{init, enq, deq\}$ with

$$\begin{array}{rcl} I_{init} &=& \{nil\},\\ O_{init} &=& \{ok\},\\ I_{enq} &=& \mathbb{B},\\ O_{enq} &=& \{ok, fail\},\\ I_{deq} &=& \{nil\},\\ O_{deq} &=& \mathbb{B} \cup \{fail\} \end{array}$$

Here \mathbb{B} is the set of bit values $\{0, 1\}$, and *nil* is a "dummy" argument for the operations *init* and *deq*.

Motivation

Abstract Data Types

Refinement 000000000000 ADT Transition Systems

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

ADT example: Queue of length k of type QType

$QADT_k$

$QADT_k = (Q, U, \{op_n\}_{n \in QType})$ where

Motivation	Overview	Abstract Data Types	Refinement	ADT Transition Systems
		000000		

Language of sequences of operation calls of an ADT

- An ADT A = (Q, U, {op_n}_{n∈N}) of type N induces a (deterministic) transition system S_A = (Q, Σ_N, U, Δ) where
 - Σ_N = {(n, a, b) | n ∈ N, a ∈ I_n, b ∈ O_n} is the set of operation call labels corresponding to the ADT type N. The action label (n, a, b) represents a call to operation n with input a that returns the value b.
 - $\bullet \ \Delta$ is given by

 $(p, (n, a, b), q) \in \Delta$ iff $op_n(p, a, q, b)$.

 We define the language of *initialised sequences of operation* calls of A, denoted L_{init}(A), to be L(S_A) ∩ ((init, -, -) · Σ_N^{*}).

(日)(1)(

Example: Transition system induced by $QADT_2$

TS induced by $QADT_2$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Motivation	Overview	Abstract Data Types	Refinement	ADT Transition Systems
000000		000000	•0000000000	00000

Idea behind refinement definition we will use

- A client program interacts with an ADT via a sequence of calls. If the ADT is called with an operation that is undefined in its current state, then it is assumed to "break" and return any possible value (including ⊥); thereafter any sequence of calls/ret vals is possible.
- $L_{init}(\mathcal{A}^+)$ is the possible sequences a client of \mathcal{A} can see.
- B ≤ A iff whatever the client can see with B, it could also have seen with A.

This notion of refinement is from Hoare, He, Sanders et al, *Data Refinement Refined*, Oxford Univ Report, 1985.

(日) (日) (日) (日) (日) (日) (日) (日)

Motivation	Overview	Abstract Data Types	Refinement	ADT Transition Systems
			00000000000	

Totalized version of a relation

$$\begin{array}{lll} R & = & \{(a,a),(a,b),(b,b),(b,c)\}.\\ R^+ & = & \{(a,a),(a,b),(b,b),(b,c)\} \cup \{(c,a),(c,b),(c,c),(c,d),(c,\bot),\\ & & (d,a),(d,b),(d,c),(d,d),(d,\bot),(\bot,a),(\bot,b),(\bot,c),(\bot,d),(\bot,\bot)\} \end{array}$$

 R^+ adds a new element \perp to domain and co-domain, and makes R total on all elements outside the domain of R.

Relation S refines relation R iff $S^+ \subseteq R^+$. Thus S is "more defined" than R, and may resolve some non-determinism in R.

Motivation	Overview	Abstract Data Types	Refinement	ADT Transition Systems
			00000000000	

Totalized version of an ADT \mathcal{A}

Given an ADT $\mathcal{A} = (Q, U, \{op_n\}_{n \in N})$ over a data type N, define the totalized version of \mathcal{A} , to be an ADT \mathcal{A}^+ of type N^+ :

$$\mathcal{A}^+ = (\mathcal{Q} \cup \{\mathcal{E}\}, \mathcal{U}, \{op_n^+\}_{n \in \mathbb{N}}), \text{ where }$$

- N^+ has input type I_n and output type $O_n^+ = O_n \cup \{\bot\}$, where \bot is a new output value.
- *E* is a new "error" state
- op_n^+ is the completed version of operation op_n , obtained as follows:
 - If $(q, a) \notin \text{pre}(op_n)$, then add (q, a, E, b') to op_n^+ for each $b' \in O_n^+$.
 - Add $(E, a, E, b') \in op_n^+$ for each $a \in I_n$ and $b' \in O_n^+$.

