
Rodin
User’s Handbook

Covers Rodin v.2.7

Michael Jastram (Ed.)

Foreword by Prof. Michael Butler

This work is sponsored by the Deploy Project

Contents

Contents 1

Preface 7

Foreword 9

1 Introduction 11
1.1 Overview . 11

1.1.1 Formats of this Handbook . 12
1.1.2 Rodin Wiki . 12
1.1.3 Contributing . 12

1.2 Further Reading . 12
1.2.1 Modeling in Event-B: System and Software Engineering, J.-R. Abrial

(2010) . 12
1.2.2 Rodin: An Open Toolset for Modelling and Reasoning in Event-B (2009) 13
1.2.3 The B-Method, an Introduction (Steve Schneider) 13
1.2.4 Event-B Cookbook . 13
1.2.5 Proofs for the Working Engineer (2008) 13
1.2.6 The Proof Obligation Generator (2005) 14

1.3 Conventions . 14
1.4 Acknowledgements . 14
1.5 DEPLOY . 15
1.6 Creative Commons Legal Code . 15

2 Tutorial 17
2.1 Outline . 17
2.2 Before Getting Started . 18

2.2.1 Systems Development . 19
2.2.2 Formal Modelling . 19
2.2.3 Predicate Logic . 19
2.2.4 Event-B . 20
2.2.5 Rodin . 20
2.2.6 Eclipse . 20

1

2.3 Installation . 20
2.3.1 Install Rodin for the first time . 21
2.3.2 Install new plugins . 23

2.4 The First Machine: A Traffic Light Controller 23
2.4.1 Excursus: The specification process 25
2.4.2 Project Setup . 26
2.4.3 Camille, a text-based editor . 28
2.4.4 Building the Model . 28
2.4.5 The Final Traffic Light Model . 33

2.5 Mathematical notation . 35
2.5.1 Predicates . 35
2.5.2 Data types . 37
2.5.3 Operations on Sets . 37
2.5.4 Introducing user-defined types . 38
2.5.5 Relations . 39
2.5.6 Arithmetic . 39

2.6 Introducing Contexts . 39
2.6.1 Create a Context . 40
2.6.2 Populate the Context . 40
2.6.3 The Final Context . 44

2.7 Event-B Concepts . 45
2.7.1 Contexts . 45
2.7.2 Machines . 46
2.7.3 Events . 47
2.7.4 Refinement . 48

2.8 Contexts and Refinement . 49
2.8.1 Data Refinement . 50
2.8.2 A Context with Colours . 50
2.8.3 The Actual Data Refinement . 51
2.8.4 The refined machine with data refinement for peds go 53
2.8.5 Witnesses . 54
2.8.6 Discussion . 56
2.8.7 The Refined Machine with All Data Refinement 56
2.8.8 One more Refinement: The Push Button 58
2.8.9 Discussion . 59

2.9 Proving . 59
2.9.1 The Celebrity Problem . 60
2.9.2 Importing a project . 60
2.9.3 Fixing Problems . 60
2.9.4 The Final Second Refinement . 62
2.9.5 The Celebrity algorithm . 63
2.9.6 The First Proof . 66
2.9.7 Proving — an Art or a Science? . 70

2.10 Proving Deadlock Freeness . 72
2.10.1 Deadlock Freeness of initial model . 72
2.10.2 Deadlock Freeness of First Refinement 79

2.11 Outlook . 82

3 Reference 85
3.1 The Rodin Platform . 85

3.1.1 Eclipse in General . 85
3.1.2 The Event-B Perspective . 87
3.1.3 Customizing a perspective suitable for RODIN 89
3.1.4 The Event-B Editor . 92
3.1.5 The Structural Event-B Editor . 92
3.1.6 Wizards . 98
3.1.7 The Proving Perspective . 102
3.1.8 Preferences . 115

3.2 Event-B’s modelling notation . 125
3.2.1 About the notation that we use . 125
3.2.2 Substitutions . 126
3.2.3 Contexts . 126
3.2.4 Machines . 127
3.2.5 Well-definedness proof obligations . 135
3.2.6 Theorems . 136
3.2.7 Generated proof obligations . 137
3.2.8 Visibility of identifiers . 137

3.3 Mathematical Notation . 139
3.3.1 Introduction . 139
3.3.2 Predicates . 142
3.3.3 Booleans . 144
3.3.4 Sets . 144
3.3.5 Relations . 149
3.3.6 Arithmetic . 155
3.3.7 Typing . 156
3.3.8 Assignments . 157

3.4 Proving . 159
3.4.1 Sequents . 159
3.4.2 Proof Rules . 159
3.4.3 Proof Tactics . 161
3.4.4 Provers . 162
3.4.5 How to Use the Provers Effectively 164
3.4.6 Reasoners . 165
3.4.7 Purging Proofs . 166
3.4.8 Simplifying Proofs . 167

4 Frequently Asked Questions 169
4.1 General Questions . 169

4.1.1 Where can I get help? . 169
4.1.2 What is Event-B? . 169
4.1.3 What is the difference between Event-B and the B method? 169
4.1.4 What is Rodin? . 169
4.1.5 Where does the Rodin name come from? 170
4.1.6 Where I can download Rodin? . 170
4.1.7 How to contribute and develop? . 170
4.1.8 My operating system is not supported! How can I install Rodin on my

platform? . 170
4.2 General Tool Usage . 170

4.2.1 Do I lose my proofs when I clean a project? 170
4.2.2 How do I install external plugins without using the Eclipse Update

Manager? . 171
4.2.3 The builder takes too long . 171
4.2.4 What are the ASCII shortcuts for mathematical operators? 172
4.2.5 Pretty Print does not work on Linux 172
4.2.6 Some mathematical characters are wrong 172
4.2.7 No More Handles . 172
4.2.8 Software installation fails . 172
4.2.9 How do I send a bug report? . 173
4.2.10 Where did the GUI window go? . 173
4.2.11 Where vs. When: What’s going on? 173

4.3 Modelling . 174
4.3.1 Witness for Xyz missing. Default witness generated 174
4.3.2 Identifier Xyz should not occur free in a witness 174
4.3.3 Witness Xyz must be a disappearing abstract variable or parameter in

the INITIALISATION event . 174
4.3.4 I’ve added a witness for Xyz but it keeps saying “Identifier Xyz has not

been defined” . 174
4.3.5 How can I create a new Event-B Project? 174
4.3.6 How can I remove a Event-B Project? 175
4.3.7 How can I export an Event-B Project? 175
4.3.8 How can I import a Event-B Project? 175
4.3.9 How can I change the name of a Event-B Project? 176
4.3.10 How can I create a Event-B Component? 176
4.3.11 How can I remove a Event-B Component? 176
4.3.12 In the new Rodin Editor, how can I add an element to machine? . . . 176
4.3.13 How can I use multiple lines for a comment, predicate or expression

(using the new editor)? . 177
4.3.14 How can I save a Context or a Machine? 177

4.4 Proving . 178

4.4.1 Help! Proving is difficult! . 178
4.4.2 How can I do a Proof by Induction? 178
4.4.3 What do the labels on the proof tree mean? 178

Index 179

Preface

Nobody likes to write documentation, yet everybody agrees that documentation is crucially
important. For a tool platform as complex as Rodin, documentation is necessary if it is
supposed to succeed in reaching a wider audience.

The executive team of the DEPLOY project recognized this. In a meeting at ETH in 2010,
the team established, amongst other things, that “it is clear that the current documentation
would not support, say, an engineer in an automotive company to start using the tools without
significant support”. It then commissioned the creation of better Rodin documentation. This
handbook is the result of this effort.

Rather than reinventing the wheel, we took all the existing documentation into account,
restructured it, extended it where necessary, created plenty of cross-references, and put the
resulting document through an editorial process to ensure readability.

A word of warning and encouragement: Don’t expect to be an expert in Event-B modelling
after reading this handbook. Its aim is to provide support while getting acquainted with the
tool platform. It provides the basics of modelling and can also be used as a companion guide
for experts. Beginners can work their way through the tutorial, which starts with installation
and ends with moderately difficult proofs. Additional support is available in the form of an
FAQ and a comprehensive index. Advanced users can refer to the comprehensive reference
section, where they can quickly find essential information regarding the different formalisms.

Whenever the handbook requires former knowledge, it provides links and hints about
where to get it. Whenever it stops, it provides references for further reading. In particular,
it provides plenty of references to the Rodin Wiki, and provides information on how to get
in touch with the Rodin community. We are confident that this handbook will achieve its
mission to get new users acquainted with Rodin without frustration and hopefully some with
fun.

Michael Jastram, Düsseldorf, 2012

7

8

Foreword

The Rodin tool supports the application of the Event-B formal method. It provides core
functionality for syntactic analysis and proof-based verification of Event-B models. Rodin
also provides extension points for a range of additional plug-ins that enrich the core func-
tionality through support for features such as model checking, model animation, graphical
front ends, additional proof capabilities and code generation.While the B Method, developed
by Jean-Raymond Abrial in the early 1990s, is focused on supporting formal development
of software, Event-B broadens the perspective to cover systems ; instead of just modelling
software components, Event-B is intended for modelling and reasoning about systems that
may consist of physical components, electronics and software. An essential difference between
Event-B and the B Method is that Event-B admits a richer notion of refinement in which new
observables may be introduced in refinement steps; this means that complex interactions be-
tween subcomponents may be abstracted from in early stage modelling and then introduced
through refinement in incremental stages.

At around the same time that Jean-Raymond was developing the concepts in Event-B, I
was involved in an initiative with the University of Newcastle (Alexander Romanovsky, Cliff
Jones), Åbo Akademi (Kaisa Sere, Elena Troubitsyna) and Jean-Raymond to put together an
EU proposal on formal methods for dependable systems. That became the RODIN project
(2004 to 2007) and a key part of the project was the development of an open source extensible
toolset to support refinement-based formal development. Many of Jean-Raymond’s ideas on
Event-B were worked into the requirements for the tool and the development of the core tool
platform was led by Jean-Raymond and Laurent Voisin (both then at ETH Zurich). Thorough
analysis was undertaken to determine that Eclipse was the right platform on which to build
an open toolset. The ease with which the core may be extended with plug-ins from a range
of teams to provide seamless functionality indicates this was a good decision. The tools
developed in the RODIN project took on the name of the project and, since it had a certain
cachet, it was decided to retain the Rodin name for the tool after the project ended.

The RODIN Project was followed by the DEPLOY Project which addressed further devel-
opment of the Rodin core and associated plug-ins in parallel with industrial-scale deployment
of the Rodin tools. Exposing the tools to serious industrial users in DEPLOY drove the de-
velopers to implement significant improvements in performance, usability and stability of
Rodin and key plug-ins such as ProB, the Theory plug-in, Camille and UML-B. Of course,
as well as demanding improvements to the tool, the industrial users demanded documenta-
tion on the tool, which led to this handbook. Michael Jastram and the team at Düsseldorf

9

10

have done an excellent job in pulling together, extending and improving various sources of
documentation on the Rodin tool. Like the Rodin tools, it will serve as a valuable resource
that will continue to evolve beyond the DEPLOY project.

Michael Butler, Southampton, 2012

Chapter 1

Introduction

This handbook provides documentation for users of the Rodin toolset, which provides tools
for working with Event-B models.

Event-B is a formal method for system-level modelling and analysis. Key features of
Event-B are the use of set theory as a modelling notation, the use of refinement to represent
systems at different abstraction levels and the use of mathematical proof to verify consistency
between refinement levels.

The Rodin Platform is an Eclipse-based IDE for Event-B that provides effective support
for refinement and mathematical proof. The platform is open source, contributes to the
Eclipse framework and is further extensible with plugins.

This handbook covers the use of the core platform. Documentation for developers and
regarding extensions can be found in the Rodin wiki (1.1.2).

1.1 Overview

This handbook consists of five parts:

Introduction (Chapter 1) You are reading the introduction right now. Its purpose is to
help you orient yourself and to find information quickly.

Tutorial (Chapter 2) If you are completely new to Rodin, the tutorial is a good way to
get up to speed quickly. It guides you through the installation and usage of the tool
and gives you an overview of the Event-B modelling notation.

Reference (Chapter 3) The reference section provides comprehensive documentation of
Rodin and its components.

Frequently Asked Questions (Chapter 4) Common issues are listed by category in the
FAQ.

Index We included an index particularly for the print version of the handbook, but it may
be useful in the electronic versions as well.

11

12 CHAPTER 1. INTRODUCTION

1.1.1 Formats of this Handbook

The handbook comes in various formats:

Eclipse Help The Rodin Handbook is shipped with Rodin and can be accessed through
the help system. The handbook will be updated with the standard Rodin update
mechanism.

Online Help You can access the handbook online at http://handbook.event-b.org.

PDF Help Both online versions also include a link to the PDF version of the handbook.

1.1.2 Rodin Wiki

This handbook is complemented by the Rodin wiki (http://wiki.event-b.org/). Some-
times, the handbook will refer to the wiki for more information. Also, plugin and developer
information is usually located in the wiki.

1.1.3 Contributing

The handbook is stored in the Rodin SVN repository and is authored in LATEX. Changes that
are checked in will be built automatically on the Jenkins server, managed by the University of
Düsseldorf. The result should be available at http://handbook.event-b.org shortly after
committing changes.

Each page of the online version also has a feedback button, where feedback can be left
using an online form. This feedback will be processed on a regular basis by volunteers.

There is also a mailing list for handbook authors at rodin-b-sharp-handbook@lists.-
sourceforge.net.

You can also submit feedback via email to rodin-handbook@formalmind.com.

1.2 Further Reading

In this section, we present a selected list of reading materials that provide information that
is not covered in this handbook.

1.2.1 Modeling in Event-B: System and Software Engineering, J.-
R. Abrial (2010)

This book represents the ultimate authority on Event-B, written by its creator. The example
from Section 2.10 is based on an example from the book.

From the editor: “A practical text suitable for an introductory or advanced course in
formal methods, this book presents a mathematical approach to modelling and designing
systems using an extension of the B formal method: Event-B. Based on the idea of refine-
ment, the author’s systematic approach allows the user to construct models gradually and to

http://handbook.event-b.org
http://wiki.event-b.org/
http://handbook.event-b.org

1.2. FURTHER READING 13

facilitate a systematic reasoning method by means of proofs. Readers will learn how to build
models of programs and, more generally, discrete systems, but this is all done with practice
in mind. The numerous examples provided arise from various sources of computer system
developments, including sequential programs, concurrent programs and electronic circuits.
The book also contains a large number of exercises and projects ranging in difficulty. Each
of the examples included in the book has been proved using the Rodin Platform tool set,
which is available free for download at www.event-b.org.”

1.2.2 Rodin: An Open Toolset for Modelling and Reasoning in
Event-B (2009)

This article discusses the design principles of the Rodin platform and the Event-B language
and explains the motivation behind it.

The abstract states: “[. . .] we present the Rodin modelling tool that seamlessly integrates
modelling and proving. We outline how the Event-B language was designed to facilitate proof
and how the tool has been designed to support changes to models while minimising the impact
of changes on existing proofs. We outline the important features of the prover architecture
and explain how well-definedness is treated. [. . .]”

The authors J.-R. Abrial, M. Butler, S. Hallerstede, T. S. Hoang, F. Mehta and L. Voisin
have published the article in the journal Software Tools and Technology Transfer (STTT).

1.2.3 The B-Method, an Introduction (Steve Schneider)

This text represents the “standard textbook” for learning formal modeling in B (rather than
Event-B). As Event-B is similar to B, this book is a great introduction to the topic, allowing
students to get acquainted with the subject matter, even without an instructor. (ISBN:
978-0333792841)

1.2.4 Event-B Cookbook

Those interested in more general guidelines on how to develop and structure formal models
in Event-B, the paper “Towards a Cookbook for Modelling and Refinement of Control Prob-
lems”1 may be of interest. It is an “attempt to develop some guidelines on modelling control
problems in Event-B”.

1.2.5 Proofs for the Working Engineer (2008)

In his dissertation at the ETH Zurich Fahrad Mehta describes how theorem proving can be a
practical tool for software engineers and presents the ideas that are used in building Rodin’s
infrastructure.

1http://deploy-eprints.ecs.soton.ac.uk/108/

http://deploy-eprints.ecs.soton.ac.uk/108/

14 CHAPTER 1. INTRODUCTION

1.2.6 The Proof Obligation Generator (2005)

In this technical report (ETH Zürich) Stefan Hallerstede describes which proof obligations
(see Section 3.2.7) are generated for a model and gives a justification why these are correct.

1.3 Conventions

We use the following conventions in this manual:

Checklists and milestones are designated with a tick. Here we summarize what
we want to learn or should have learned so far.

Useful information and tricks are designated by the information sign.

Potential problems and warnings are designated by a warning sign.

Examples and Code are designated by a pencil.

We use typewriter font for file names and directories.
We use sans serif font for GUI elements like menus and buttons. Menu actions are depicted

by a chain of elements, separated by “〉”, e.g. File 〉 New 〉 Event-B Component.

1.4 Acknowledgements

The content of this handbook has been growing since the formation of the European Union
IST Project RODIN in 2004. Giving credit to every contributor is almost impossible and
attempting to do so would almost certainly omit some people, which would contradict the
spirit of this work. It should be sufficient to say that we extend our gratitude to all con-
tributors to the Rodin Wiki (1.1.2). In particular, we would like to thank Systerel2 for their
significant contributions to the handbook as they have been the main driver behind the tool
and its documentation.

Jean-Raymond Abrial and the team at the ETH Zurich had a key role in the development
of Event-B and the Rodin project. Thank you very much!

We would also like to thank Cliff Jones, who never gave up the quest to improve the
Rodin documentation, and Ken Robinson, who contributed the Event-B Cheat Sheet3.

We are grateful to the editorial team that made this book possible in the first place,
consisting of Daniel Plagge, Lukas Ladenberger and Joy Clark. We also thank Prof. Michael
Leuschel, department head of the institute of software technology and programming languages
at the University of Düsseldorf, who supported us in pursuing this project.

2http://www.systerel.fr
3The URL of the resource is: http://handbook.event-b.org/current/files/EventB-Summary.pdf

http://handbook.event-b.org/current/files/EventB-Summary.pdf
http://www.systerel.fr
http://handbook.event-b.org/current/files/EventB-Summary.pdf

1.5. DEPLOY 15

The icons that you find throughout this handbook were created by Pixel-Mixer4, who
provides them for free. Thanks!

The cover picture was taken by Miikka Skaffari, who made it available via the Creative
Commons by-nc license, depicting a sculpture by Rodin. Thanks!

1.5 DEPLOY

This work has been sponsored by the DEPLOY project5. DEPLOY is a European Commis-
sion Information and Communication Technologies FP7 project.

The overall aim of the EC Information and Communication Technologies FP7 DEPLOY
Project is to make major advances in engineering methods for dependable systems through
the deployment of formal engineering methods. Formal engineering methods enable greater
mastery of complexity than found in traditional software engineering processes. It is the cen-
tral role played by mechanically-analysed formal models throughout the system development
flow that enables mastery of complexity.

As well as leading to big improvements in system dependability, greater mastery of com-
plexity also leads to greater productivity by reducing the expensive test-debug-rework cycle
and by facilitating increased reuse of software.

