Rodin 0	Refinement conditions in Rodin	Rodin Demo 0	Queue example for refinement

Rodin and refinement

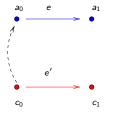
Deepak D'Souza

Department of Computer Science and Automation Indian Institute of Science, Bangalore.

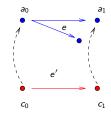
16 February 2022

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

Rodin ●	Refinement conditions in Rodin	Rodin Demo O	Queue example for refinement
Rodin to	pol		


- Provides an environment for developing a system design by successive refinement.
- Uses Event-B modelling language.
- Provides Features
 - Checking consistency of models.
 - Are expressions well-defined. For example if x := y/z then is z non-zero? As another example, if x < y then are both x and y of type integer?
 - Does the initialization event always result in a state satisfying the state invariants?
 - Does an event always restore the state invariants?
 - Checking refinement between models.
 - ${\cal B}$ refines ${\cal A}$ iff there exists a gluing relation by which ${\cal A}$ can simulate ${\cal B}.$
 - \bullet Generates proof obligations to check if one machine ${\cal B}$ refines another ${\cal A}.$

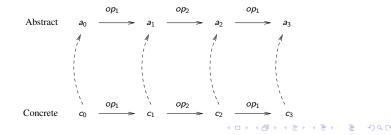
▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●


Rodin	Refinement conditions in Rodin	Rodin Demo	Queue example for refinement
0	•00000	0	

Refinement conditions in Rodin

Guard strengthening:

If a concrete event is enabled in a concrete state then the corresponding abstract event is also enabled in the abstract representation of the state. Simulation:


If a concrete event e' takes us from c_0 to c_1 , then there should be a transition from the abstract representation of c_0 to the abstract representation of c_1 , on the corresponding abstract event.

Rodin	Refinement conditions in Rodin	Rodin Demo	Queue example for refinement
0	00000	0	

Refinement conditions imply simulation property

clearly implies that the abstract can simulate the concrete:

Rodin 0	Refinement conditions in Rodin	Rodin Demo 0	Queue example for refinement		
Proof obligations generated by Rodin					
		MACHINE counter:	2		
		REFINES counter			
CONTEXT ctx	1	SEES ctx1			
CONSTANTS		VARIABLES count:	2		
red green		INVARIANTSJ			
SETS		EVENTS			
COLOURS		INITIALIZATION	T_init		
AXIOMS		Event inc2 any param			
type: pa A	rtition(COLOURS, {red}, {green})	when H_inc2 thenT_inc2.			
		Event inc2 any param' when H_inc2 them	n≣T_inē2≣ ୬୯୯		

Rodin O	Refinement conditions in Rodin	Rodin Demo o	Queue example for refinement

Main proof obligations generated by Rodin

Initialization

$$(A \wedge T_{init}) \implies J.$$

• Events (guard strengthening)

$$(A \wedge I \wedge J \wedge H) \implies G.$$

• Events (invariant preservation)

$$(A \wedge I \wedge J \wedge H \wedge T) \implies J[v'/v, w'/w].$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Rodin O	Refinement conditions in Rodin	Rodin Demo 0	Queue example for refinement

Proof obligations generated by Rodin for theorems

• In Axioms (A_{thm}) , where A_b is axioms appearing before A_{thm} :

$$A_b \implies A_{thm}.$$

• In event guards (H_{thm}) , where H_b is guards appearing before H_{thm} :

$$(A \wedge I \wedge J \wedge H_b) \implies H_{thm}.$$

• In invariants (J_{thm}) , where J_b is invariants appearing before J_{thm} :

$$(A \wedge I \wedge J_b) \implies J_{thm}.$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Rodin	Refinement conditions in Rodin	Rodin Demo	Queue example for refinement
	000000		

Proof obligations for our notion of refinement

Initialization

$$(A \wedge T_{init}) \implies J.$$

• Events (guard weakening)

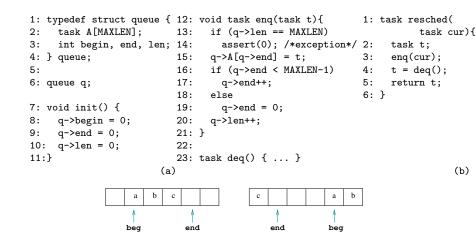
$$(A \wedge I \wedge J \wedge \mathbf{G}) \implies \mathbf{H}.$$

• Events (invariant preservation)

$$(A \wedge I \wedge J \wedge \mathbf{G} \wedge T) \implies J[v'/v, w'/w].$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Assert these as theorems.


Rodin O	Refinement conditions in Rodin	Rodin Demo ●	Queue example for refinement
Demo	in Rodin		

- Counter example demonstrating
 - Proof obligations generated by consistency checks
- Counter models demonstrating
 - Proof obligations generated by Rodin's notion of refinement
 - Theorems that assert our notion of refinement.
 - Using the Prover perspective to help Rodin complete a proof.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

Rodin	Refinement conditions in Rodin	Rodin Demo	Queue example for refinement
			••

A C implementation of a queue

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Queue example for refinement \circ

A high-level specification of the queue functionality

$QADT_k$

Would like to argue that C implementation provides the same functionality as abstract queue specification.