Here pre (op_n) is the set of state-input pairs on which op_n is defined. Thus $(p, a) \in \text{pre } (op_n)$ iff $\exists q, b$ such that $op_n(p, a, q, b)$.

If op_n is invoked outside this precondition, the data-structure is assumed to "break" and allow any possible interaction sequence after that.

 \mathcal{A}^+ represents the interaction sequences that a client of \mathcal{A} may encounter while using \mathcal{A} as a data-structure.

Example: Transition system induced by $QADT_2^+$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Motivation	Overview	Abstract Data Types	Refinement	ADT Transition Systems
000000	O	000000	00000000000	

Refinement between ADTs

Let \mathcal{A} and \mathcal{B} be ADTs of type N. We say \mathcal{B} refines \mathcal{A} , written

 $\mathcal{B} \preceq \mathcal{A},$

iff

 $L_{init}(\mathcal{B}^+) \subseteq L_{init}(\mathcal{A}^+).$

Examples of refinement:

- QADT₃ refines QADT₂.
- Let QADT'₂ be the version of QADT₂ where we check for emptiness/fullness of queue and return *fail* instead of being undefined. Then QADT'₂ refines QADT₂.

Motivation	Overview	Abstract Data Types	Refinement	ADT Transition Systems
000000	O	000000	00000●000000	
Exercise				

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Exercise

Is it true that

- QADT₂ refines QADT₃?
- QADT₂ refines QADT₂?

Motivation	Overview	Abstract Data Types	Refinement	ADT Transition Systems
000000	O	000000	000000●00000	
Transitivit	w of refin	ement		

It follows immediately from its definition that refinement is transitive:

Proposition

Let \mathcal{A} , \mathcal{B} , and \mathcal{C} be ADT's of type N, such that $\mathcal{C} \preceq \mathcal{B}$, and $\mathcal{B} \preceq \mathcal{A}$. Then $\mathcal{C} \preceq \mathcal{A}$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Motivation	Overview	Abstract Data Types	Refinement	ADT Transition Systems
			000000000000	

Refinement Condition (RC)

Let $\mathcal{A} = (Q, U, \{op_n\}_{n \in N})$ and $\mathcal{A}' = (Q', U', \{op_n\}_{n \in N})$ be ADTs of type *N*. We give a *sufficient* condition for \mathcal{A}' to refine \mathcal{A} , based on an "abstraction relation" that relates states of \mathcal{A}' and \mathcal{A} . We say \mathcal{A} and \mathcal{A}' satisfy condition (RC) if there exists a relation $\rho \subseteq Q' \times Q$ such that:

(init) Let a ∈ I_{init} and let (q'_a, b) be a resultant state and output after an *init*(a) operation in A'. Then either a ∉ pre (*init*_A), or there exists q_a such that (q_a, b) ∈ *init*_{A'}(a), with ρ(q'_a, q_a).
(g-weak) For each n ∈ N, a ∈ I_n, b ∈ O_n, p ∈ Q and p' ∈ Q', with (p', p) ∈ ρ, if (p, a) ∈ pre (op_n) in A, then (p', a) ∈ pre (op_n) in A'. (guard weakening).
(sim) For each n ∈ N, a ∈ I_n, b ∈ O_n, p ∈ Q and p' ∈ Q', with

$$(p',p) \in \rho$$
; whenever $p' \xrightarrow{(n,a,b)} q'$ and $(p,a) \in \text{pre}(op_n)$ in \mathcal{A} , then there exists $q \in Q$ such that $p \xrightarrow{(n,a,b)} q$ with $(q',q) \in \rho$.

Motivation	Overview	Abstract Data Types	Refinement	ADT Transition Systems
			0000000000000	

Illustrating condition (RC)

Motivation	Overview	Abstract Data Types	Refinement	ADT Transition Systems
000000	O	000000	0000000000000	
Exercise				

Exercise

Find an abstraction relation ρ for which $QADT_2$ and $QADT_3$ satisfy condition (RC).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Motivation	Overview	Abstract Data Types	Refinement	ADT Transition Systems
			000000000000	

Condition (RC) is sufficient for refinement

If \mathcal{A} and \mathcal{C} are ADTs of the same type, and ρ is an abstraction relation from \mathcal{C} to \mathcal{A} satisfying condition (RC), then \mathcal{C} refines \mathcal{A} .