The goal of the project is to achieve and evaluate industrial take-up of DEPLOY’s methods
and tools (which started with DEPLOY’s industrial partners) as well as to perform further
research on methods and tools that is considered necessary.

1.6 Creative Commons Legal Code

The work presented here is the result of a collaborative effort that took many years. To
ensure that access to this work stays free and to avoid any legal ambiguities, we have decided
to formally license it under the Creative Commons Share-Alike License.

This work, except the cover image, is licensed under the Creative Commons Attribution-
ShareAlike 3.0 Unported License. To view a copy of this license, visit creativecommons.org/-
licenses/by-sa/3.0/ or send a letter to Creative Commons, 444 Castro Street, Suite 900,
Mountain View, California, 94041, USA.

The cover image of a Rodin statue was created by Miikka Skaffari (www.skaffari.fi). It is
licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License. To
view a copy of this license, visit creativecommons.org/licenses/by-sa/3.0/ or send a letter to
Creative Commons, 444 Castro Street, Suite 900, Mountain View, California, 94041, USA.

4http://pixel-mixer.com/
5http://www.deploy-project.eu/

http://www.skaffari.fi/
http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/
http://www.skaffari.fi/
http://creativecommons.org/licenses/by-sa/3.0/
http://pixel-mixer.com/
http://www.deploy-project.eu/

16 CHAPTER 1. INTRODUCTION

Chapter 2

Tutorial

The objective of this tutorial is to get you to a stage where you can use Rodin and build
Event-B models. We expect you to have a basic understanding of logic and an idea why
doing formal modelling is a good idea. You should be able to work through the tutorial with
little or no outside help.

This tutorial covers installation and configuration for Rodin. It will teach you step by
step how to build formal models. It also provides the essential theory and provides links to
further information.

We attempt to alternate between theory and practical application and thereby keep you
motivated. We encourage you not to download solutions to the examples but instead to
actively build them up yourself as the tutorial progresses.

If something is unclear, remember to check the Reference chapter (Chapter 3) for more
information.

2.1 Outline

Background before getting started (2.2) We give a brief description of what Event-B
is, what it is being used for and what kind of background knowledge we expect.

Installation (2.3) We guide you through downloading, installing and starting Rodin and
point out platform differences. We install the provers. We list the different window
views and describe what they do.

The First Machine (2.4) We introduce our first example: a traffic light machine that uses
boolean values for signals. We introduce guards, which allow the proof obligations to
be automatically discharged. We explain how proof labels are read without changing
to the proof perspective.

Mathematical notation (2.5) At this point we quickly go through the most important
aspects of predicate calculus and provide links to the reference chapter and to external
literature. We explain everything used by the traffic light system, we introduce all data
types and we provide a brief intoduction of sets and relations. We also explain the

17

18 CHAPTER 2. TUTORIAL

difference between predicates and expressions. For example, this is where we explain
the difference between TRUE and >.

Introducing Contexts (2.6) We introduce contexts to apply the theoretical concepts that
were introduced in the previous section. We use the Agatha-Puzzle as an example to
step by step introduce more and more complex elements. We cover theorems and also
mention well-definedness.

Event-B Concepts (2.7) This is another theoretical section that provides more back-
ground information about the previous examples. We analyze the anatomy of a machine
and introduce all the elements that a machine or context may have. We describe the
sees and refines concepts which will be applied in the next section, and we briefly men-
tion concepts like data refinement and witnesses although we do not explain them in
detail.

Expanding the Traffic Light System (2.8) We apply what we learned in the previous
section by introducing a context with traffic light colors and a refinement to integrate
them. We will introduce another refinement to model the push buttons.

Proving (2.9) So far all proof obligations have been discharged automatically. Now we
switch to the proving perspective and explore it for the first time. We edit the configu-
ration for the auto prover, invalidate proofs and show that with the new configuration
they will not be discharged any more. We carry out a simple proof manually and
describe the provers available.

Proving Deadlock Freeness (2.10) In this section we define what it means for a machine
to be deadlock free. We use a more complex example to explore how much the Rodin
provers can accomplish.

Outlook (2.11) This concludes the tutorial. We provide many links here for further reading.
In particular, we reference the documentation from the Deploy project and the Rodin
Wiki.

2.2 Before Getting Started

Before we get started with the actual tutorial, we are going to go over the required back-
ground information to make sure that you have a rudimentary understanding of the necessary
concepts.

You can skip this section, if...

• ... you know what formal modelling is

• ... you know what predicate logic is

• ... you know what Event-B and Rodin are

• ... you know what Eclipse is

2.2. BEFORE GETTING STARTED 19

2.2.1 Systems Development

Ultimately, the purpose of the methods and tools introduced here is to improve systems
development. By this we mean the design and management of complex engineering projects
over their life cycle. Examples include cars, air traffic control systems, etc.

“Taking an interdisciplinary approach to engineering systems is inherently complex since
the behaviour of and interaction among system components is not always immediately well
defined or understood. Defining and characterizing such systems and subsystems and the
interactions among them is one of the goals of systems engineering. In doing so, the gap
that exists between informal requirements from users, operators, marketing organisations,
and technical specifications is successfully bridged.”1

2.2.2 Formal Modelling

We are concerned with formalizing specifications. Formal models allow us to perform a more
rigorous analysis of our system (thereby improving the quality) and allow us to reuse the
specification in the development an implementation. This comes at the cost of higher up-front
investments.

This differs from the traditional development process. In a formal development, we trans-
fer some effort from the test phase (where the implementation is verified) to the specification
phase (where the specification in relation to the requirements is verified).

2.2.3 Predicate Logic

In predicate logic, statements (which are called predicates) can be expressed with variables
that can be quantified (e.g. “for all values of x . . . ”). Event-B uses predicate logic with the
following features:

• Predicates and expressions are distinguished.

• All expressions have a data type, e.g. integer or set of integers.

• Quantification over variables, not predicates, is supported. This includes quantification
over sets.

• A partial function semantics is included, e.g. the predicate 1 ÷ 0 = 1 ÷ 0 is not a
tautology because 1÷ 0 does not represent a valid value.

• Comprehension sets are supported.

• Predicates can be evaluated to a Boolean value.

1http://en.wikipedia.org/wiki/Systems_engineering#Managing_complexity

http://en.wikipedia.org/wiki/Systems_engineering#Managing_complexity

20 CHAPTER 2. TUTORIAL

2.2.4 Event-B

Event-B is a notation for formal modelling based around an abstract machine notation.
Event-B is considered an evolution of B (also known as classical B). It is a simpler notation

which is easier to learn and use. It comes with tool support in the form of the Rodin Platform.

2.2.5 Rodin

Rodin (3.1) is the name of the tool platform for Event-B. It allows formal Event-B models
to be created with an editor. It generates proof obligations (3.2.7) that can be discharged
either automatically or interactively.

Rodin is a modular software and many extensions are available. These include alternative
editors, document generators, team support, and extensions (called plugins) some of which
include support decomposition and records. An up-to-date list of plugins is maintained in
the Rodin Wiki (1.1.2)2.

2.2.6 Eclipse

Rodin is based on the Eclipse Platform (3.1.1), a Java-based platform for building software
tools. This is important for two reasons:

• If you have already used Eclipse-based software, then you will feel immediately com-
fortable with how Rodin applications are handled.

• Many extensions, or plugins, are available for Eclipse-based software. There are Rodin-
specific plugins as well as plugins independent of Rodin that may be useful to you. The
Rodin Wiki (1.1.2), contains a list of plugins is maintained.

The GUI of an Eclipse application consists of views, editors, toolbars, quickviews, per-
spectives and many more elements. If these terms are unfamiliar to you, please consult
Section 3.1.1 which contains references to Eclipse tutorials.

In Section 2.3, we present the Rodin-specific GUI elements.

2.3 Installation

Goals: The objective of this section is to guide you through downloading, in-
stalling and starting Rodin. In addition, we explain the update mechanisms
needed to install new plugins for Rodin. Finally, we name the Rodin-specific GUI
elements and describe their functions.

You can skip this section, if. . .

2These links were valid at the time of the writing of this document:
http://wiki.event-b.org/index.php/Rodin_plugins

http://wiki.event-b.org/index.php/Installing_external_plugins_manually

http://wiki.event-b.org/index.php/Rodin_plugins
http://wiki.event-b.org/index.php/Installing_external_plugins_manually

2.3. INSTALLATION 21

• . . . you know how to install and update Rodin

• . . . you know how to install new plugins for Rodin

Rodin is fairly resource intensive. You need a good computer with plenty of
memory to run it. It is recommended to have at least 2GB of RAM.

2.3.1 Install Rodin for the first time

Step 1: Download

The first step is to download Rodin. Rodin is available for download on the Rodin Download
page. There is also a link for the download site in the faq (4.1.6).

Rodin is available for Windows, Mac OS, and Linux. For all the platforms, the distribution
is always available for download as a zip file. Download the zip file for your system anywhere
on your PC.

It is recommended that you download the latest stable version.

Step 2: Install and Run Rodin

Rodin is easy to install on the platforms for which a prebuild version exists. If
no prebuild version exists for your platform, please check out Section 4.1.8 in the
FAQ on suggestions for how to install Rodin

To install Rodin, extract the contents of the zip file to a desired directory. You can run
the tool by using the rodin executable.

Starting Rodin should bring up a welcome screen. It provides some quick guidance for
Rodin. In particular, it provides instructions on installing the provers.

Please install the provers right away. It is easy and only takes a few clicks.

After dismissing the welcome screen, you should see the window shown in Figure 2.1.
Here you can specify the path where Rodin stores your projects.

After specifying a path click the OK button. Rodin will start and the window shown in
Figure 2.2 will open.

When using a Linux distribution, a welcome window may open up. Exit out
of this window to get to the main screen. Other problems can also occur when
installing Rodin in Linux. See the release notes for details.3

http://wiki.event-b.org/index.php/Rodin_Platform_Releases
http://wiki.event-b.org/index.php/Rodin_Platform_Releases

22 CHAPTER 2. TUTORIAL

Figure 2.1: Eclipse Workspace Launcher

Figure 2.2: Rodin GUI

As already mentioned in Section 2.2.6, the GUI of an Eclipse application consists of views,

3 See Rodin Release Notes

http://wiki.event-b.org/index.php/Rodin_Platform_2.2_Release_Notes

2.4. THE FIRST MACHINE: A TRAFFIC LIGHT CONTROLLER 23

editors, toolbars, quickviews, perspectives and many more elements. Here we list the different
Rodin GUI elements (i.e. views) which are visible after starting Rodin for the first time and
explain their functions:

Menu bar (3.1.2) The menu bar of the Rodin programs provides file and edit operations
as well as other commands.

Tool bar (3.1.2) The tool bar provides short cuts for commonly used commands such as
save, print, undo and redo.

Event-B Explorer (3.1.2) The Event-B Explorer shows the projects’ tree structure. Projects
are the main entries in this view, and when a project is expanded, the corresponding
project files will also be shown.

Outline View (3.1.2) The Outline view shows the outline of the active editor or file.

Rodin Problems View (3.1.2) The Rodin Problems view displays problems (e.g., syntax
errors) from the currently active projects.

Symbols View (3.1.2) The Symbols view shows a list of available mathematical symbols
which can be used in conjunction with the mathematical notation (3.3).

Editor View (3.1.2) The Editor view displays the active editor and is the view in which
Event-B files are edited.

2.3.2 Install new plugins

This sections describes how to install new plugins for Rodin by using the example of the
Atelier B Provers plugin (3.4.4). It is highly recommended that you install this plugin
because it will not be possible to prove much without it.

Open the Install Manager Help 〉 Install New Software. . . . Click the downward arrow next
to the field Work with to select the Atelier B Provers update site. Check the box next to the
Atelier B Provers entry and click on the Next button (compare with Figure 2.3). Follow the
installation instruction to install the plugin. After installing the plugin, you will be asked to
restart Rodin in order to finalize the installation.

If you are using a firewall, you may need to change the proxy settings.

2.4 The First Machine: A Traffic Light Controller

Goals: The objective of this section is to get acquainted with the modelling
environment. We will create a very simple model consisting of just one file to
develop a feeling for Rodin and Event-B.

24 CHAPTER 2. TUTORIAL

Figure 2.3: Eclipse Install Manager

In this tutorial, we will create a model of a traffic light controller. We will use this example
repeatedly in subsequent sections. Figure 2.4 depicts what we are trying to achieve.

There is a four-page Event-B Cheat Sheet4, representing a concise summary of the
Event-B mathematical toolkit. Thanks to Ken Robinson for making it available.

In this section, we will implement a simplified controller with the following characteristics:

• We will model the signals with Boolean values to indicate “stop” (false) and “go”
(true). We do not model colors (yet) because we think we should first specify our goal
(regulating the traffic) and later add implementation details (the traffic light’s colors).

4The URL of the resource is: http://handbook.event-b.org/current/files/EventB-Summary.pdf

http://handbook.event-b.org/current/files/EventB-Summary.pdf
http://handbook.event-b.org/current/files/EventB-Summary.pdf

2.4. THE FIRST MACHINE: A TRAFFIC LIGHT CONTROLLER 25

Figure 2.4: The traffic light controller

• To keep the initial model simple, we will not include the push button yet. We will add
it later.

2.4.1 Excursus: The specification process

While this handbook is concerned with use of the Rodin tool, it is important to understand
the specification process as well. It can be daunting and unclear especially for beginners to
recognize where to start with the model, what kind of data structures and abstractions to
use, and so on.

We cover a few examples in this chapter that should develop your ability to answer these
questions implicitly, but there is no explicit set of instructions. For example, we will first
model the traffic lights as Boolean values and later refine them into actual colors. But how
did we come up with this refinement strategy? Likewise, we decided to add the push buttons
at a later refinement. In retrospect this may seem useful, but it is still not clear how we
arrived at this structure in the first place.

Jean-Raymond Abrial has something to say about this in his book5. Some of the chapters
are available in the Rodin Wiki.

It takes some time to learn how to read formal specifications, and not all stake-
holders are willing to learn it. Further, textual requiremenets are almost always the

5http://www.amazon.com/Modeling-Event-B-System-Software-Engineering/dp/0521895561

http://www.amazon.com/Modeling-Event-B-System-Software-Engineering/dp/0521895561

26 CHAPTER 2. TUTORIAL

starting point for a formal specification. It would be nice to kep a traceability to the
origianl requirements.

ProR is a tool for editing requirements. An integration with Rodin exists, which allows
a traceability between textual requirements and model elements to be established. This
shows the Event-B model elements seamless as part of the textual requirements. The various
traceability options are demonstrated in the Formal Mind Blog.

Further, the traces are tracked, and if the source or the target of a trace changes, a marker
is set, so that the changes can be inspected and verified.

Being able to set traces is not enough, if there is not a theory behind it to make it useful.
One such theory is based on the WRSPM reference model. How this works in practice can
be seen in this paper.

Last, ProR is based on the ReqIF standard, which is supported by major
industry tools for requirements management (like Rational DOORS or PTC in-
tegrity). This eases the integration of Event-B into existing development processes.

This contribution requires the ProR Requirements plugin. The content is maintained by the plugin contributors and may be

out of date.

2.4.2 Project Setup

Models typically consist of multiple files that are managed in a project. Create a new Event-
B Project File 〉 New 〉 Event-B Project. Give the project the name tutorial-03 as shown in
Figure 2.5.

Figure 2.5: New Event-B Project Wizard

http://wiki.event-b.org/index.php/ProR
http://www.formalmind.com/en/blog/using-rmf-integrate-your-models
http://www.stups.uni-duesseldorf.de/w/Special:Publication/RMF_Mark_Book_Jastram_2013

2.4. THE FIRST MACHINE: A TRAFFIC LIGHT CONTROLLER 27

Eclipse supports different types of projects. The project must have the Rodin
Nature (3.1.1) to work. A project can have more than one nature.

Next, create a new Event-B Component. Either use File 〉 New 〉 Event-B Component or
right-click on the newly created project and select New 〉 Event-B Component. Use mac as
the component name, select Machine as component-type, and click Finish as shown in Figure
2.6. This will create a Machine (3.2.4) file.

Figure 2.6: New Event-B Component Wizard

The newly created component will open in the Rodin Editor. This displays the machine
hierarchy as text, although at this point, you cannot add any text apart from comments.
Elements can be added to the model by using the wizards for variables, variants, invariants,
and events (the , , , and buttons).

You can also add elements by finding the name of the machine under the MACHINE
heading. There is a small green arrow () directly to the right of the name of the machine
(in this case, the name of the machine is “mac”). Place your cursor directly to the left of
the green arrow and right click. Select the element that you would like to add from the Add
Child menu. If an element of a certain type has already been created, you can also create
more elements of that type by right clicking on the type of the element you would like to
add (e.g. VARIABLES) that is coloured in purple and select Add Child. You can also place
your cursor directly before the green arrow to the left of an element name and hit CTRL-T
or right click and select Add Sibling.

You can also edit the machine using the Event-B Machine Editor. This was the default
editor in Rodin 2.3 and earlier versions and is still available to view and edit machine files.
To do this, right click on the mac component in the Event-B Explorer and select Open With 〉
Event-B Machine Editor. This editor has four tabs at the bottom. The Pretty Print tab shows
the model as a whole with color highlighting, but it cannot be edited here. This is useful to

28 CHAPTER 2. TUTORIAL

inspect the model. Under the Edit tab, you can edit the model. The six main sections of a
machine (REFINES, SEES, etc.) are displayed in a collapsed state. You can click on the
button to the left of a section to expand it.

This editor is form-based. This means that it can be modified by using controls (i.e. text
fields, dropdowns, etc.) to input information. More information about this editor is available
in the reference section (3.1.5).

Alternative editors are available as plugins. The form editor has the advantage
of guiding the user through the model, but it takes up a lot of space and can
be slow for big models. The text-based Camille Editor (2.4.3) is very popular.
Please visit the Rodin Wiki (1.1.2) for the latest information.

2.4.3 Camille, a text-based editor

Camille is a “real” text editor that provides the same feel as a typical Eclipse text
editor and provides all of the functions that most text editors provide (i.e. copy,
paste, undo, redo, etc.) However, please note that at this time not all Rodin plugins
are compatible with Camille. For more information, please consult the extensive

documentation in the Rodin Wiki (1.1.2).
Camille can be installed via its update site, which is preconfigured in Rodin. Once

installed, Camille will be set as the default editor. The rodin editor or structural editor can
still be used by selecting it from the context menu of a file in the project browser.

For more information, please visit http://wiki.event-b.org/index.php/Text_Editor.

This contribution requires the Camille plugin. The content is maintained by the plugin contributors and may be out of date.

2.4.4 Building the Model

Back to the problem: Our objective is to build a simplified traffic light controller as described
in 2.4. We start with the model state. Two traffic lights will be modelled, and we will therefore
create two variables called cars go and peds go.

Creating Variables

Under the MACHINE heading, you see the machine name mac. There is a small green arrow
() to the right of this label. Place your cursor directly to the left of the green arrow, right
click, and select Add Child 〉 Event-B Variable to add a new variable. Optionally, you can also
use the New Variable Wizard (the button) to create your variable.

