Rodin and refinement

Deepak D'Souza

Department of Computer Science and Automation
Indian Institute of Science, Bangalore.

16 February 2022

Rodin
°

Rodin tool

@ Provides an environment for developing a system design by
succcessive refinement.

@ Uses Event-B modelling language.

@ Provides Features
o Checking consistency of models.

o Are expressions well-defined. For example if x := y/z then is
z non-zero? As another example, if x < y then are both x
and y of type integer?
o Does the initialization event always result in a state satisfying
the state invariants?
@ Does an event always restore the state invariants?
o Checking refinement between models.

o B refines A iff there exists a gluing relation by which A can
simulate B.

o Generates proof obligations to check if one machine B refines
another A.

Refinement conditions in Rodin
©00000

Refinement conditions in Rodin

Guard strengthening: Simulation:
aop e ar ao a
[] [] [] []
4 A Ze 1
! | °
‘\\ el \\\ e/ \\\
\. —_— \. —_— \.
[)) C1 [«)) C1
If a concrete event is enabled in a If a concrete event e’ takes us
concrete state then the corresponding from ¢y to ¢y, then there should
abstract event is also enabled in the be a transition from the abstract
abstract representation of the state. representation of ¢y to the

abstract representation of ¢;, on
the corresponding abstract event.

Refinement conditions in Rodin
0®0000

Refinement conditions imply simulation property

and

[]
’
e
\ \
[e ——————= @

<o C1 <o (5]
clearly implies that the abstract can simulate the concrete:

op1 op2 op1
Abstract agp EN a as
A A 4 4
! ! 1 !
| | | |
1 1 1 1
1 1 1 1
I I I I
\ \ | \
\ \ \ \
\ \ \ \
\ \ \ \
\ \ N \
N op1 N op2 N op1 N
Concrete o) c [e) c3

Refinement conditions in Rodin
00®000

Proof obligations generated by Rodin

MACHINE counter2

REFINES counter
CONTEXT ctx1l

SEES ctx1
CONSTANTS VARIABLES count2
red

INVARIANTS ...J...
green

EVENTS
SETS

INITIALIZATION ...T_init...
COLOURS -
AXTOMS Event inc2

any param
when H_inc2

type: partition(COLOURS, {red}, {green}) then ...T. inc2...

A

Event inc2
any param’
when H_inc2 then ...T_inc2...

Refinement conditions in Rodin
000®00

Main proof obligations generated by Rodin

@ Initialization
(A/\ Tinit) = J.

e Events (guard strengthening)
(ANIAJAH) = G.
e Events (invariant preservation)

(ANINJANHAT) = J|V/v,w'/w].

Refinement conditions in Rodin
0000®0

Proof obligations generated by Rodin for theorems

@ In Axioms (A¢pm), where Ap is axioms appearing before Agpp:
Ab — Athm~

@ In event guards (Hixm), where Hp, is guards appearing before
chm:
(ANTANJANHR) = Him.

o In invariants (Jim), where Jp, is invariants appearing before
Jthm:
(A AN Jb) = Jihm-

Refinement conditions in Rodin
00000e

Proof obligations for our notion of refinement

@ Initialization
(A/\ Tinit) = J.

e Events (guard weakening)
(ANIAJAG) = H.
e Events (invariant preservation)
(ANIAIJAGAT) = JV/v,w'/w].

Assert these as theorems.

Rodin Demo
°

Demo in Rodin

@ Counter example demonstrating
e Proof obligations generated by consistency checks
@ Counter models demonstrating

e Proof obligations generated by Rodin’s notion of refinement
e Theorems that assert our notion of refinement.
e Using the Prover perspective to help Rodin complete a proof.

Queue example for refinement

[o]

A C implementation of a queue

1: typedef struct queue { 12: void task enq(task t){ 1:
2: task A[MAXLEN]; 13: if (gq->len == MAXLEN)
3: int begin, end, len; 14: assert(0); /*exception*/
4: } queue; 15: q->A[g->end] = t;
5: 16: if (q->end < MAXLEN-1)
6: queue q; 17: q->end++;
18: else
7: void init() { 19: q->end = 0;
8: q->begin = 0; 20: q->lent++;
9 g->end = 0; 21: }
10: g->len = 0; 22:
11:3 23: task deq() { ... }
(a)
C a

! !

beg end end beg

g WwN

task resched(

task cur){
task t;
eng(cur) ;
t = deq();
return t;
}
(b)

Queue example for refinement
oce

A high-level specification of the queue functionality

QADT

QADT = (Q,U,E, {op!,}neQType) where
Q = {JUUL, B U{E}

e,ok) ifg#E
E,e) otherwise.
q-a,ok) ifg#Eand|d <k

Opinit(qa a) E
(
(E,e) otherwise.
(
(

OPeng(q,a) = {
Opdeq(qaa) = {

Il
—

q,b) ifg#Eandg=0b-¢
E,e) otherwise.

Would like to argue that C implementation provides the same
functionality as abstract queue specification.

	Rodin
	Refinement conditions in Rodin
	Rodin Demo
	Queue example for refinement