Motivation 000000	Overview O	Abstract Data Types 000000	Refinement 0000000000●	ADT Transition Systems
Example	showing t	hat RC conditic	ons are not ne	ecessary for
rofinomor	+			

- C refines A. In fact both A and C refine eachother, since $L_{init}(A^+) = L_{init}(C^+)$.
- However, there is no abstraction relation ρ from C to A that satisfies the conditions (RC).

▲□▶▲□▶▲□▶▲□▶ □ のQの

Motivation	Overview	Abstract Data Types	Refinement	ADT Transition Systems
000000	O	000000	00000000000	

ADT Transition System

An ADT transition system of type N is of the form

 $\mathcal{S} = (Q_c, Q_I, \Sigma_I, U, \{\delta_n\}_{n \in \mathbb{N}})$

where

• Q_c is the set of "complete" states of the ADT (where an ADT operation is complete) and Q_l is the set of "incomplete" or "local" states of the ADT. The set of states Q of the ADT TS is the disjoint union of Q_c and Q_l .

• Σ_I is a finite set of *internal* or *local* action labels.

- Let $\Gamma_N^i = \{in(a) \mid n \in N \text{ and } a \in I_n\}$ be the set of *input* labels corresponding to the ADT of type N. The action in(a) represents reading an argument with value a.
- Let $\Gamma_N^o = \{ret(b) \mid n \in N \text{ and } b \in O_n\}$ be the set of *return* labels corresponding to the ADT of type *N*. The action ret(b) represents a return of the value *b*.
- Let Σ be the disjoint union of Σ_I , Γ_N^i and Γ_N^o .

Motivation	Overview	Abstract Data Types	Refinement	ADT Transition Systems
000000	O	000000	00000000000	

ADT Transition System, contd.

- For each n ∈ N, δ_n is a transition relation of the form:
 δ_n ⊆ Q × Σ × Q, that implements the operation n. It must satisfy the following constraints:
 - it is complete for the input actions in Γ_N^i .
 - Each transition labelled by an input action in Γ_N^i begins from a Q_c state and each transition labelled by a return action in Γ_N^o ends in a Q_c state. All other transitions begin and end in a Q_l state.

Motivation

Abstract Data Types 000000 Refinement 000000000000 ADT Transition Systems

Example: ADT Transition System induced by queue.c

Part of the ADT TS induced by queue.c, showing init and enq opns

000000 0 000000 00000000 00000	Motivation	Overview	Abstract Data Types	Refinement	ADT Transition Systems
					00000

ADT induced by an ADT TS

An ADT transition system like S above induces an ADT A_S of type N given by $A_S = (Q_c, U, \{op_n\}_{n \in N})$ where for each $n \in N$, $p \in Q_c$, and $a \in I_n$, we have $op_n(p, a, q, b)$ iff there exists a path of the form $p \xrightarrow{in(a)} r_1 \xrightarrow{l_1} \cdots \xrightarrow{l_{k-1}} r_k \xrightarrow{ret(b)} q$ in S.

We say that an ADT TS \mathcal{S}' refines another ADT TS \mathcal{S} iff $\mathcal{A}_{\mathcal{S}'}$ refines $\mathcal{A}_{\mathcal{S}}.$

Motivation	Overview	Abstract Data Types	Refinement	ADT Transition Systems
				00000

Phrasing refinement conditions in VCC

```
typedef struct AC {
 abstract state
  invariants on abs state
 concrete state
 invariants on conc state
 gluing invariant on joint abs-conc state
} AC:
operation n(AC *p, arg a)
_(requires \wrapped(p)) // glued joint state
_(requires G) // precondition G of abs op
_(ensures \wrapped(p)) // restores glued state
_(decreases 0) // conc op terminates whenever G is true
Ł
 _(unwrap p)
 // abs op body
 // conc op body
 _(wrap p)
}
init(*p)
_(ensures \wrapped(p)) {...}
                                                 ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●
```