By default, the variable is named var1. Place your cursor inside the var1 label. The label
will then turn into a textbox. Change the name to cars go. You can add a comment to the
variable by placing your cursor to the right of the little green arrow and typing into the text
box that appears.

http://wiki.event-b.org/index.php/Text_Editor

2.4. THE FIRST MACHINE: A TRAFFIC LIGHT CONTROLLER 29

Comments: The comment field does not support line breaks, nor is is possible
to “comment out” parts of the model as it is with most programming languages.

Create the second variable (peds go) in the same way, or place your cursor directly to
the left of the small green arrow next to the label cars go and hit either CTRL-T or right click
and select Add Sibling from the menu.

Upon saving, the variables will be underlined in red which indicates that an error is
present as shown in Figure 2.7. The Rodin Problems view (3.1.2) shows corresponding error
messages. In this case, the error message is “Variable cars go does not have a type”.

Figure 2.7: Red highlighted elements indicate errors

Invariants are needed in order to specify the type of variables. Use the method described
above to add invariants to your machine (except this time select Add Child 〉 Event-B Invariant
from the menu or click the button to open up the New Invariant Wizard). Add two
invariants (which will automatically be labelled inv1 and inv2). The actual invariant appears
to the left of the label and is prepopulated with the symbol >, which represents the logical
value “true”. Placing your cursor inside the invariant field will change it to a text field and
allow editing.

Change the first invariant (the symbol >, not the label inv1) to cars go ∈ BOOL and the
second invariant to peds go ∈ BOOL. Event-B provides the build-in datatype BOOL among
others (3.3.1).

Mathematical Symbols: Every mathematical symbol has an ASCII-representation
and the substitution occurs automatically. To generate “element of” (∈), simply
type a colon (“:”). The editor will perform the substitution after a short delay.

30 CHAPTER 2. TUTORIAL

The Symbols view shows all supported mathematical symbols. The ASCII rep-
resentation of a symbol can be found by hovering over the symbol in question.
Symbols can also be added manually by selecting them from the Symbols view

After saving, you should see that the INITIALISATION event is underlined in yellow with
a small warning sign to the left as demonstrated in Figure 2.8. Again, the Rodin Problems
view displays the error message: “Variable cars go is not initialized”. Every variable must
be initialized in a way that is consistent with the model.

Figure 2.8: Yellow highlighted elements indicate warnings

To fix this problem, place your cursor to the left of the small green arrow next to the
label INITIALISATION. Right click and add an Event-B Action. Repeat to add another event.
In the action fields, enter cars go := FALSE and peds go := FALSE.

State Transitions with Events

Our traffic light controller cannot yet change its state. To make this possible, we create two
events (3.2.4) in the manner described above and name them set peds go and set peds stop.
This will model the traffic light for the pedestrians, and for each of these, we will add an
Event-B action to each of the events. These actions will change peds go to TRUE or FALSE,
which simulates the changing of the traffic light.

From now on, we won’t describe the individual steps in the editor any more.
Instead, we will simply show the resulting model.

The two events will look as follows:

Event set peds go =̂

2.4. THE FIRST MACHINE: A TRAFFIC LIGHT CONTROLLER 31

begin
act1 : peds go := TRUE

end
Event set peds stop =̂

begin
act1 : peds go := FALSE

end

Event parameters

For the traffic light for the cars, we present a different approach and use only one event with
a parameter. The event will use the new traffic light state as the argument. For this, we
need to add an Event-B Event Parameter, which will appear under the heading ANY, and
an Event-B Guard, which will appear under the heading WHERE:

Event set cars =̂
any

new value
where

grd1 : new value ∈ BOOL
then

act1 : cars go := new value
end

Note how the parameter is used in the action block to set the new state.

Invariants

If this model was actually in control of a traffic light, we would have a problem because
nothing is preventing the model from setting both traffic lights to TRUE. The reason is that so
far we only modeled the domain (the traffic lights and their states) and not the requirements.
We have the following safety requirement:

REQ-1: Both traffic lights must not be TRUE at the same time.

We can model this requirement with the following invariant:

¬(cars go = TRUE ∧ peds go = TRUE)

Please add this invariant with the label inv3 to the model (Use the ASCII codes not and &

to get the symbols ¬ and ∧).
Obviously, this invariant can be violated, and Rodin informs us of this. The Event-B

Explorer (3.1.2) provides this information in various ways. Go to the explorer and expand the
project (tutorial-03), the machine (mac) and the entry “Proof Obligations”. You should
see four proof obligations, two of which are discharged (marked with) and two of which
are not discharged (marked with).

32 CHAPTER 2. TUTORIAL

Proof obligations: A proof obligation is something that has to be proven to
show the consistency of the machine, the correctness of theorems, etc. A proof
obligation consists of a label, a number of hypothesis that can be used in the proof
and a goal – a predicate that must be proven. Have a look at the proof obligation
labels. They indicate the origin in the model where they were generated. E.g.
set peds go/inv3/INV is the proof obligation that must be verified to show that the
event set peds go preserves the invariant (INV) with the label inv3. An overview
about all labels can be found in Section 3.2.7. The proof obligations can also be
found via other entries in the explorer, like the events they belong to. Elements
that have non-discharged proof obligations as children are marked with a small
question mark. For instance, inv3 has all proof obligations as children, while the
event set cars has one.

To prevent the invariant from being violated (and therefore to allow all proof obligations
to be discharged), we need to strengthen the guards (3.2.4) of the events.

Before looking at the solution, try to fix the model yourself.

Finding Invariant Violations with ProB

A useful tool for understanding and debugging a model is a model checker like ProB.
You can install ProB directly from Rodin by using the ProB Update Site. Just select
Install New Software... from the Help menu and select “ProB” from the dropdown.
You should see “ProB for Rodin2“ as an installation option, which you can then

install using the normal Eclipse mechanism.
We will continue the example at the point where we added the safety invariant (REQ-1),

but didn’t add guards yet to prevent the invariants from being violated.
We launch ProB by right-clicking on the machine we’d like to animate and select Start

Animation / Model Checking. Rodin will switch to the ProB-Perspective, as shown in Fig-
ure 2.9. The top left pane shows the available events of the machines. Upon starting, only
INITIALISATION is enabled. The middle pane shows the current state of the machine, and
the right pane shows a history. On the bottom of the main pane we can see whether any
errors occurred, like invariant violations. We can now interact with the model by triggering
events. This is done by double-clicking on an enabled event or by right-clicking it and se-
lecting a set of parameters, if applicable. We first trigger INITIALISATION. After that, all
events are enabled. Next, we trigger set cars and set peds go with the parameter TRUE.
As expected, we will get an invariant violation. In the state view, we can “drill down” and
find out which invariant was violated, and the history view shows us how we reached this
state (Figure 2.10). After modifying a machine, ProB has to be restarted, which is done
again by right-clicking the machine and selecting ProB. Triggering events to find invariant
violations is not very efficient. But ProB can perform model checking automatically. To do

2.4. THE FIRST MACHINE: A TRAFFIC LIGHT CONTROLLER 33

so, select Model Checking from the Checks menu from the “Events” View (the view on the
left). After optionally adjusting some parameters, the model checking can be triggered by
pressing “Start Consistency Checking”. Upon completion, the result of the check is shown.
ProB has many more functions and also supports additional formalisms. Please visit the
ProB Website for more information.

This contribution requires the ProB plugin. The content is maintained by the plugin contributors and may be out of date.

Figure 2.9: The ProB Perspective

2.4.5 The Final Traffic Light Model

http://www.stups.uni-duesseldorf.de/ProB

34 CHAPTER 2. TUTORIAL

Figure 2.10: An invariant violation, found by ProB

MACHINE mac

VARIABLES

cars go

peds go

INVARIANTS

inv1 : cars go ∈ BOOL
inv2 : peds go ∈ BOOL
inv3 : ¬(cars go = TRUE ∧ peds go = TRUE)

EVENTS

Initialisation

begin

act1 : cars go := FALSE
act2 : peds go := FALSE

2.5. MATHEMATICAL NOTATION 35

end

Event set peds go =̂

when

grd1 : cars go = FALSE

then

act1 : peds go := TRUE

end

Event set peds stop =̂

begin

act1 : peds go := FALSE

end

Event set cars =̂

any

new value

where

grd1 : new value ∈ BOOL
grd2 : new value = TRUE ⇒ peds go = FALSE

then

act1 : cars go := new value

end

END

2.5 Mathematical notation

Goals: In order to understand how basic properties of a model can be expressed
in Event-B, we need a brief introduction of predicates, terms and data types.

In Event-B, we use a mathematical notation to describe the systems we want to model. This
allows us to be very precise about the model’s properties.

2.5.1 Predicates

In the traffic light example, we have already encountered several predicates: The invariants
of a model and the guards of an event. The proof obligations generated by Rodin are also
predicates. A predicate is simply an expression, the value of which is either true or false.

The simplest predicates are > (ASCII: true) and ⊥ (ASCII: false). We can also assert
if arbitrary objects of the same type are equal with = or not equal with 6= (ASCII: /=).
Predicates can be combined with the usual logical operators:

36 CHAPTER 2. TUTORIAL

symbol ASCII
conjunction (and) ∧ &

disjunction (or) ∨ or

implication ⇒ =>

equivalence ⇔ <=>

negation (not) ¬ not

We can use universal quantification to express a statement that is valid for all possible values
a variable might have. The universal quantifier is ∀ (ASCII: !). For example, in order to
show that any given number x greater than zero and multiplied with two is greater than one,
we can use the following expression:

∀x·x > 0⇒ 2 · x > 1 ASCII: !x. x>0 => 2*x > 1

When a variable is introduced by a quantifier, the type of the variable must be clear. In this
case Rodin can infer that x must be of type integer because the operator < is defined only
on integers. Sometimes the type cannot be inferred, e.g., in

∀a, b·a 6= b⇒ b 6= a ASCII: !a,b. a/=b => b/=a

a and b could be integers, Boolean values or some other type. In this case, we must make
the type of the variables explicit by stating that a and b are elements of the appropriate sets.
Let’s use integers again to correct the previous expression:

∀a, b·a ∈ Z ∧ b ∈ Z ∧ a 6= b⇒ b 6= a

ASCII: !a,b. a:INT & b:INT & a/=b => b/=a

The conjunction operator (∧) has a stronger binding that the implication ⇒, so the above
expression is equivalent to

∀a, b·(a ∈ Z ∧ b ∈ Z ∧ a 6= b)⇒ b 6= a

If you are unsure which of the operators bind stronger, we advise you to use
parenthesis to avoid mistakes.

Existential quantification on the other hand is used to state that there is an object of
a certain type fulfilling a given property. The existential quantifier is ∃ (ASCII: #). The
following example expression states that there is a Boolean value different from TRUE:

∃x·x ∈ BOOL ∧ x 6= TRUE ASCII: #x. x:BOOL & x/=TRUE

As you can see, we again added type information for x. We put the type information on
the left side of the implication (⇒) for the universal quantification , but for existential
quantification we add it via a conjunction (∧).

2.5. MATHEMATICAL NOTATION 37

2.5.2 Data types

We have seen that each identifier (i.e. a variable, constant or parameter) must have a
distinguished type. If we can introduce an identifier anywhere, we usually must also add a
predicate with which the identifier’s type can be determined. In the traffic light example,
a variable cars go was introduced and the type was set by an invariant cars go ∈ BOOL.
In the next section, we’ll see that the type of constants is set by axioms (also predicates)
and later we’ll see that the type for parameters will be determined by using guards (again,
predicates).

As a rule, each term in Event-B must have a certain type. When saving a Event-B
component, Rodin starts the type checker to ensure that types are correctly used. For
example, the terms on both sides of an equality (=) must have the same type. If this is not
the case, Rodin will generate an error message. For each type there exists a set that denotes
exactly all elements that belong the type. We will now briefly give an overview about all
types you might encounter.

Integers We have already seen numbers, which are of type integer (Z). Example terms of
type Z are 5, x+ 7 and 7 · y − 3.

Booleans We have already seen the Boolean type (BOOL) in the previous section (2.4). It
has exactly two elements, BOOL = {TRUE, FALSE}.

Carrier sets A user can introduce a new type by adding its name to the Sets section of a
context. We see that in more detail in the next section (2.6).

Sets If we have terms of a certain type, we can easily construct sets of that type. E.g. 1
and 2 · x denote integers (Z) and {1, 2 · x} is a set of integers (P(Z)). P(S) (ASCII:
POW) denotes the power set (the set of all subsets) of S.

Pairs If we have two terms, we can construct a pair. For example, with 2 and TRUE, we can
construct the pair 2 7→ TRUE (ASCII: 2|->TRUE). The type of that pair is Z×BOOL,
where × denotes the Cartesian product. Set of pairs (“relations”) play an important
role in modelling languages like Event-B.

Please do not confuse predicates and Boolean values! For example, if you want
to express the condition “if the variable b is true, x should be greater than 2”,
you cannot write b⇒ x > 2 (That would produce a syntax error). Instead you
have to write b = TRUE⇒ x > 2.

In Section 3.3 the types of each operator in Event-B are described in detail.

2.5.3 Operations on Sets

Let’s assume that we have two sets A and B of the same type, e.g. sets of integers. Then we
can check if an element e is in it with the expression e ∈ A (ASCII: e:A) or on if it is not in

38 CHAPTER 2. TUTORIAL

A with e /∈ A (ASCII: e/:A). Expressing that all elements of A are also elements of B (i.e. A
is a subset of B) can be done with the expression A ⊆ B (ASCII: A<:B). The negated form
is A 6⊆ B (ASCII: A/<:B).

We can build the union A ∪ B, the intersection A ∩ B and the set subtraction A \ B
(ASCII: A\/B, A/\B and A\B). The set subtraction contains all elements that are in A but
not in B.

The power set P(A) (ASCII: POW(A)) is the set of all subsets of A. Thus B ∈ P(A) is
equivalent to B ⊆ A. P1(A) (ASCII: POW1(A)) is the set of all non-empty subsets of A.

2.5.4 Introducing user-defined types

We can introduce our own new types simply by giving such types a name. This is done by
adding the name of the type to the SETS section of a context. We will see how this is done
in practice in the next section (2.6).

For instance, if we want to model different kind of fruits in our model, we might create
the set FRUITS. Then the identifier FRUITS denotes the set of all elements of this type.
Nothing more is known about FRUITS unless we add further axioms. In particular, we do
not know the cardinality (number of elements) of the set or even if it is finite.

Assume that we want to model apples and oranges which are sub-sets of FRUITS.
We do not need to introduce them in the SETS section of a context just because
they are sets. Let’s imagine such a scenario where apples and oranges are mod-
elled as types of their own (by declaring them in the SETS section). And we
have two variables or constants a and o with a ∈ apples and o ∈ oranges. Then
we cannot compare a and o with a = o or a 6= o. That would raise a type error
because = and 6= expect the same type for the left and right expression.

If we want to model sub-sets apples and oranges as described above, we can add them
as constants and state that apples ⊆ FRUITS and oranges ⊆ FRUITS. If apples and
oranges are all fruits we want to model, we can assume apples ∪ oranges = FRUITS and
if no fruit is both an apple and orange we can write apples ∩ oranges = ∅. A shorter
way to express this is to say that apples and oranges constitute a partition of the fruits:
partition(FRUITS, apples, oranges). In general, we can use the partition operator to ex-
press that a set S is partitioned by the sets s1, . . . , sn with partition(S, s1, . . . , sn). We use
partitions in Section 2.6.2.

Another typical usage for user defined data types are enumerated sets. These are sets
where we know all the elements already. Let’s take a system which can be either working
or broken. We model this by introducing a type STATUS in the SETS section and two
constants working and broken. We define that STATUS consists of exactly working and
broken by STATUS = {working, broken}. Additionally, we have to say that working and
broken are not the same by working 6= broken.

If the enumerated sets gets larger, we need to state for every two element of the set that
they are distinct. Thus, for a set of 10 constants, we’ll need (102 − 10)÷ 2 = 45 predicates.

2.6. INTRODUCING CONTEXTS 39

Again, we can use the partition operator to express this in a more concise way:

partition(STATUS, {working}, {broken})

2.5.5 Relations

Relations are a powerful instrument when modelling systems. From a mathematical point
of view, a relation is just a set of pairs. Formally, when we have two sets A and B, we can
specify that r is a relation between both by r ∈ P(A × B) (ASCII: r:POW(A**B)). Because
relations are so common, there is also a symbol to denote a relation, so a shorter way to write
the above expression is r ∈ A↔B (ASCII: r:A<->B).

With a 7→ b ∈ r, we can check if two elements a and b are related in respect to b.
We use a small example to illustrate relations. Let A = {a, b, c, d} and B = {1, 2, 3, 4}.

We define the relation r with r = {a 7→ 1, a 7→ 3, c 7→ 2, d 7→ 1}. The domain of r are all
elements occurring on the left side dom(r) = {a, c, d} and the range are all elements on the
right ran(r) = {1, 2, 3}.

To find out to which elements the objects of the set s = {b, c, d} are related to, we can
use the relational image: r[s] = r[{b, c, d}] = {1, 2}. Often we want to know to which object
a single element a is related. We just write it as a singleton set: r[{a}] = {1, 3}.

Event-B supports several operators to work with relations (3.3.5). We will not go into
more detail during the course of the tutorial.

An important special case of relations are functions. Functions are relations where each
element of the domain is uniquely related to one element of the range. Event-B directly
supports operators to describe partial and total functions, which can be injective, surjective
or bijective.

2.5.6 Arithmetic

We have the usual operations on integers, +, −, · and ÷ (ASCII: +, -, * and /). They can
be compared with the usual equality operators: <, ≤, ≥, > (ASCII: <, <=, >=, >).

Z (ASCII: INT) denotes the set of all integer numbers. N and N1 (ASCII: NAT and NAT1

respectively) are the subsets of natural numbers.

If you specify two variables x and y with x ∈ Z and y ∈ N, then both are of type
integer (Z). N is not another type. There is just the additional condition y ≥ 0.

2.6 Introducing Contexts

Goals: In this section we introduce contexts that apply to the theoretical con-
cepts that were introduced in the previous section (2.5). We will create a very
simple model consisting of just one context file.

40 CHAPTER 2. TUTORIAL

In this tutorial, we will create a model of the well known Agatha puzzle. We use this
instead of the already introduced traffic light example because it provides us with more
possibilities to apply Event-B’s logic and to use operations on relations. Here is a brief
description of the puzzle:

Someone in Dreadsbury Mansion killed Aunt Agatha. Agatha, the butler, and Charles live
in Dreadsbury Mansion and are the only ones to live there. A killer always hates, and is
no richer than his victim. Charles hates no one that Agatha hates. Agatha hates everybody
except the butler. The butler hates everyone not richer than Aunt Agatha. The butler hates
everyone whom Agatha hates. No one hates everyone. Who killed Agatha?

Contexts are used to model static properties of a model, things that do not change over
time. Whereas with machines we model the dynamic properties like the traffic light above.
The objective of this section is to get familiar with contexts by modelling the Agatha puzzle.

2.6.1 Create a Context

Create a new Event-B Project File 〉 New 〉 Event-B Project. Give the project the name
tutorial-05.

Next, create a new Event-B Component. The process for creating a context is similar to
the process for creating a machine (2.4), but this time use agatha as the component name
and select the Context (3.2.3) option in order to create a Context file instead of a Machine
(3.2.4) file.

Click the Finish button. Rodin should start the editor with the created Context file (see
Figure 2.11).

2.6.2 Populate the Context

In this section we model the Agatha puzzle step by step.

Modelling the Persons

We have three persons in the Agatha puzzle: Agatha herself, the butler and Charles. We
model the three persons as constants (one constant for each person) in the corresponding
CONSTANTS section:

CONSTANTS

Agatha

butler

Charles

These constants or persons respectively are part of a set:

SETS

2.6. INTRODUCING CONTEXTS 41

Figure 2.11: Context file opened with Rodin Editor

persons

Now the constants themselves are not very useful since they have no type (after creating
the constants, they will be highlighted in red, which indicates a problem). The semantics of
the sets (3.3.4) and constants (3.2.3) are specified in the axioms (3.2.3). As already mentioned
above the persons are part of the set persons. We model this by creating a partition (3.3.4)
in the AXIOMS section:

AXIOMS

person partition :
partition(persons , {Agatha}, {butler}, {Charles})

Please note the curly braces {} around the constants. It’s very easy to forget
these, but if they are missing, typing errors are created which are very hard to
interpret for a novice.

42 CHAPTER 2. TUTORIAL

The New Enumerated Set Wizard (3.1.6) allows you to create the constants, the
set and the axiom automatically at the same time. To access this wizard, click
on the New Enumerated Set Wizard tool bar item or find it under Event-B 〉 New
Enumerated Set Wizard. This will bring up a wizard into which we can enter the
name of the set and the constants in the corresponding text fields. The wizard
will create the enumerated set, the constants and the axiom automatically.

Modelling the Relations “Persons who hate each other” and “Who’s how rich”

We create two more constants hates and richer to model the relations “Persons who hate
each other” and “Who’s how rich”. The relations are abstract, which means that they say
nothing about the concrete persons (Agatha, the butler and Charles). We define the concrete
relationships between the persons later in this section.

The first constant hates is an arbitrary relation (3.3.5) between persons:

AXIOMS
hate relation : hates ∈ persons ↔ persons

The second constant richer is also a relation between persons:

AXIOMS
richer relation1 : richer ∈ persons ↔ persons

However, we know that the relation is irreflexive (no person is richer than itself):

AXIOMS
richer relation2 : richer ∩ id = ∅

In addition, we know that the relation is transitive:

AXIOMS
richer relation3 : (∀x , y , z ·(x 7→ y ∈ richer ∧ y 7→ z ∈ richer)⇒ x 7→

z ∈ richer)

Finally, the relation is trichotomous (one person is always richer than the other or vice
versa, never both directions):

AXIOMS
richer relation4 : (∀x , y ·x ∈ persons ∧ y ∈ persons ∧ x 6= y ⇒ (x 7→ y ∈

richer ⇔ y 7→ x /∈ richer))

2.6. INTRODUCING CONTEXTS 43

Modelling the “Crime”

Since the objective of the puzzle is to find the killer, we have to create a new constant killer
which is an element of persons:

CONSTANTS
killer

AXIOMS
killer type : killer ∈ persons

In addition, the puzzle has some more relationships between the different persons which
are all modelled as axioms. We know that the killer hates his victim and is no richer than
his victim:

AXIOMS
killer hates : killer 7→ Agatha ∈ hates
killer not richer : killer 7→ Agatha /∈ richer

Charles hates no one that Agatha hates and Agatha hates everybody except the butler:

AXIOMS
charles hates : hates [{Agatha}] ∩ hates [{Charles}] = ∅
agatha hates : hates [{Agatha}] = persons \ {butler}

The butler hates everyone not richer than aunt Agatha and the butler hates everyone
whom Agatha hates. However, no one hates everyone:

AXIOMS
butler hates 1 : ∀x ·(x 7→ Agatha /∈ richer ⇒ butler 7→ x ∈ hates)
butler hates 2 : hates [{Agatha}] ⊆ hates [{butler}]
noone hates everyone : ∀x ·x ∈ persons ⇒ hates [{x}] 6= persons

Finally, we have to model the solution:

AXIOMS
solution : killer = Agatha

All axioms are set to “not theorem” when they are created. But we need the solution to
be a theorem so that we can prove that it is valid. In order to do this, click on not theorem
shown to the right of the axiom solution. This box will automatically change to theorem, and
you will have set the axiom as a theorem as shown in Figure 2.12.

44 CHAPTER 2. TUTORIAL

Figure 2.12: Mark an Axiom as Theorem

Theorems describe properties that are expected to be able to be derived from the
axioms. Therefore, to prove a theorem you only use axioms and theorems that
have already been proven.

The introduced theorem still has to be proven. Thus Rodin generates a proof obligation
called solution/THM. However, at this point of the tutorial we do not want to go into more
detail about proving yet.

You can use ProB to animate contexts, too. Just right-click on the con-
text in the explorer and select Start Animation / Model Checking. If ProB
finds solutions for the specified constants that fulfil the axioms, an event
“SETUP CONTEXT” is enabled that assigns values to the constants. In our ex-

ample, ProB should find a solution where Agatha is the murderer. You can actually
inspect the axioms and the theorem in the state view to see why they are fulfilled.

This contribution requires the ProB plugin. The content is maintained by the plugin contributors and may be out of date.

This concludes the tutorial about contexts. The following section shows the complete
Context.

2.6.3 The Final Context

CONTEXT agatha

SETS

persons

CONSTANTS

Agatha

butler

Charles

hates

richer

killer

AXIOMS

person partition : partition(persons , {Agatha}, {butler}, {Charles})

2.7. EVENT-B CONCEPTS 45

hate relation : hates ∈ persons ↔ persons

richer relation : richer ∈ persons ↔ persons ∧
richer ∩ id = ∅ ∧
(∀x , y , z ·(x 7→ y ∈ richer ∧ y 7→ z ∈ richer)
⇒ x 7→ z ∈ richer) ∧

(∀x , y ·x ∈ persons ∧ y ∈ persons ∧ x 6= y
⇒ (x 7→ y ∈ richer ⇔ y 7→ x /∈ richer))

killer type : killer ∈ persons

killer hates : killer 7→ Agatha ∈ hates

killer not richer : killer 7→ Agatha /∈ richer

charles hates : hates [{Agatha}] ∩ hates [{Charles}] = ∅
agatha hates : hates [{Agatha}] = persons \ {butler}
butler hates 1 : ∀x ·(x 7→ Agatha /∈ richer

⇒ butler 7→ x ∈ hates)

butler hates 2 : hates [{Agatha}] ⊆ hates [{butler}] ∧
(∀x ·x ∈ persons ⇒ hates [{x}] 6= persons)

noone hates everyone : ∀x ·x ∈ persons ∧ hates [{x}] 6= persons

solution : theorem killer = Agatha

END

2.7 Event-B Concepts

Goals: This section is an overview of the fundamental concepts of Event-B.

In Event-B we have two kind of components. A context describes the static elements of
a model. A machine describes the dynamic behavior of a model. We have already used a
machine to model the traffic light problem in Section 2.4. In the last section (2.6), we used
a context to model the Agatha problem.

2.7.1 Contexts

A context has the following components:

Sets User-defined types can be declared in the SETS section (see Section 3.3.4 for more
information).

Constants We can declare constants here. The type of each constant must be declared in
the axiom section.

Axioms The axiom section contains a list of predicates (called axioms). These axioms define
rules that will always be the case for given elements of the context. These rules can

46 CHAPTER 2. TUTORIAL

then be taken for granted when developing a model. The axioms can be used later
in proofs that for components that use (“see”) this context. Each axiom has a label
attached to it.

Theorems Axioms can be marked as theorems. If this is the case, we are declaring that
the predicate can be proved by using the axioms that have been written before this
theorem. Once they have been proven, theorems can be used later in proofs just like
the other axioms.

Extends A context may extend an arbitrary number of other contexts. When we extend
another context A, we can then use all constants and axioms declared in A and also
add new constants and axioms.

Rodin automatically generates proof obligations (often abbreviated as PO) for properties
that need to be proven. Each proof obligation has a name that identifies where the proof
obligation was generated. There are two kind of proof obligations generated in a context:

• Each theorem must be proven. The proof obligation’s name has the form label/THM,
where label is the theorem’s label.

• Some expressions are not obviously well-defined. For example, the axiom x ÷ y > 2
is only meaningful if y is different from 0. Thus Rodin generates the proof obligation
y 6= 0. A proof obligation for proving than an expression is well-defined has the name
label/WD.

The order of the axioms and theorems matter because the proof of a theorem or the degree
to which an expression is well-defined may depend on the axioms and theorems that have
already been written. This is necessary to avoid circular reasoning.

2.7.2 Machines

A machine describes the dynamic behavior of a model by means of variables whose values
are changed by events. A central aspect of modelling a machine is to prove that the machine
never reaches an invalid state, i.e. the variables always have values that satisfy the invariants.
Here is a brief summary of the part that a machine contains:

Refines A machine has the option of refining another one. We will see in Section 2.7.4 what
that means.

Sees We can use the context’s sets, constants and axioms in a machine by declaring it in
the Sees section. The axioms can be used in every proof in the machine as hypotheses.

Variables The variables’ values are determined by an initialisation event and can be changed
by events. This constitutes the state of the machine. The type of each variable must
be declared in the invariant section.

2.7. EVENT-B CONCEPTS 47

Invariants These are predicates that should be true for every reachable state. Each invariant
has a label.

Events An event can assign new values to variables. The guards of an event specify the
conditions under which it can be executed. The initialisation of the machine is a special
case of an event.

2.7.3 Events

We saw in Section 2.4 what an event basically looks like by using the example of a traffic
light:

Event set cars =̂

any
new value

where
grd1 : new value ∈ BOOL

then
act1 : cars go := new value

end

We have the event’s name set cars, a parameter with the name new value, a guard with label
grd1 and an action with label act1. An event can have an arbitrary number of parameters,
guards and events.

The guards specify when an event is allowed to occur, i.e. the event can only be executed
if the values of the machine’s variables and parameters match the values listed in the guard.
If this is the case, we say that the event is enabled. The actions describe what changes will
then be applied to the variables.

Only the variables that are explicitly mentioned in the actions are affected. All the other
variables keep their old values. Beside the simple assignment (:=), there are other forms of
actions (:∈ or :|) which are explained in Section 3.2.4.

The initialisation of the machine is a special form of event. It has neither parameters nor
guards.

Invariants must always be valid. To verify this, we must prove two things:

• The initialisation leads to a state where the invariant is valid.

• Assuming that the machine is in a state where the invariant is valid, every enabled
event leads to a state where the invariant is valid.

Rodin generates proof obligations for every invariant that can be affected by an event,
i.e. the invariant contains variables that can be changed by an event. The name of the proof
obligation is then
event name/invariant label/INV. The goal of such a proof is to assert that when all affected
variables are replaced by new values from the actions, the invariant still holds. The hypotheses
for such a proof obligation consist of:

48 CHAPTER 2. TUTORIAL

• All invariants, because we assume that all invariants hold before the event is triggered,

• All guards, because events can only be triggered when the guards are valid.

In the special case of an initialisation event, we cannot use the invariants because we do
not make any assumptions about uninitialized machines.

2.7.4 Refinement

Refinement is a central concept in Event-B. Refinements are used to gradually introduce
the details and complexity into a model. If a machine B refines a machine A, B can only
behave in a way that corresponds to the behavior of A. We will now look into more detail of
what “corresponds” here means. In such a setting, we call A the abstract and B the concrete
machine.

This is just overview over the concept of refinement. Later in Section 2.8 we will use
refinement in an example.

The concrete machine has its own set of variables. Its invariants can refer to the variables
of the concrete and the abstract machine. If a invariant refers to both, we call it a “gluing
invariant”. The gluing invariants are used to relate the states between the concrete and
abstract machines.

An event of the abstract machine may be refined by one or several events of the concrete
machine. To ensure that the concrete machine does only what is allowed to do by the abstract
one, we must prove two things:

• The concrete events can only occur when the abstract one occurs.

• If a concrete event occurs, the abstract event can occur in such a way that the resulting
states correspond again, i.e. the gluing invariant remains true.

The first condition is called “guard strengthening”. The resulting proof obligation has the
label concrete event/abstract guard/GRD. We have to prove that under the assumption that
the concrete event is enabled (i.e. its guard are true) and the invariants (both the abstract
and the concrete) hold, the abstract guards holds as well. Thus the goal is to prove that
the abstract guard, the invariants and the concrete guards can be used as hypotheses in the
proof.

The second condition, that the gluing invariant remains true, is just a more general case of
the proof obligation which ensures that an event does not violate the invariant. So the proof
obligation’s label is again concrete event/concrete invariant/INV. The goal is to prove that
the invariant of the concrete machine is valid when each occurrence of a modified variable is
replaced by its new value. The hypotheses we use are:

• We assume that the invariant of both the concrete and abstract machines were valid
before the event occurred.

• The abstract invariants where the modified variables are replaced by their new values
are valid because we know that the abstract event does not violate any invariants.

2.8. CONTEXTS AND REFINEMENT 49

• The event occurs only when the guards of both the concrete and abstract machines are
true.

These two conditions are the central issues that we need to deal with to prove the cor-
rectness of a refinement. We now just explain a few common special cases.

Variable re-use

Most of the time, we do not want to replace all variables with new ones. It is sometimes useful
to keep all of the variables. We can do this just by repeating the names of the abstract vari-
ables in the variable section of the concrete machine. In that case, we must prove for each con-
crete event that changes this variable that the corresponding abstract event updates the vari-
able in the same way. The proof obligation has the name concrete event/abstract action/SIM.

Introducing new events

An event in the concrete machine might not refine any event in the abstract machine. In
that case it is assumed to refine skip, which is the event that does nothing and can occur any
time. The guard strengthening is then true and doesn’t need to be proven. We still have to
prove that the gluing invariant holds but this time under the assumption that the abstract
machine’s variables have not changed. Therefore, the new state of our newly introduced
event corresponds to the same state of our abstract machine from before the event happened.

Witnesses

Let’s consider a situation where we have an abstract event with a parameter p and we are
dealing with a refined event that no longer needs that parameter. We saw above that we
have to prove that for each concrete event the abstract event may act accordingly. With
the parameter, however, we now have the situation in which we must prove the existence of
a value for p such that an abstract event exists. Proofs with existential quantification are
often hard to do, so Event-b uses the a witness construct. A witness is just a predicate of
the abstract parameter with the name of the variable as label. Often a witness has just the
simple form p = . . ., where . . . represents an expression that maps to p. How this works in
practice is shown in Section 2.8.5.

2.8 Expanding the Traffic Light System:

Contexts and Refinement

Goals: We apply what we learned in the previous section by introducing a con-
text with traffic light colours and a refinement to integrate them. We will also
introduce another refinement for the push buttons.

50 CHAPTER 2. TUTORIAL

2.8.1 Data Refinement

We will continue the example from Section 2.4, where we built a simplified model of a traffic
light controller. The model was simplified because we abstracted the traffic lights to TRUE
and FALSE and a number of features were still missing.

We will introduce data refinement in this section. The objective is to create a mapping
between the abstract traffic light values and actual colours. Figure 2.13 depicts our mapping
for the traffic light.

Figure 2.13: Mapping between Abstract and Concrete Events

For simplicity, the traffic light for pedestrians consists of only two lights: red and green.
We break this problem into two steps:

1. Create a context with the data structures for the colours.

2. Create a refinement of the existing model that sees the new context and refines the
boolean states into colours.

2.8.2 A Context with Colours

Start by creating a context called ctx1, as described in Section 2.6. We model the colours
of the traffic light as a so-called “enumerated set” (3.3.4): We explicitly specify all elements
(the three colours) of a new user-defined data type. We define the constants:

CONSTANTS

red

yellow

green

We introduce the new data type as a set:

2.8. CONTEXTS AND REFINEMENT 51

SETS

COLOURS

And last, we need to provide typing of the constants. We do this by creating a partition
(3.3.4):

AXIOMS

type : partition(COLOURS , {red}, {yellow}, {green})

Please note the curly braces {} around the colours. It’s very easy to forget these,
but if they are missing, typing errors will be displayed that are very hard for a
novice to interpret.

This completes the context.

2.8.3 The Actual Data Refinement

The easiest way to create a refinement is by right-clicking on the machine in the project
browser and selecting Refine (in this case, we will be refining the machine mac from the
project tutorial-3). This will create a “stub” consisting of all variables and events. Please use
this method to create a machine with name mac1.

When you have refined a machine, the Rodin Editor will show you all the elements of the
abstracted machine, but the inherited actions will be shown in grey. This means that you
can add actions to the event, but you cannot edit the actions that are already there.

For this tutorial, make sure that you right-click on the machine and select refine
from the drop-down menu. If you have created a machine the normal way and
later edited the refines section, the tutorial will assume that you have events (e.g.
set peds go) and variables that you do not have.

First we have to make the machine aware of the context by adding a sees (3.2.4) statement.
To do this, place your cursor to the left of the small green arrow () next to your machine
name mac1. Right click and select Add Child 〉 Event-B Sees Context Relationship. A SEES
heading will appear with the value –undefined–. Place your cursor over the undefined section
and click. A small box listing all of the contexts in the project will pop up. Select ctx1:

MACHINE mac1

REFINES mac

SEES ctx1

52 CHAPTER 2. TUTORIAL

We will start with the traffic lights for the pedestrians. It has only two colours (red and
green) and only one of them is shown at a time. We introduce a new variable called peds colour
to represent which of the lights is shown. The variable has a corresponding invariant and
initialisation (the changes are shown in the following code snippet). The extended keyword
in the initialisation means that all actions from the refined initialisation are copied:

VARIABLES

peds colour

INVARIANTS

inv4 : peds colour ∈ {red , green}
EVENTS

Initialisation
extended

begin

init4 : peds colour := red

end

END

Next, we will create a gluing invariant (3.2.4) that associates peds go from the abstract
machine with the variable peds colour that we just created. The gluing invariant will map
TRUE to green and FALSE to red:

INVARIANTS

gluing : peds go = TRUE ⇔ peds colour = green

In its current state, this gluing invariant can be violated: if the event set peds go is
triggered, for instance, the variable peds go will change but peds colour will not. We expect
that this will result in undischarged proof obligations (3.2.7). We can check this by expanding
the machine in the Event-B Explorer. Indeed, we now see two undischarged proof obligations
(compare with Figure 2.14).

To fix this, we have to modify the two events in question. Let’s start with set peds go.
First, we change the event from extended to not extended in the Editor by placing our cursor
over the keyword extended and clicking. This is shown in Figure 2.15.

This change will copy the guard and action from the abstract machine, so that we can
modify it. We can now replace the action with the corresponding action regarding peds colour
(replacing peds go := true with peds colour := green). While we are at it, we can also rename
the name of the event to something more fitting (e.g. set peds green).

Next, we perform the corresponding change on set peds stop (change the action to peds -
colour := red and rename the event set peds red). Lastly, the event set cars also contains a
reference to peds go that must be replaced (in the second guard, replace peds go = FALSE
with peds colour = red).

2.8. CONTEXTS AND REFINEMENT 53

Figure 2.14: Mapping between Abstract and Concrete Events

Figure 2.15: Switch from extended to not extended

Once all references to peds go have been replace, we can remove the variable peds go
from the VARIABLES section. You will also need to change the INITIALISATION event to not
extended and remove the action which initialises the variable peds go. Now you shouldn’t
have any errors or warnings, and all proof obligations should be discharged.

If you get the error message “Identifier peds go has not been declared”, then there
are references to the refined variable left somewhere in the model.

2.8.4 The refined machine with data refinement for peds go

MACHINE mac1

REFINES mac

SEES ctx1

VARIABLES

cars go

peds colour

INVARIANTS

inv4 : peds colour ∈ {red , green}
gluing : peds go = TRUE ⇔ peds colour = green

EVENTS

54 CHAPTER 2. TUTORIAL

Initialisation

begin

act1 : cars go := FALSE
init4 : peds colour := red

end

Event set peds green =̂

refines set peds go

when

grd1 : cars go = FALSE

then

act2 : peds colour := green

end

Event set peds red =̂

refines set peds stop

begin

act1 : peds colour := red

end

Event set cars =̂

refines set cars

any

new value

where

grd1 : new value ∈ BOOL
grd2 : new value = TRUE ⇒ peds colour = red

then

act1 : cars go := new value

end

END

2.8.5 Witnesses

The refinement of set cars is more difficult since the event uses a parameter (the new value
for cars go). In order to refine it, we need a witness (3.2.4).

A witness is to an event’s parameter what a gluing invariant is to a variable: it is a
mapping between the abstract parameter and the new parameter and allows the abstract
parameter to disappear. In this example, the abstract parameter new value is of type BOOL,
and we introduce a new parameter new value colours of type COLOURS.

The naming of a witnesses’ label is extremely important. It must be the name of
the abstract parameter. In our example, the label must be new value

2.8. CONTEXTS AND REFINEMENT 55

Let’s get started. We first provide the new variable, gluing invariant, typing invariant and
initialisation as we have done before (at this point you can also rename the gluing invariant
from the last section as gluing peds in order to be able to determine between the two gluing
invariants). Note that the traffic light for the cars can show more than one colour at a time.
Therefore, the variable contains a set of colours instead of just one colour (as modelled for
peds colour):

VARIABLES
cars colours

INVARIANTS
inv5 : cars colours ⊆ COLOURS
gluing cars : cars go = TRUE ⇔ green ∈ cars colours

EVENTS
Initialisation

begin
init5 : cars colours := {red}

end
END

We also have to modify the guard on set peds green, which is something that you should
now be able to figure out yourself (just replace cars go = FALSE with green /∈ cars colours).

The interesting piece is the last event, set cars, which we rename as set cars colours. We
change the parameter to new value colours and type it as a subset of COLOURS.

The witness appears in the with section of the event. The label must be new value. The
value itself must describe the relationship between the abstract parameter new value and the
new parameter new value colours. As we use the parameter as the new value for the variable
cars colours, the witness is an adaptation of the gluing invariant (we just replace cars colours
with new value colours).

In most cases, the witness is a slightly modified gluing invariant.

Here is the resulting event:

Event set cars colours =̂
refines set cars

any
new value colours

where
grd1 : new value colours ⊆ COLOURS
grd2 : green ∈ new value colours ⇒ peds colour = red

with

56 CHAPTER 2. TUTORIAL

new value : new value = TRUE⇔ green ∈ new value colours

then

act1 : cars colours := new value colours

end

Now you can get rid of the variable cars go and its initialisation clause, and there will
not be any errors or warnings. But even though all proof obligations are now discharged,
we’re not done yet. Even though the traffic light doesn’t violate the safety property from
the abstract machine, it doesn’t behave the way described in Section 2.8.1. We still have to
ensure that the lights are activated in the proper sequence. We can impose this behavior by
adding four guards each of which define one transition:

grd y r : cars colours = {yellow}⇒ new value colours = {red}
grd r ry : cars colours = {red}⇒ new value colours = {red , yellow}
grd ry g : cars colours = {red , yellow}⇒ new value colours = {green}
grd g y : cars colours = {green}⇒ new value colours = {yellow}

2.8.6 Discussion

Notice that we have used two very different approaches to model the traffic lights for cars
and pedestrians. For the pedestrians, we created one event for each state transition. For the
cars, we handled all states in one single event.

You will often be confronted with situations where many modelling approaches are possi-
ble. You should consider two main factors when modelling: (1) the readability of the model
and (2) the ease of the proof. In this case, both approaches are equally good (although
we wouldn’t recommend mixing different approaches in one model. We did it here only to
demonstrate both approaches).

We will cover deadlocks later in Section 2.10.1. If you are interested in the topic, it may
interest you to examine the traffic light model for deadlocks. Consider cars colours = { green,
red }. This is a legal state, but it would block set cars colours forever. A model checker (such
as ProB) could find it. In this case, however, this is not a problem because with the given
initialisation and events this state is not reachable in the first place.

We hope that this section helped you to understand the power of abstraction. The safety
invariant ¬(cars go = TRUE ∧ peds go = TRUE) from Section 2.4.4 was very simple. We
could now introduce colours because we are confident that the invariant will still be valid
(assuming, of course, that our gluing invariant is correct).

2.8.7 The Refined Machine with All Data Refinement

MACHINE mac1

REFINES mac

http://www.stups.uni-duesseldorf.de/ProB

2.8. CONTEXTS AND REFINEMENT 57

SEES ctx1
VARIABLES

peds colour

cars colours

INVARIANTS
inv4 : peds colour ∈ {red , green}
inv5 : cars colours ⊆ COLOURS
gluing peds : peds go = TRUE ⇔ peds colour = green
gluing cars : cars go = TRUE ⇔ green ∈ cars colours

EVENTS
Initialisation

begin
init4 : peds colour := red
init5 : cars colours := {red}

end
Event set peds green =̂
refines set peds go

when
grd1 : green /∈ cars colours

then
act2 : peds colour := green

end
Event set peds red =̂
refines set peds stop

begin
act1 : peds colour := red

end
Event set cars colours =̂
refines set cars

any
new value colours

where
grd1 : new value colours ⊆ COLOURS
grd2 : green ∈ new value colours ⇒ peds colour = red
grd y r : cars colours = {yellow}⇒ new value colours = {red}
grd r ry : cars colours = {red}⇒ new value colours = {red , yellow}
grd ry g : cars colours = {red , yellow}⇒new value colours = {green}
grd g y : cars colours = {green}⇒ new value colours = {yellow}

with
new value : new value = TRUE⇔ green ∈ new value colours

then
act1 : cars colours := new value colours

end
END

58 CHAPTER 2. TUTORIAL

2.8.8 One more Refinement: The Push Button

We will demonstrate another application of refinement: introducing new features into an
existing model. A typical traffic light system allows the pedestrians to request a light change
by pressing a button. We will introduce this feature in a new refinement.

We could have introduced the push button in the initial machine, but introducing it later
allows us to structure the model and makes it easier to understand and navigate.

We will realize this feature by introducing a new boolean variable for the push button. We
will introduce an event that notifies the model that a push button has been pressed. Upon
allowing the pedestrians to cross, we will reset the push button. This is a simplification of
the problem. In practice, a lot would depend on the controller’s capabilities. We would have
to consider things like how the push button notification gets to the controller software and
how the pressing/depressing sequence is handled. In this example, the event directly sets the
controller’s state. This demonstrates the concept of feature refinement without introducing
too much complexity for a tutorial example.

As in the previous section, we create a new refinement mac2 by right-clicking on mac1
and selecting Refine. A stub is generated that contains the events from the abstract machine.
We simply add a new variable for the push button (including typing and an initialisation
clause). We also introduce an event that sets the button. This event doesn’t work while the
pedestrians have a green light.

VARIABLES

button

INVARIANTS

type button : button ∈ BOOL

EVENTS

Initialisation
extended

begin

init button : button := FALSE

end

Event push button =̂

when

grd : peds colour = red

then

act : button := TRUE

end

END

Now we need to integrate the push button with the traffic light logic:

• Upon pressing the button, the pedestrians must eventually get a green light.

2.9. PROVING 59

• At some point, the button variable must be reset.

As we will see in the following discussion, this be more tricky than it first appears. For
now, we will introduce a guard preventing the car lights from turning green when the button
is true, and we will reset the button when the pedestrian lights turn red:

Event set peds red =̂
extends set peds red

begin
act button : button := FALSE

end
Event set cars colours =̂
extends set cars colours

where
grd button : ¬(cars colours = {red} ∧ button = TRUE)

end

2.8.9 Discussion

There are a number of problems associated with the model in its current state. Let’s start
with how the button is reset: The way we built our model so far, set peds red can be triggered
at any time; there is not a single guard which prevents this. Therefore, the button could be
reset any time without the pedestrian light ever turning green.

This could be prevented with additional guards. For instance, the traffic light events
could require an actual change in the light’s status. This in turn could lead to deadlocks.

But even if we introduce such guards, we could get stuck in a situation where cars would
never get green light any more. Consider the following scenario: (1) pedestrians get green
light; (2) the light turns red; (3) a pedestrian presses the button again; (4) this prevents the
car lights from turning green. Instead, the pedestrians get a green light again and the cycle
continues.

There are tactics to address all these issues. However, it is rarely possible to generate
proof obligations for such scenarios (without making the model much more complicated). It
can be useful to use model checkers to validate the model’s behaviour or even to use temporal
logic to articulate properties of the model.

As an exercise, try to improve the model to address these issues.

2.9 Proving

Goals: The goal of this section is to get familiar with the Proving Perspective
and to carry out a simple proof by hand. It also introduces more sophisticated
data structures than the ones we introduced so far.

60 CHAPTER 2. TUTORIAL

2.9.1 The Celebrity Problem

In this section, we will work with the model of the so-called celebrity problem.

We are using a new model instead of the traffic light because it provides us with
some proofs where manual interaction is necessary.

In the setting for this problem, we have a “knows” relation between persons. This relation
is defined so that

• no one knows himself,

• the celebrity knows nobody,

• everybody knows the celebrity.

The problem’s goal is to find the celebrity. We want to model an algorithm that fulfills
this task.

2.9.2 Importing a project

Rather than creating the model step by step, we have provided the model as an archive file.

Make sure that you have no existing Project named “Celebrity”, before importing
the project. If you have, then rename it by right clicking the project and selecting
Rename...

Import the archive file Celebrity.zip6 to your Event-B Explorer. To do this, select File
〉 Import 〉 General 〉 Existing Projects into Workspace. Then select the option to import an
existing archive file. Use the browse function to find your archive file and import it. After
you have selected the appropriate archive file, click on Finish.

It will take a few seconds for Rodin to extract and load all the files. Once this is done, a
few problems will be displayed in the Rodin Problems view (compare with Figure 2.16).

We will describe how the model is organized below in Section 2.9.5. But before we do so,
we will fix the existing problems.

2.9.3 Fixing Problems

Before proceeding, we will fix the problems shown in Figure 2.16. Let’s take a look at the
warning stating that the event label “celebrity” is misused (“Inconsistent use of event label
celebrity”). Double-click on this warning to open the Celebrity 1 machine. The line with
the error is already underlined in yellow7. This error is produced by the event called celebrity.

6The URL of the resource is: http://handbook.event-b.org/current/files/Celebrity.zip
7This is the behaviour of the default editor. Other editors may exhibit a different behaviour

http://handbook.event-b.org/current/files/Celebrity.zip
http://handbook.event-b.org/current/files/Celebrity.zip

2.9. PROVING 61

Figure 2.16: Warnings in the Rodin Problems View

The problem is that the event is not declared as a refinement. To solve the problem,
add an Event-B Refines Event Relationship child which will add a new entry in the REFINES
section. To do so, right-click in the empty space to the left of the word celebrity or place your
cursor directly to the left of the small green arrow () and right-click. Now select Add Child
〉 Event-B Refines Event Relationship.

Make sure that the cursor is on the correct line before right-clicking. Otherwise,
you will get the wrong context menu. Also, make sure that you are not in “text
edit” mode (e.g. clicking on a word like “celebrity” that you can edit will bring
you into “text edit” mode). This will give you the wrong context menu as well.
See the FAQ for more info (4.3.12).

This declares that the event is a refinement of an event with the same name in the abstract
machine (3.2.4). This is the case here, so we can now save the project and the warning should
disappear.

The three remaining warnings state that witnesses (3.2.4) are missing. Double click on
the warning to open the concrete model (here Celebrity 2). Then add an Event-B Witness
child to the event called celebrity.

A default witness wit1 has been created, with a default value > (e.g. the predicate “true”)
which we need to change. The name of a witness has to be the same as the parameter of the
corresponding abstract event that it is refining. Here the name of the witness will have to
be x so that it can be a witness for the parameter x of the corresponding abstract event in
the machine Celebrity 1. The abstract event has the assignment r := x, while the concrete
one has the assignment r := b. So the content of the witness should b = x. The event should
now look as follows:

Event celebrity =̂
refines celebrity

62 CHAPTER 2. TUTORIAL

when
grd1 : R = ∅

with
x : b = x

then
act1 : r := b

end

Edit the content and save the file. One warning will disappear, and only two will remain.

Try completing the other two witnesses on your own. A hint: Both witnesses
are simple equalities, and both can be found by comparing the third guard of
the abstract event with the second guard of the concrete one. Remember to give
the witness the name of the variable it stands for. If you completed this step
correctly, there should be no warning, info or error left in the Rodin Problems
view (3.1.2).

The following section (2.9.4) shows the corrected Celebrity 2 machine.

2.9.4 The Final Second Refinement

MACHINE Celebrity 2
REFINES Celebrity 1
SEES Celebrity c0
VARIABLES

r

R

b

INVARIANTS
inv1 : R ⊆ P
inv2 : b ∈ P
inv3 : b /∈ R
inv4 : Q = R ∪ {b}

EVENTS
Initialisation

begin
act1 : r :∈ P
act2 : b,R : |b ′ ∈ P ∧ R′ = P \ {b ′}

end
Event celebrity =̂
refines celebrity

when

2.9. PROVING 63

grd1 : R = ∅
with

x : b = x

then
act1 : r := b

end
Event remove 1 =̂
refines remove 1

any
x

where
grd1 : x ∈ R
grd2 : x 7→ b ∈ k

with
y : b = y

then
act1 : R := R \ {x}

end
Event remove 2 =̂
refines remove 2

any
x

where
grd1 : x ∈ R
grd2 : x 7→ b /∈ k

with
y : b = y

then
act2 : b := x
act1 : R := R \ {x}

end
END

2.9.5 The Celebrity algorithm

We will now take a brief tour through the model to see how the problem and algorithm are
specified. The celebrity problem itself is described in the context Celebrity c0. There are
three constants. P is the set of persons, each represented by a number, c is the celebrity we
are looking for and k is the “knows” relation between the persons. The axioms encode the
properties about the “knows” relation that we stated above.

CONTEXT Celebrity c0

64 CHAPTER 2. TUTORIAL

CONSTANTS
k

c

P

AXIOMS
axm1 : P ⊆ N
axm2 : c ∈ P
axm3 : k ∈ (P \ {c})↔ P
axm4 : k−1 [{c}] = P \ {c}
axm5 : k ∩ id = ∅

END

In the most abstract machine Celebrity 0 we specify what the algorithm should do.
The variable r can be any person initially and the event celebrity finds the celebrity in one
step. After the event celebrity has occurred, r contains the result of the algorithm. You
might then wonder why there is a problem if you can just pick the celebrity and assign it to
the result. This is because we defined our problem in such a way so that we are certain a
celebrity c exists and the algorithm simply returns it. Later in the refinement, we will model
how to find the celebrity without using c. Because of the refinement relation, we know that
the algorithm works correctly.

MACHINE Celebrity 0
SEES Celebrity c0
VARIABLES

r

INVARIANTS
inv1 : r ∈ P

EVENTS
Initialisation

begin
act1 : r :∈ P

end
Event celebrity =̂

begin
act1 : r := c

end
END

So let’s have a look at the first refinement Celebrity 1. A variable Q is introduced which
contains a subset of the persons, the potential celebrities. We start with Q being all persons.
Two new events, remove 1 and remove 2, are added to remove people from Q who cannot
be the celebrity. remove 1 removes a person that knows somebody while remove 2 removes

2.9. PROVING 65

a person that is not known by any other person. An invariants states that the celebrity is
always in Q. When there is just one person left in the set, we know that this is the celebrity.

The second refinement, Celebrity 2, then splits the potential celebrities Q into one
arbitrary person – the candidate b – and the “rest” R. remove 1 then removes a person x
from R if b knows x. remove 2 checks if there is a person x in R that does not know the
candidate. If found, x is the new candidate b and is removed from the rest R. If R is empty,
we know that the candidate is the celebrity. (We do not show the machine here because it
simply takes up too much space — please consult the project that you imported earlier to
inspect the model.)

The third refinement then makes some more assumptions about the given problem. The
context Celebrity c1 extends Celebrity c0 and states that there are n + 1 persons with
the numbers 0 .. n.

CONTEXT Celebrity c1
EXTENDS Celebrity c0
CONSTANTS

n

AXIOMS
axm1 : n ∈ N
axm2 : n > 0
axm3 : P = 0 .. n

END

Instead of having an abstract data structure like a set, the third refinement just introduces
an index variable a that points to the first person of R, which is the group of people who
have not yet been checked. Instead of taking an arbitrary element from R as in the second
refinement, the remove events just takes the first element a. a is then removed from R by
increasing it by one. When a is larger then n, R is empty and b contains the result.

This last refinement works only on the following three integer variables: The index a, the
candidate b and the result r. Each event is deterministic and in every step only one event is
enabled. The events together can be interpreted as an implementation of the algorithm:

r := 0 // initialisation act1

a := 1 // initialisation act2

b := 0 // initialisation act3

while a ≤ n do // guard in remove 1 and remove 2

if a 7→ b ∈ k then // guard in remove 1 and negated in remove 2

a := a+ 1 // action in remove 1

else // a 7→ b 6∈ k
b := a // action act1 in remove 2

a := a+ 1 // action act2 in remove 2

end if
end while
r := b // action in celebrity

66 CHAPTER 2. TUTORIAL

2.9.6 The First Proof

In this section, we will carry out proofs for the model of the Celebrity Problem. To do this,
click on the box in the upper right hand corner that has a little plus sign and switch to the
Proving Perspective. You can switch between perspectives using the shortcut bar as shown
in Figure 2.17.

Figure 2.17: Switch Perspective

If the Proving Perspective is not available in the menu, select Other... 〉 Proving.
This will open a new window which shows all available perspectives.

We should now see the window in Figure 2.18.
The Proving Perspective contains three new important views:

Proof Tree View (3.1.7) Here we see a tree of the proof that we have done so far and the
current position in it. By clicking in the tree, we can navigate within the proof. We
have not yet started the proof, so there is nothing to see yet.

Proof Control View (3.1.7) This is where we perform interactive proofs.

Goal View (3.1.7) This window shows what needs to be proved at the current position
inside the proof tree.

Expand the Celebrity 1 machine in the Event-B Explorer. Then expand the Proof Obli-
gations section. We can see that the auto prover (3.1.7) did quite a good job. Only three
proofs have not been completed8 (a completed proof is indicated by a green mark).

Each proof has a label, e.g. remove 1/inv2/INV. Proof labels are explained in
Section 3.2.7.

Let’s start with the proof remove 1/inv2/INV of Celebrity 1. To do this, double click on
the proof obligation remove 1/inv2/INV. We should now see the window as shown in Figure
2.19.

8Interestingly enough, this number can vary: Provers can be configured in the preferences and changes
there can have an impact on the ability to automatically discharge proofs. In addition, all provers have
timeouts. On a slow machine, some proof obligations may not be discharged whereas on a faster machine
with the same timeout they would be discharged.

2.9. PROVING 67

Figure 2.18: Rodin Proving Perspective

Make sure that you understand the different buttons in the Proof Control View
(3.1.7).

Here we need to prove that the event remove 1 preserves the invariant inv2, c ∈ Q. The
event’s action assigns the new value Q \ {x} to Q. Because we know that invariant c ∈ Q
was valid before the assignment, it is sufficient to prove that we do not remove c from Q, i.e.
x 6= c. Type this into the Proof Control View (3.1.7) and press the button.

In order to undo a step, click on a node in the Proof Tree View and click on the
button in the Proof Control View or open the context menu of a node and

select Prune.

Take a look at the Proof Tree View. The root node should now be labelled with ah

(x 6= c), which is the hypothesis that we just added. This node has three children: The first
proves that x 6= c is well-defined9, which is > and has already been trivially proven. The

9You may wonder how we know that this is the well-definedness proof obligation

68 CHAPTER 2. TUTORIAL

Figure 2.19: Proof Obligation

second is the proof of the hypotheses ¬x = c. The third is the proof of the original goal
where the new hypotheses can be used.

The new goal is ¬x = c. Now, try selecting the right hypotheses by yourself in order to
complete the proof (Hint: What axiom states that the celebrity does not know anybody?). To
do this, click on the button in the Proof Control View. On the left side we should see now
the Search Hypotheses view (see Figure 2.20). If you cannot find the right hypotheses, you
may also just select all hypotheses. To add the selected hypothesis to the Selected Hypotheses
View just click on the button.

There is usually no harm in selecting all hypothesis, but this approach is not
optimal. By providing only necessary hypotheses and no more, we drastically
increase the chance that the prover will find the solution before timing out. On
large models it is next to impossible to prove everything without hand-picking
the hypotheses.

The correct hypothesis for this proof was k ∈ (P \ {c})↔ P (axiom 3 from the first
context). If you were unable to figure this out, add this hypothesis to the selected hypothesis
window now. Now click on the button to prove the goal ¬x = c with the Predicate prover

2.9. PROVING 69

Figure 2.20: Search Hypothesis View

on selected hypothesis. The goal should be discharged and in the Proof Tree you should see
that the first two children of the root node are proven. The Proof Control View should now
show the original goal c ∈ Q \ x and x 6= c is now one of our hypotheses.10 Click a second
time on the button in order to finalize the proof. The smiley in the Proof Control View
should now become green indicating that all sequents of the proof tree are discharged as
shown in Figure 2.21.

After saving the proof, the proof obligation remove 1/inv2/INV in the Event-B Explorer
should now have a next to it.

Those proof obligations that were automatically discharged are marked with a
tiny “A” next to the . As the one we just discharged was proven manually,
this is now the first discharged PO without an “A”.

There are alternative ways to prove the proof obligation. For instance, we can use
the button to load all hidden hypotheses that contain identifiers in common
with the goal into the Selected Hypotheses View, and we can also use it with the
selected hypotheses.

10The prover has rewritten this as ¬x = c

70 CHAPTER 2. TUTORIAL

Figure 2.21: The green smiley indicates that all sequents of the proof tree are discharged

In order to move to the next undischarged proof obligation, you may also use the Next
Undischarged PO button () of the Proof Control View (3.1.7). The next proof can be solved
the same way as the last one.

As an exercise, try to prove Celebrity 2. A small hint: To do this, we have
to fill in an existential quantifier. We need to instantiate b’ correctly. The auto
prover should have proved that b′ ∈ P , so look for a variable that is already in P
and add this value to the Selected Hypotheses View. To instantiate b’, type the
name of the variable you have chosen into the yellow box that is shown in the
Goal View (3.1.7) and then click on the red existential quantifier. Now all open
branches of the proof tree can be proved with the prover. After this, we have
completed all the proofs, and the model is ready for use.

2.9.7 Proving — an Art or a Science?

Proving can be quite frustrating for both beginners and advanced users. Beginners sometimes
get the impression that proving is just “clicking around” that sometimes works and sometimes

2.9. PROVING 71

does not. When it does work, it’s not really clear why. The proof tree is also difficult to
read even for experienced users. We provided some additional guidance on provers in the
reference chapter (3.4.5) that may be of help, but keep in mind that proving is a skill that
can only be learned by practice. Here we are trying to help you learn how you can use Rodin
to solve proofs, but actually teaching you how to prove something is not really in the scope
of this document.

72 CHAPTER 2. TUTORIAL

2.10 Proving Deadlock Freeness

Goals: In this section, we will take a closer look at a few more complex proofs.
Here we use the model of a location access controller. The goal is to develop the
proofs that ensure there are no deadlocks present in the initial model and in the
first refinement.

This example has been taken from the Event-B book (1.2.1) and is quite sophis-
ticated. In this section, we are dealing with a subset of the complete model. We
encourage readers to consult the example in the book.

Through the model used in this section, we study a complete system and mention the
proof rules of formal development. This system’s job is to control the access of certain people
to different locations of a site. The system is thus based on whether a person has (or does
not have) access to a particular location.

Before describing the initial model, import the archive file Doors.zip11 that contains the
model. To do this, select File 〉 Import 〉 General 〉 Existing Project into Workspace. Then select
the according archive file and click on Finish. It will take Rodin a few seconds to extract and
load all the files.

2.10.1 Deadlock Freeness of initial model

Let us look at the initial model which consists of the context doors ctx1 and the machine
doors 0. There are two carrier sets in the model context. One is for people (P) and the other
is for locations (L). There is a location called outside (outside) and a relation (aut) which
defines the places that people are allowed to go. Everyone is permitted to go outside. The
model machine has one event, pass, which changes the location of a person and one variable,
sit, which denotes where a person is located.

Looking through the initial model, you will see that everything already has been proved
(for the initial model and initial contexts). This is true, but Rodin has not yet proved that
the model is deadlock free yet, so we will have to prove this ourselves. A model is considered
to be deadlocked if the system reaches a state where there are no outgoing transitions. The
objective of this section is to develop proofs for deadlock freeness for the initial model and
for the first refinement.

Consider the event pass from the initial model:

EVENTS

Event pass =̂

any

p

11The URL of the resource is: http://handbook.event-b.org/current/files/Doors.zip

http://handbook.event-b.org/current/files/Doors.zip
http://handbook.event-b.org/current/files/Doors.zip

2.10. PROVING DEADLOCK FREENESS 73

l
where

grd11 : p 7→ l ∈ aut
grd12 : sit(p) 6= l

then
act11 : sit(p) := l

end
END

Since the initial model has only one event (pass), the system might deadlock when both
guards of the event (grd11 and grd12) are false. In this case, to prove that no deadlocks
can occur requires proving that someone can always change room. We must therefore prove
that the two guards are always true. To do this, add a new derived invariant (a theorem)
to doors 0 called DLF (click once on the label not theorem to make it switch to theorem)
and change the predicate so that it is the conjunction of the two guards. The difference
between a “normal” invariant and one that is marked as theorem is that you must prove that
a theorem is always valid when the previously listed invariants are valid. Then we don’t need
to prove that an event preserves the invariant marked as theorem because we can conclude
this logically when it already preserves the other invariants.

INVARIANTS
DLF : theorem ∃p, l ·(p 7→ l ∈ aut ∧ sit(p) 6= l)

Make sure that when you add your DLF invariant, you add it after the other
two invariants in doors 0. The auto prover uses these invariants to prove that
the DLF invariant is well defined, and if they aren’t in the right order, the proof
obligation DLF/WD will not be discharged

You can also use ProB to search for deadlocks (after ensuring that ProR is installed).
Right-click on the machine you want to check and start the animation with the “Start
Animation / Model Checking” menu entry. After starting the animation, go to the
Event View in the ProB perspective (see Figure 2.9). There are two ways to search

for deadlocks:

• Press the Check button and mark Find Deadlocks. Then start the model checking
by pressing the button Start consistency checking. ProB then systematically “ex-
ecutes” all events and tries to find a state where no event is enabled.

• An alternative is to select Deadlock Freedom Checking after clicking on the triangle
to the right of the Check button. ProB will then prompt you to input a predicate, but
this is optional, so leave it blank. The difference with this alternative alternative is
that ProB searches now for variable values where all the invariants are valid but none
of the guards are valid.

74 CHAPTER 2. TUTORIAL

This contribution requires the ProB plugin. The content is maintained by the plugin contributors and may be out of date.

Save the machine. We see in the Event-B Explorer View that the auto-prover (3.1.7) fails
to prove the theorem DLF/THM.

If you cannot find the proof obligation DLF/THM, maybe you forgot to mark the
invariant as a theorem by clicking once on the not theorem label next to the
invariant. Another reason that you might not see the proof obligation DLF/THM
is that you have forgotten to rename the invariant “DLF”.

Let us analyze whether this is an inconsistency in the model. Switch to the Proving

Perspective and double click on the proof obligation DLF/THM. In the Proof Control
view, first disable the post-tactics (there is a small downward pointing arrow in the upper
right hand corner above the toolbar (see Figure 2.22). Click on this arrow and make sure
that the option Enable post-tactic is unchecked in the dropdown menu.) We are turning off
the post-tactics because we want to see the proof develop in its different stages. Now select
the root node in the Prove Tree, right-click on it and select Prune. This removes any proof
that might be already started by the auto-provers. By doing this we want to assure that you
have the same proof as in this tutorial.

Figure 2.22: Disabling the proof post-tactics in the Proof Controlling View

In order to succeed with the proof, we need a pair p 7→ l that is in aut but not in sit.
Having a look the axioms, we find axm4 of doors ctx1, which states that there is a location
l different from outside where everyone is allowed to go:

AXIOMS

axm4 : ∃l ·l ∈ L \ {outside} ∧ P × {l} ⊆ aut

So for every person p in P , p 7→ l and p 7→ outside are in aut. (In other words: every
person is allowed to go to both the outside and a location l). The basic idea of our proof is

2.10. PROVING DEADLOCK FREENESS 75

that a person is either already outside or at the location l. If someone is outside, they are
allowed to move to l, and if they are not outside, they are allowed to move outside. 12.

We assume that there is actually a person, so we need a set P that is non-empty. This is
automatically the case since carrier sets are always non-empty, but we need a person as an
example for our further proof. Now add the hypothesis ∃x·x ∈ P by entering this predicate
into the Proof Control text area and hitting the button. In the Proof Tree view you can
now see three new nodes have appeared that need to be proven:

• > is the trivial well-definedness condition. Click on button to verify it.

• ∃x·x ∈ P is the hypothesis that we introduced. Click on the button to verify it.

• ∃p, l·(p 7→ l ∈ aut ∧ sit(p) 6= l) is the original goal but we can now use the introduced
hypothesis in the proof. We will now continue with the proof of this goal.

Click on the existential quantifier of the new hypothesis ∃x · x ∈ P (appearing in the
Selected Hypothesis view) as demonstrated in Figure 2.23. The hypothesis disappears and
is replaced by a new hypothesis x ∈ P . This is because the value of x is automatically
instantiated. This means that we can use x from now on in our proof as an example for a
person

If you hover over any red symbol for a short while, a menu will pop up, offering
one or more transformations. Make sure that you actually click on the symbol
before the menu pops up because otherwise clicking will no longer have any effect.
If the menu has popped up before you managed to click on the symbol, you will
have to click twice: the first click will discard the menu and the next click will
actually perform the operation.

We can prove an existential quantification by giving an example for the variables. First,
we instantiate p in the goal with the variable x that we created: enter x in the yellow box
corresponding to p in the Goal View and click on the existential quantifier as shown in Figure
2.24.

The instantiation produces two new nodes in the Proof Tree view. The first goal is
the trivial well-definedness condition > and can be easily discharged by pressing . The
remaining goal is ∃l·(x 7→ l ∈ aut∧sit(x) 6= l) is the result of replacing p by x in the old goal.
You can see the the current proof tree in Figure 2.25. The node with the label ah refers to
when we added the hypothesis, the node with the label ∃ hyp refers to when we instantiated
x from a hypothesis and the node with the label ∃ goal refers to when we instantiated p in
the goal.

Now we need an example for the remaining variable l. There are two situations we want to
distinguish: The person x could be outside or not. To distinguish this, type sit(x) = outside
into the Proof Control view and click on the button (dc for distinguish case). Again, you
get three new goals.

12One could argue that this is too restrictive in the real world: After all, why do all people need authori-
sation for the same location l? But arguing about the realism of the example is out of the scope.

76 CHAPTER 2. TUTORIAL

Figure 2.23: Click on the existential quantifier in order to ...

Figure 2.24: ... instantiate it, in this case by substituting x.

Figure 2.25: The proof tree after instantiating p with x.

• The first is the well-definedness condition of sit(x) = outside. sit must be a function
and x is in its domain. This is easy to prove since sit is a total function (3.3.5). Press
the button to verify it.

• The second node has the original goal but sit(x) = outside as a hypothesis.

• The third node has the original goal but ¬sit(x) = outside as a hypothesis.

Note that the second and third node will appear identical in the proof tree. You
will only see the differences in the hypotheses by selecting the nodes.

2.10. PROVING DEADLOCK FREENESS 77

Let’s continue with the case sit(x) = outside: When x is outside, it can always go to
the l that is defined axm4. To search for axm4, type outside into the Proof Control text field
and click the button . Add axm4 (∃l·l ∈ L \ {outside} ∧ P × {l} ⊆ aut) to the selected
hypotheses. Now click on the red ∃ symbol in axm4 (see Figure 2.26) to instantiate l. Now
we have l as an example for a location which is not outside and where everybody can go. Our

Figure 2.26: Searching hypothesis for outside: The third one is axm4.

goal is still ∃l·x 7→ l ∈ aut∧ sit(x) 6= l. Note that the existential quantification introduces a
new l which does not (yet) have anything to do with the location l where anybody can go.
Now type l into the yellow box of the goal and press the ∃ symbol to state that we want to
use our l as an example for the l in the existential quantification. Again, we have the trivial
goal > as well-definedness condition, so just press button to verify it. The remaining
goal should be x 7→ l ∈ aut ∧ sit(x) 6= l. This can be proven with the selected hypotheses
sit(x) = outside, l ∈ L \ {outside} and P × {l} ⊆ aut. Press the button to verify this
goal.

Now only second case of the case distinction remains. This is where x is not outside
(sit(x) 6= outside). In this case, x can simply go outside. Again the goal is ∃l·x 7→ l ∈
aut ∧ sit(x) 6= l. Type outside as an example for a location l into the yellow box and press
the ∃ symbol. Press the button to discharge the trivial well-definedness condition >.
The new goal should be x 7→ outside ∈ aut ∧ sit(x) 6= outside.

To prove this we need to prove that x has the right to go outside. This is stated in
the axiom P × {outside} ⊆ aut. Have a look at the Search Hypothesis view. This was also
one of the results from the last search for outside. (If you no longer see the results, repeat
the search by entering outside into the Proof Control and press the button.) Select
P × {outside} ⊆ aut (in Figure 2.26, it’s the second entry) and press the button to add
it to your selected hypothesis. The auto-prover now has enough hypotheses, so simply click
the button and the last goal of our theorem should be proven.

Here is the summary of the proof. Compare this with your final proof tree (as shown in
Figure 2.27).

78 CHAPTER 2. TUTORIAL

added hypotheses: ∃x·x ∈ P
well-definedness condition >: automatically proven
the hypotheses: automatically proven
instantiation of x in the hypotheses ∃x·x ∈ P

using x as an example for the ∃p . . . in the goal
well-definedness condition >: automatically proven
case distinction sit(x) = outside

well-definedness condition (sit is a function with x in its
domain): proven using the p1 provers

first case: instantiation of l from axiom axm4
using l as an example for the ∃l . . . in the goal

well-definedness condition >: automatically proven
remaining goal: automatically proven

second case: using outside as an example
for the ∃l . . . in the goal

well-definedness condition >: automatically proven
hypotheses P × {outside} selected

remaining goal: automatically proven

Figure 2.27: Searching hypothesis for outside: The third one is axm4.

2.10. PROVING DEADLOCK FREENESS 79

2.10.2 Deadlock Freeness of First Refinement

Now we are going to explain the main complexity of our model: the deadlock freeness proof
for the first refinement.

Please remember that post-tactics should still be disabled before starting this
part of the tutorial.

The difference between the first refinement and the initial model is that a new constant
com has been added in order to describe which rooms are connected. Additionally, we have a
constant exit, which allows anybody to get outside. Please consult the Event-B book (1.2.1)
for the details regarding this model.

The event INITIALISATION does not change, but the event PASS is refined as a conse-
quence. We assume that a person can move to another location l if they have the authorisation
to be in l (already defined in the abstraction) and also if the location l is connected to the
location p where the person is at this precise moment (represented by sit(p)).

grd12 : sit(p) 7→ l ∈ com

As in the last section (2.10.1), open the door 1 machine and add a derived invariant
(theorem) called DLF as follows13:

DLF : ∃q ,m · (q 7→ m ∈ aut ∧ sit(q) 7→ m ∈ com)

Save the file. Once again, the prover fails to prove this theorem automatically. What
we want to prove is that “at least one person authorized to be in a location must also be
authorized to go in another location which communicates with the first one”.

Switch over to the proving perspective and double click on DLF/THM to begin proving.
When getting started, it is often a good idea to subdivide a proof into cases. In this case,
one distinction of cases should be to determine whether the person is outside or not.

First we need a variable denoting a location in order to distinguish between the two cases.
We use the deadlock freeness invariant from the initial model for this purpose. Search through
the possible hypotheses and add this theorem to the selected hypotheses (Figure 2.28).

Now click on the red ∃ to instantiate the variables p and l. This will allow us to make
the case distinction. To do this, we enter the following in the Proof Control View:

sit(p) = outside

13In the future, it might be worthwhile to change this theorem to take care of a couple of issues. It
only states that at least one person can move, and it may be better to state that every person can move.
Furthermore, this statement is unable to detect live locks: A situation where the system oscillates between
a small number of states.

80 CHAPTER 2. TUTORIAL

Figure 2.28: Adding a hypothesis to instantiate a variable for a case distinction.

Now press the button. This will create three new nodes in the proof tree: The first
one is once again the well-definedness condition, followed by the two cases that we have just
defined. As always, use the button to verify the well-definedness condition.

The first case is dealing with sit(p) = outside. To verify this case, we need to use axm7,
which states that at least one authorized room is connected to the outside:

axm7 : ∃l ·l ∈ L \ {outside} ∧ outside 7→ l ∈ com ∧ P × {l} ⊆ aut

Add axm7 to the list of hypotheses. We would like to work with an instance of a location,
so we instantiate this hypothesis by clicking on its red ∃ symbol.

Note that Rodin instantiated the variable with the name l0 instead of l because
the name l already exists from the previous instantiation.

Now we have variables to instantiate our goal as well. We enter the value p in the yellow
box for q and l0 in the yellow box for m (see Figure 2.29) and press the red ∃.

This results in two new nodes to the proof tree, the first one being the well-defined proof
obligation. The last remaining proof obligation can be solved with the given hypotheses.
Clicking will discharge both of these proof obligations.

Now the first case is resolved. Now let’s consider the second case, sit(p) 6= outside. We
would like to instantiate the quantifier again, but this time we have to use different values.
We still have p to substitute for q, but for the location we use the exit relationship: Our
axioms tell us that there is always an exit from every location, so exit(sit(p)) should be a
valid substitution for m. Let’s perform the substitution. This advances our proof tree with
a new node (and the well-definedness proof obligation, which we discharge with one click).

The resulting proof obligation is a conjunction. We can discharge the two parts of it by
clicking on the red ∧ symbol in the goal view. This results in two simpler goals in the proof
tree. We start with the second goal.

2.10. PROVING DEADLOCK FREENESS 81

Figure 2.29: Preparing the instantiation by providing values for p and l0.

We start with the second goal instead of the first goal because doing so will
provide us with hypotheses that will be beneficial in discharging the first goal.
How do we know this? By experience and by playing with the proofs for a long
time. Depressingly, there is no easy rule to guide us through the proving process.
There are just general guidelines and experience.

The goal we start with is:

sit(p) 7→ exit(sit(p)) ∈ com

None the hypotheses that we have added so far contain com, so add axm4 to the selected
hypotheses:

axm4 : exit ⊆ com

Hit the button, and Rodin discharges the goal.
Now deal with the last undischarged goal:

p 7→ exit(sit(p)) ∈ aut

This statement means that the person is authorized to follow the exit. To discharge
this proof obligation we need to use axm6, which essentially states that “Everybody has the
permission to leave from wherever they are”:

82 CHAPTER 2. TUTORIAL

axm6 : aut B− {outside} ⊆ (aut ; exit−1)

Remove the inclusion by clicking on the red ⊆, which results in a hypothesis with universal
quantifier. Instantiate this with the variables that we already have on hand. Instantiate x
with p and x0 with sit(p). Examine this formula and try to understand what it means.

This results in two more goals in our proof tree. The first goal is the well-definedness
condition which we discharge with the button.

The remaining goal is simple and essentially states that following the current position
along the exit route will lead to a location where the user is authorized:

p ⊆ exit(sit(p)) ∈ aut
We cannot discharge this with the prover; However, using the prover will discharge

it. Using is the same as selecting related hypotheses with and then using . The
danger of this approach is that if too many hypotheses are added, the prover may not be
able to find a solution before timing out. In this case, it worked.

As an exercise, try to manually identify the hypotheses that were required to
discharge this goal.

This concludes this section of the tutorial. Be aware that we have just looked at one small
aspect of a rather sophisticated model. Also, please be aware that this tutorial gave you only
an introduction to proving. To become an expert, we encourage you to study interesting
models and to practice.

2.11 Outlook

Congratulations – if you have made it this far, you should have a good foundation for getting
some real work done with Rodin. In this section we would like to provide you with a few
pointers that will help you to make your work as efficient as possible.

Use the Reference Section and FAQ If you have a specific issue or if you quickly need
to look something up, check the reference (3) and FAQ (4) of this handbook.

Online, PDF and Eclipse-Version of the Handbook There are three versions of this
handbook. You can access it directly through Rodin by using the built-in help browser
(Help 〉 Help Contents). The Eclipse-Version is useful because it can be used offline.

Use the Rodin Wiki The Rodin Wiki (1.1.2) contains the latest news regarding Rodin
and a wealth of information that is not in the scope of this handbook. Be sure to check
out it out.

Find useful Plugins There are many plugins available, so be sure to check them out. There
is a good chance that they will make your life easier.

2.11. OUTLOOK 83

Subscribe to the mailing lists The wiki lists the existing mailing lists (4.1.1) which in-
clude a list for users and for developers. We strongly recommend subscribing to the
announcement list.

Rodin in Industry If you are considering using Rodin in an industrial setting, be sure
to explore the testimonies from the Deploy (1.5) project, in which industrial partners
describe their experiences with Rodin.

We wish you success in your modelling projects!

84 CHAPTER 2. TUTORIAL

Chapter 3

Reference

3.1 The Rodin Platform

In this section, we describe the details of the tool platform, as it is presented to the user.
You will find a description of all GUI elements that you may encounter.

3.1.1 Eclipse in General

From the Eclipse Website1: Eclipse is an open source community, whose projects are
focused on building an open development platform comprised of extensible frameworks, tools
and runtimes for building, deploying and managing software across the lifecycle. The Eclipse
Foundation is a not-for-profit, member supported corporation that hosts the Eclipse projects
and helps cultivate both an open source community and an ecosystem of complementary
products and services.

From Wikipedia2: Eclipse is a multi-language software development environment com-
prising an integrated development environment (IDE) and an extensible plugin system. It
is written mostly in Java and can be used to develop applications in Java and, by means of
various plugins, other programming languages including Ada, C, C++, COBOL, Perl, PHP,
Python, R, Ruby (including Ruby on Rails framework), Scala, Clojure, Groovy and Scheme.
It can also be used to develop packages for the software Mathematica. The IDE is often
called Eclipse ADT (Ada Development Toolkit) for Ada, Eclipse CDT for C/C++, Eclipse
JDT for Java, and Eclipse PDT for PHP.

Eclipse provides the technical foundation of Rodin.

Project Constituents and Relationships

The primary concept in doing formal developments with the Rodin Platform is that of a
project. A project contains the complete mathematical development of a Discrete Transition
System. It consists of components of two different types: machines and contexts. Machines

1http://www.eclipse.org/
2http://en.wikipedia.org/

85

http://www.eclipse.org/
http://en.wikipedia.org/

86 CHAPTER 3. REFERENCE

contain the variables, invariants, theorems, and events for a project. Contexts contain the
carrier sets, constants, axioms, and theorems for a project. Figure 3.1 shows an overview.

Machine

variables

invariants

events

Context

carrier sets

constants

axioms

Figure 3.1: Overview Machine and Context

Various relationships exist between machines and contexts. This is illustrated in the
following figure. A machine can be “refined” by another one, and a context can be “extended”
by another one. However, cycles are not allowed (i.e. the original machine cannot refine any
of the refined machines). A machine can also “see” one or several contexts. A typical example
of machine and context relationship is shown in Figure 3.2.

Figure 3.2: A typical example of machine and context relationship

Rodin Nature

Eclipse Projects can have one or more natures to describe their purpose. The GUI then
adapt to this nature. Rodin Projects must have the Rodin-Nature. If you create an Event-B
project in Rodin, it automatically has the right nature. If you want to modify an existing
project, you can edit the .project file and add the following XML in the <natures> section:

<nature>org.rodinp.core.rodinnature</nature>

3.1. THE RODIN PLATFORM 87

3.1.2 The Event-B Perspective

Figure 3.3 shows an overview of the opening window of the Event-B Perspective. The fol-
lowing subsections identify the different Rodin GUI elements (i.e. views) which are visible
and explain their functions.

Menu bar Event-B EditorTool bar Outline View

Event-B Explorer Rodin Problems View Symbols View

Figure 3.3: Overview of the Event-B Perspective

Menu bar

The menu bar provides file and edit operations and other useful Event-B specific operations.
We will briefly describe the most important menu items here.

Rename menu When opening a machine or context file, the following actions for auto-
matically renaming the Event-B model elements are available for the user:

One action is available when editing context files (see Figure 3.4).

88 CHAPTER 3. REFERENCE

• Automatic Axiom Labelling: this action will rename the axioms alphanumerically ac-
cording to their order of appearance.

Figure 3.4: Automatic rename actions for context files

Three actions are available for machine files (see Figure 3.5).

• Automatic Invariant Labelling: this action will rename the invariants alphanumerically
according to their order of appearance.

• Automatic Guard Labelling: this action will rename the guards alphanumerically ac-
cording to their order of appearance,

• Automatic Action Labelling: this action will rename the actions alphanumerically ac-
cording to their order of appearance.

Figure 3.5: Automatic rename actions for machine files

Event-B menu When opening a machine or context file, some wizards for creating Event-
B model elements are available for the user. The different wizards are described in Section
3.1.6.

Tool bar

The tool bar provides shortcuts for familiar commands like save, print, undo and redo. The
tool bar also provides shortcuts to the wizards for creating elements like axioms, constants,
enumerated sets, etc., which are described in Section 3.1.6.

3.1. THE RODIN PLATFORM 89

Editor View

The editor view contains the active Event-B editor which is described in Section 3.1.4.

Outline View

The outline view displays the outline of the active Event-B editor and lists elements like
axioms, variables, etc..

Rodin Problems View

When an error is discovered in a project, a marker appears next to the line with the
problem in the editor view, and the faulty component in the Event-B Explorer is also similarly
marked with . The error itself (e.g. a syntax error) is shown in the Rodin Problems view.

By double-clicking on the error statement, you are transferred automatically to the place
where the error has been detected so that you can correct it easily.

Symbols View

The symbols view is intended to give users a convenient way to add mathematical symbols
to the various model editors. If an editor is open and a text field is active (the cursor is
blinking), clicking a symbol will insert it at the current position (see Figure 3.6).

The ASCII code corresponding to the symbol over which the mouse hovers is also displayed
as a tooltip so that the user can also learn how to input symbols directly.

Event-B Explorer

Projects can be found in the RODIN platform in the Event-B Explorer. This is usually situated
on the left hand side of the screen as shown in Figure 3.3. The Event-B Explorer contains a
list of name of the current projects. Next to each project name is a button. By pressing
it, one can expand a project and see the machines and contexts that it contains.

The icons (or) next to the component name identifies whether it is a context or
machine respectively.

When expanding a machine or a context, you can explore its elements. Double clicking
on a specific element (i.e. a variable) opens the Event-B editor and marks the position of the
variable in the machine or context as shown in Figure 3.7. Furthermore, proof obligations
are displayed when clicking on the small triangle next to the label Proof Obligations (for more
information see Section 3.1.7).

3.1.3 Customizing a perspective suitable for RODIN

So far, you have needed two different perspectives to work with RODIN. However, it is
actually possible to work with only one perspective. In this section, we will try to customize
a perspective so that we do not need any other. If you have experience with customizing

90 CHAPTER 3. REFERENCE

Figure 3.6: Clicking a symbol inserts it at the current position

Eclipse perspectives, you may only want to read the next paragraph which contains a few
suggestions for a good perspective for RODIN.

We should start by thinking about how we want our perspective to appear. The proving
perspective already is quite nice, but we may want to use a little bit more editing space when
in the Event-B perspective. To create more space, we can move all windows that currently
are on both sides of the editing area onto one side since they never really need to be used
simultaneously. We can also dock all of these windows onto the so-called Fast View bar so
that they disappear when they are not needed. It would also be nice to be able to split
the screen and work on several components at once. Then we could edit both the abstract
machine and the concrete machine at the same time.

For the most part, the perspectives can be customized by dragging and dropping the
different windows. First of all, you need to find the Fast View bar. Usually, it is at the
bottom of the Eclipse window, but it also can be on the side or hidden inside the Shortcut
Bar. For our purposes, it probably is best to have it on the right side of the screen. Place it
there by dragging and dropping it with the mouse. Now add some items to it. To do this,
press the Show View as a Fast View button on the bar (See Figure 3.8). It may be a good idea
to to leave the Goal, the Rodin Problems and the Proof Control views open at the bottom

3.1. THE RODIN PLATFORM 91

Figure 3.7: Double clicking on an element opens the Event-B editor and marks the corre-
sponding position

of the screen since you may want them to stay open while editing. A good selection of views
to add to the Fast View bar may be:

• Project Explorer

• Search Hypothesis

• Cache Hypothesis

• Proof Tree

• Proof Information

• Progress Window

All of the windows that you cannot create directly when clicking on Show View as a Fast
View can be found under Others/General. After you are finished, the window should look like
Figure 3.9. Click on “Save Perspective As...” in the Window menu to save the perspective.

92 CHAPTER 3. REFERENCE

Figure 3.8: Show View as a Fast View

3.1.4 The Event-B Editor

Once a context or a machine is created, a window appears in the editing area as shown in
Figure 3.10.

The editor described here was made the default editor in Rodin 2.4 (February
2012) and still has some minor issues (see Section 4.3.12). The alternative struc-
tural editor is still available (see Section 3.1.5).

The editor allows you to edit the modelling elements of the context which are the de-
pendencies, the carrier sets, the constants, and the axioms. By right-clicking in predefined
places you can create new modelling elements. For instance, a symbol appears directly
to the right of the name of the context (in this case, the name of the context is “ctx”). Place
your cursor directly to the left of this symbol and right click. Select the element that you
would like to add from the Add Child menu as shown in Figure 3.11.

Machine elements can also be added in the same way.
To remove a modelling element, right click on the modelling element and select Delete.
It is also possible to add modelling elements by using wizards (See 3.1.6).

3.1.5 The Structural Event-B Editor

3.1. THE RODIN PLATFORM 93

Figure 3.9: Our self-made Quick perspective

The editor described here was the default editor until Rodin 2.3. It is still avail-
able. To use this editor, right click on a machine or context file in the Event-B
Explorer and select Open With 〉 Event-B Machine Editor.

Once a context or a machine is created, a window appears in the editing area as shown
in Figure 3.12.

By default, you are in Edit mode which allows you to edit the modelling elements of the
context (the dependencies, the carrier sets, the constants, and the axioms). By right-clicking
on the modelling elements you can create new child and sibling elements. For instance, by
pressing the triangle () next to each keyword, you can see the different modelling elements
and also add, remove, or move them. Figure 3.13 shows what the section looks like after
pressing the triangle next to the keyword ”AXIOMS”.

By pressing the button, you can add a new modelling element. For instance, clicking
on the button in the AXIOMS section will add a new axiom element. You can now enter
a new axiom and a comment in the corresponding boxes as indicated in Figure 3.14.

94 CHAPTER 3. REFERENCE

Figure 3.10: The Event-B editor

Figure 3.11: Adding a new modelling element

3.1. THE RODIN PLATFORM 95

Figure 3.12: The Structured Event-B editor

Figure 3.13: By pressing the triangle you can collapse/expand context sections

Figure 3.14: Adding a new modelling element

To remove a modelling element, press the button. You can also move an modelling
element up or down by selecting it and then pressing one of the two arrows (or).

96 CHAPTER 3. REFERENCE

Dependencies (Context)

By selecting the Dependencies tab at the bottom of the Event-B editor, you obtain the window
shown in Figure 3.15.

Figure 3.15: Dependencies tab of the Event-B editor

The dependencies tab allows you to control the other contexts that the current context
extends. To add the context that you want to extend, select the name of the context from
the drop-down menu at the bottom of the window and then hit the Add button.

There is also another way to create a new context as an extension existing one. Select
the context in the project window and then press the right mouse key. Then select Extend
from the menu that opens up. This should bring up the window as shown in Figure 3.16.

Figure 3.16: New EXTENDS Clause window

You can then enter the name of the new context which will automatically extend your
chosen context.

3.1. THE RODIN PLATFORM 97

Dependencies (Machine)

The Dependencies tab for machines is very similar to the one for contexts that is described
in the previous section. The main difference is that there are two kinds of dependencies that
can be established: machines on which the current machine depends are listed in the upper
part and contexts on which the current machine depends are listed in the lower part.

Synthesis (Context)

Selecting the Synthesis tab brings up a global view of your context’s elements (carrier set /
constant / axiom / extended context) as demonstrated in Figure 3.17.

Figure 3.17: The Synthesis tab of the Event-B editor

By pressing the set, cst, or axm buttons in the upper right corner, you can filter out the
carrier sets, constants or axioms of your context respectively.

If you select an element, you can change its priority by pressing the button or the
button. You do this for axioms, carrier sets, constants and extended contexts.

Right clicking in this view will bring up a context menu that allows you to add a new
carrier set, constant, axiom or extended context.

Synthesis (Machine)

The Synthesis tab for machines is very similar to the one of contexts (see above) except that
you have a global view of your machine’s elements (refined machines, seen contexts, variables,
invariants, events, and variants).

98 CHAPTER 3. REFERENCE

Pretty Print

Selecting the Pretty Print tab gives you a global view of your context or machine as if it had
been entered through with an input text file as seen in Figure 3.18.

Figure 3.18: The Pretty Print tab of the Event-B editor

3.1.6 Wizards

In addition to being able to directly enter modelling elements in the editor, it is also possible
to add them by using wizards. You can activate the different wizards by using the buttons
in the tool bar as shown in Figure 3.19 and in Figure 3.20 or via the Event-B menu (the
menu will only provide the wizards that you need for creating your machine components or
context components). The next sections explain how to use the wizards.

Figure 3.19: Wizards for context specific elements located in the tool bar

New Carrier Sets Wizard

To activate the New Carrier Sets Wizard, press the button located in the tool bar. Pressing
the button bring up the window shown in Figure 3.21.

3.1. THE RODIN PLATFORM 99

Figure 3.20: Wizards for machine specific elements located in the tool bar

Figure 3.21: New Carrier Sets Wizard

You can enter as many carrier sets as you want by pressing the More button. When you
are finished, press the OK button.

New Enumerated Set Wizard

To activate the New Enumerated Set Wizard, press the button located in the tool bar.
Pressing the button bring up the window shown in Figure 3.22.

Figure 3.22: New Enumerated Set Wizard

Enter the name of the new enumerated set as well as the names of its elements. By

100 CHAPTER 3. REFERENCE

pressing the More Elements button, you can enter additional elements. When you’re finished,
press the OK button. The benefit of using this wizard is that in addition to creating the set
and its elements, the wizard automatically creates the axiom that is necessary for the context
to work. For example, when you add the new carrier set COLOUR and the three constants red,
green, and orange, the wizard automatically creates the following axiom

partition(COLOUR, {red}, {green}, {orange})

.

New Constants Wizard

To activate the New Constants Wizard, press the button located in the tool bar. Pressing
the button will bring up the window shown in Figure 3.23.

Figure 3.23: New Constants Wizard

You can then enter the names of a constant and an axiom which can be used to define
the constant’s type. By pressing the More Axm. button you can enter additional axioms. To
add more constants, press the Add button. When you have finished, press the OK button.

New Axioms Wizard

To activate the New Axioms Wizard, press the button located in the tool bar. Pressing
the button brings up the window shown in Figure 3.24.

You can then enter the axioms you want. If more axioms are needed, press the More
button. When you are finished, press the OK button.

Check the “Theorem” checkbox if the corresponding axiom that you created should be
marked as a a theorem.

New Variable Wizard

To activate the New Variable Wizard, press the button located in the tool bar. Pressing
the button brings up the window shown in Figure 3.25.

You can then enter the names of the variable, what its state at initialisation should be, and
an invariant which defines its type. By pressing button More Inv., you can enter additional

3.1. THE RODIN PLATFORM 101

Figure 3.24: New Axioms Wizard

Figure 3.25: New Variable Wizard

invariants. To add more variables, press the Add button. When you’re finished, press the
OK button.

New Invariants Wizard

To activate the New Invariants Wizard, press the button located in the tool bar. Pressing
the button bring up the window shown in Figure 3.26.

You can then enter the invariants you want. If more invariants are needed, press the More
button. Check the Theorem checkbox to indicate that the corresponding invariant should be
marked as a theorem.

New Event Wizard

To activate the New Events Wizard, press the button located in the tool bar. Pressing
this button brings up the window shown in Figure 3.27.

You can then enter the events that you want. As indicated, the following elements can
be entered: name, parameters, guards, and actions. More parameters, guards and actions
can be entered by pressing the corresponding buttons. If more events are needed, press the
Add button. Press the OK button when you’re finished.

102 CHAPTER 3. REFERENCE

Figure 3.26: New Invariants Wizard

Note that an event with no guard is considered to the guard true. Also, an event with
no action is considered to have the action skip.

3.1.7 The Proving Perspective

When proof obligations (POs) (3.2.7) are not discharged automatically, the user can attempt
to discharge them interactively using the Proving Perspective. This page provides an overview
of the Proving Perspective and its use. If the Proving Perspective is not visible as a tab on
the top right-hand corner of the main interface, the user can switch to it via Window 〉 Open
Perspective.

The Proving Perspective consists of a number of views: the Proof Tree, the Goal, the
Selected Hypotheses, the Proof Control, the Search Hypotheses, the Cache Hypotheses and the
Proof Information. In the discussion that follows we look at each of these views individually.
Figure 3.28 shows an overview of the Proving Perspective.

Loading a Proof

To work on an PO that has not yet been discharged, it is necessary to load the proof into the
Proving Perspective. To do this, switch to the Proving Perspective. Select the project from
the Event-B Explorer and select and expand the component (context or machine). Finally,
select (double-click) the proof obligation of interest. A number of views will be updated with
details of the corresponding proof.

Note that pressing the button on the top left hand side of the Event-B Explorer will
remove all discharged proof obligations (POs) from the view.

The Proof Tree

The proof tree view provides a graphical representation of each individual proof step as seen
in Figure 3.29.

3.1. THE RODIN PLATFORM 103

Figure 3.27: New Event Wizard

The tree is made up of sequents. A line of the tree is shifted to the right when the
corresponding node is a direct descendant of the node of the previous line. Each sequent
is labeled with a comment which indicates which rule has been applied or which prover
discharged the proof. By selecting a sequent in the proof tree, the hypotheses of the sequent
are loaded to the Selected Hypotheses window, and the goal of the sequent is loaded to the
Goal view.

Decoration The symbol to the left of the leaf indicates the state of the sequent:

• indicates that this sequent is discharged.

• indicates that this sequent is not discharged.

• indicates that this sequent has been reviewed.

Internal nodes in the proof display the symbols with the colours inverted. Note that a
“reviewed” sequent is one that is not yet discharged by the prover. Instead, it has been
“seen” by the user who decided to postpone the proof. Marking sequents as “reviewed”
is very convenient since the provers will ignore these leaves and focus on specific areas of
interest. This allows the proof to be discharged interactively in a gradual fashion. In order
to discharge a “reviewed” sequent, select it and prune the tree at that node: the node will
become “brown” again (undischarged), and you can now try to discharge it.

104 CHAPTER 3. REFERENCE

Menu bar Selected HyptothesesTool bar Event-B Explorer

Proof Tree Proof Control View Symbols ViewGoal

Name of PO

Figure 3.28: Overview of the Proving Perspective

Navigation within the Proof Tree There are three buttons on the top of the proof tree
view:

• allows you to see the goal of corresponding to each node.

• allows you to fully expand the proof tree.

• allows you to fully collapse the tree; only the root stays visible.

Manipulating the Proof Tree

Hiding The button next to each node in the proof tree allows you to expand or collapse
the subtree starting at that node.

3.1. THE RODIN PLATFORM 105

Figure 3.29: The Proof Tree

Pruning The proof tree can be pruned at a selected node. This means that the subtree
of the selected node is removed from the proof tree. The selected node becomes a leaf and
displays the symbol . The proof activity can then be resumed from this node. After
selecting a node in the proof tree, pruning can be performed in two ways:

• by right-clicking and selecting Prune,

• by clicking on the button in the proof control view.

Note that after pruning, the post-tactic is not applied to the new current sequent. The
post-tactic should be applied manually, if required, by clicking on the post-tactic button in
the Proof Control view. This is especially useful when you want to redo a proof from the
beginning. The proof tree can be pruned at its root node and then the proof can proceed
again with invocation of internal or external provers or with an interactive proof.

Before pruning a particular node, the node (and its subtree) can be copied to the clip-
board. If the new proof strategy subsequently fails, the copied version can be pasted back
into the pruned node (explained further in the next section).

Copy/Paste By selecting a node in the proof tree and then right-clicking with the
mouse, you can copy the part of the proof tree starting at that sequent (including the node
and its subtree). Pasting the node and subtree back in is done in a similar manner with a
right mouse click on a proof node. This allows you to reuse a part of a proof tree in the same
proof or even in another proof.

106 CHAPTER 3. REFERENCE

Goal and Selected Hypotheses

Each sequent in the proof tree have corresponding hypotheses and goals. A user will work
with one selected sequent at a time by attempting various strategies in an effort to show that
the goal is true. The Goal and Selected Hypotheses views provide information to the user
about the currently selected sequent. Figure 3.30 shows an example.

Figure 3.30: Open proof obligation

A hypothesis can be removed from the list of selected hypotheses by selecting the check
the box situated next to it (you can click on several boxes at once) and then by clicking on
the button at the top of the selected hypotheses window.

Note that the deselected hypotheses are not lost. You can find them again using the
Search Hypotheses button in the Proof Control view. Other buttons are used as follows:

• - Select all hypotheses.

• - Invert the selection.

• next to the goal - Proof by contradiction 1: The negation of the goal becomes a
selected hypothesis and the goal becomes “⊥”.

• next to a selected hypothesis - Proof by contradiction 2: The negation of the
hypothesis becomes the goal and the negated goal becomes a selected hypothesis.

A user wishing to attempt an interactive proof has a number of proof rules available, and
these may either rewrite a hypothesis/goal or infer something from it. In the Goal and the
Selected Hypotheses views, various operators may appear in red coloured font. The red font
indicates that some interactive proof rule(s) are applicable and may be applied as a step in

3.1. THE RODIN PLATFORM 107

the proof attempt. When the mouse hovers over such an operator, a number of applicable
rules may be displayed; the user may choose to apply one of the rules by clicking on it. Figure
3.31 shows an example.

Other proof rules can be applied when green buttons appear in the Goal and Selected
Hypotheses views. Examples are proof by contradiction and conjunction introduction
.

Figure 3.31: Applying a rule

To instantiate a quantifier, the user enters the desired expression in the yellow box behind
the quantifier and clicks on the quantifier (the red ∃) as demonstrated in Figure 3.32.

Figure 3.32: Instantiating a quantifier

The Proof Control View

The Proof Control view contains the buttons with which you can perform an interactive proof.
An overview of this proof can be seen in Figure 3.33.

The following buttons are available in the Proof Control view:

• invokes the new predicate prover. A drop-down list indicates alternative strategies.

108 CHAPTER 3. REFERENCE

Figure 3.33: The Proof Control View

• indicates that a node has been reviewed. In an attempt by the user to carry out
sequents in a certain order, they might decide to postpone the task of discharging some
sequents until a later stage. To do this, the sequent can be marked as reviewed by
choosing the correct node and clicking on this button. This indicates that by visually
checking the sequent, the user is convinced that they can discharge it later, but they
do not want to do it right now.

• external provers can be invoked from the drop-down list to test sequents.

• begins a proof by cases. The proof is split into two branches. In the first branch,
the predicate supplied by the user is added to the Selected Hypotheses, and the user
attempts to discharge this branch. In the second branch, the predicate supplied by
the user is negated and added to the Selected Hypotheses. The user then attempts to
discharge this branch.

• adds a new hypothesis. The predicate in the editing area should be proved by the
user. It is then added as a new selected hypothesis.

• adds an abstract expression. The expression in the editing area is given a fresh
name.

• invokes the auto prover which attempts to discharge the goal. The auto-prover is
applied automatically on all proof obligations after a the machine or context is saved.
Using this button, you can invoke the auto-prover within an interactive proof.

3.1. THE RODIN PLATFORM 109

• executes the post-tactics.

• loads the hidden hypotheses that contain identifiers in common with the goal and
with the selected hypotheses into the Selected Hypotheses window

• backtracks from the current node (i.e., prunes its parent).

• prunes the proof tree from the node selected in the proof tree.

• finds hypotheses containing the character string in the editing area and displays
them in the Search Hypothesis view.

• displays the Cache Hypotheses view. This view displays all hypotheses that are
related to the current goal.

• loads the preceding undischarged proof obligation.

• loads the next undischarged proof obligation,

• displays information regarding the current proof obligation in the corresponding
window. This information corresponds to the elements that directly took part in the
generation of the proof obligation (events, invariant, etc.).

• moves to the next pending node of the current proof tree,

• loads the next reviewed node of the current proof tree.

You can also disable/enable post-tactics which allows you to decide if post-tactics should
run after each interactive proof step. In addition, you can open the preferences for post-
tactics. To do this, open the menu of the Proof Control view via the button in the upper
right corner of the view.

The Smiley The smiley can be one of three different colours:

1. red indicates that the proof tree contains one or more undischarged sequents

2. blue indicates that all undischarged sequents of the proof tree have been reviewed

3. green indicates that all sequents of the proof tree are discharged.

The Editing Area The editing area allows the user to enter parameters for proof com-
mands. For example, in order for the user to add a new hypothesis, the user should enter
this hypothesis into the editing area and then should click on the button.

ML/PP and Hypotheses

110 CHAPTER 3. REFERENCE

ML The (mono-lemma) prover appears in the drop-down list under the button (pp)
as M0, M1, M2, M3, and ML. The different configuration (e.g., M0) refer to the proof force
of the ML prover. All hypotheses are passed to ML.

PP The (predicate prover) appears in the drop-down list under the button (pp) as
P0, P1, PP.

• The prover uses all selected hypotheses in the Selected Hypotheses view.

• The prover performs a lasso operation on the selected hypotheses and the goal and
uses the resulting hypotheses.

• The prover uses all hypotheses.

Auto Prover

The auto prover can be run by clicking the . This prover automatically applies all of the
tactics that are predefined in the auto-tactic profile. Section 3.1.8 describes in detail how to
configure the auto prover, and Section 3.4.3 gives an overview about what proof tactics are
and which are available.

The Search Hypotheses View

By typing a string in the Proof Control view and pressing the Search Hypotheses () button,
all the hypotheses that have a character string in common with the one entered by the user
in the editing area are shown in the Search Hypotheses view. For example, if we search for
hypotheses containing the character string “cr”, then after pressing the Search Hypothesis (

) button on the Proof Control view, we obtain the windows as shown in Figure 3.34.

Figure 3.34: The Search Hypotheses View

3.1. THE RODIN PLATFORM 111

This view also integrates a “quick search” area (A), that allows us to search for hypotheses
containing short character strings such as “cr”, a search hypothesis button (B) that behaves
the same as the button in the Proof Control view, a refresh button (C) that updates the
window manually, and a drop down menu (D) to set up the preferences for the view.

By pressing return key or the button (B) (once a short string has been entered into the
input area (A)), specific hypotheses can be found just as quickly as if we had used the Proof
Control as described previously.

The drop down menu (D) allows some preferences about the searched hypotheses to be
set.

After we have changed preferences for the search, we might need to manually “update” the
view with the button (C). By selecting the “Consider hidden hypotheses in search” option,
we can view all the hypotheses are not selected in the Selected Hypotheses window.

To move hypotheses to the Selected Hypotheses window, select the desired hypotheses
(using the check boxes) and press the button. Adding these hypotheses to the selected
hypotheses means that they will be visible to the prover. They can then be used during the
next interactive proof phase.

To remove hypotheses from the Search Hypotheses window, use the button. This but-
ton also appears above the selected hypotheses and allows the user to remove any hypothesis
from the Selected Hypotheses window.

The other button, situated to the left each hypotheses, is the button. Clicking on
this will attempt a proof by contradiction. The effect is the same as if the hypothesis were
in the Selected Hypotheses window.

The Cache Hypotheses View

This window allows the user to keep track of recently manipulated (i.e. used, removed, or
selected) hypotheses for any PO. For example, when the user rewrites a hypothesis, the
new hypothesis is selected, and the original hypothesis is deselected and put in the Cache
Hypotheses window.

Operations similar to those in the Selected Hypotheses and Search Hypotheses views are
also available for the cached hypotheses. It is possible to remove, select, and start a proof
by contradiction () in the Cache Hypotheses view as well. Interactive proof steps (e.g.,
rewriting) can also be carried out in the Cache Hypotheses view.

The Type Environment View

This view 3.35 shows the type environment for the current node of the proof (free identifiers
and their type). It is accessible through Window 〉 Show View 〉 Type Environment.

Proof Information View

This view displays information so that the user can relate a proof obligation to the model.
For example, typical information for an event invariant preservation includes the event as

112 CHAPTER 3. REFERENCE

Figure 3.35: Type Environment View

well as the invariant in question. For instance, in Figure 3.36, the hyperlinks CreateToken
and inv2 can be used to navigate to the containing machine.

Rule Details View

This view displays the information relating to a given proof tree node onto which a rule was
applied. This information can be viewed by right clicking on any node in the proof tree and
selecting Show Details... (see Figure 3.37).

By default, this view appears in the Fast View bar. If the window does not appear, click
on the button in the Fast View bar to make this view visible. The Fast View bar is in
the lower left corner of the Rodin workspace by default.

Figure 3.38 gives an overview of the Rule Details View.
We will now quickly cover all of the information that is displayed in this view. In this

figure, the contents of the rule ∀ hyp mp are displayed. Here an input has been used to

3.1. THE RODIN PLATFORM 113

Figure 3.36: Proof Information View

Figure 3.37: Open Rule Details View

instantiate an hypothesis. The input that was used to instantiate the rule is shown on the line
below Rule: ∀ hyp mp instantiated with:, and the hypothesis that was used by this rule is shown
on the line below Input Sequent:. Furthermore, it is possible to view the antecedents (i.e.
child proof tree nodes) created by this rule in detail and the actions (selection, deselection,
etc.) that have been performed on the hypotheses.

Auto-tactic and Post-tactic

The auto-tactic automatically applies a combination (i.e. ordered list) of rewrite tactics,
inference tactics and external provers to newly generated proof obligations. However, they
can also be invoked by the user by clicking on the button in the Proof Control view.
Note that the automatic application of the auto-prover can be quickly toggled with the Prove
Automatically menu item available from the Project menu (See Figure 3.39).

The post-tactic is also a combination of rewrite tactics, inference tactics and external
provers and is applied automatically after each interactive proof step. However, it can also
be invoked manually by clicking on the button in the Proof Control view.

114 CHAPTER 3. REFERENCE

Figure 3.38: Rule Details View

Figure 3.39: Toggle auto-prover via project menu

Note that the post-tactic can be disabled quickly by clicking on the rodin/expanded.png
button (marked with an A) of the Proof Control view (right upper corner) and then by
deselecting the box next to the Enable post-tactic option (B) as shown in Figure 3.40.

Principles The ordered list of rewrite tactics, inference tactics and external provers that
should be applied is called a profile. There are two default profiles. One is for auto-tactics and
one is for post-tactics. These default profiles cannot be edited, but they can be duplicated for
further modification by the user. The user can edit a profile and select it to run as automatic
or post tactic. The idea is to have a set of available tactic profiles to be used as needed.
Moreover, these edited profiles are saved within projects if they are defined at the project

3.1. THE RODIN PLATFORM 115

Figure 3.40: Proof Control view menu

level, and they can be imported or exported if they are defined at a workspace level. This
makes it easy to share the profiles.

There are two ways to run the automatic or post tactics:

• Manually by clicking on the button or the button in the Proof Control view to
launch the auto-tactic (with the selected auto-tactic profile) and the post-tactic (with
the selected post-tactic profile) respectively.

• Automatically if such preference is activated. (Auto-tactic will then run after each proof
step and post-tactic will run after each step and rebuild). Post-tactics and auto-tactics
only need to be activated in order to run automatically.

The user can separately define tactic profiles and assign them to post and auto tactics.
Section 3.1.8 describes in detail how to configure auto- and post-tactics.

3.1.8 Preferences

Rodin provides several options to set the preferences of the Event-B editor. You can access
the preferences via Window 〉 Preferences 〉 Event-B in the menu bar. The following subsections
describe the different preference options.

Appearance

This section provides settings for the Event-B editor appearance.

Colours and Fonts The colour and fonts preference page allows you to set the text and
comment colour of the Event-B editor. Furthermore, it allows you to turn the borders of
the different fields in the Event-B editor on or off. Figure 3.41 shows the Colours and Fonts
preference page.

Modelling UI

The modelling UI preference pages allows you to customize the visible tabs of the context
and machine editor for the Event-B Structural Editor.

116 CHAPTER 3. REFERENCE

Figure 3.41: Colours and Fonts preferences

Prefix Settings

This page describes the default values that are used for the prefixes of the different elements
of contexts and machines. Note that prefixes are used for automatic renaming when elements
should be alphanumerically ordered in addition to when new elements are created.

Figure 3.42 shows that modifying prefixes on the workspace level or on the project level
will affect the names used at creation of new Event-B elements. One can see that the prefixes
for variables and invariants, which were originally set to “var” or “inv”, have been replaced
by “variable” and “invariant”. New elements are then named using those prefixes.

How to set prefixes Prefix settings can be accessed in two different ways depending on
the scope of their application: via Window 〉 Preferences 〉 Event-B 〉 Modelling UI 〉 Prefix
settings or via Rename 〉 Customize prefixes....

Project specific settings The user can select profiles locally for a project. To do so,
select the Properties item in the menu that pops up after right-clicking on a project in the
Event-B Explorer. Then open the Prefix Settings tab and check the box to enable project
specific settings. You can also click access this page by selecting Window 〉 Preferences and
then viewing the Event-B 〉 Modelling UI 〉 Prefix Settings page. Now select the Configure
project specific settings link and select the desired project.

A window (see Figure 3.43) appears that allows a user to customize prefixes for a chosen
project. On this page, the user can toggle the button Enable project specific settings:

• If this button is enabled, the prefixes used are those which are specified at this project
level.

3.1. THE RODIN PLATFORM 117

Figure 3.42: Prefix Settings

• If this button is not enabled, the prefixes used are those which are defined at the
workspace level.

Sequent Prover / Auto/Post Tactic

Preferences for the selected auto and post tactic profile There are multiple ways
to access the preferences of the auto and post tactics at workspace or project scope:

from the Window 〉 Preferences and then viewing the Event-B 〉 Sequent Prover 〉 Auto/Post
Tactic page.

from the properties of a project to set project specific preferences for the Auto/Post Tactic.

from the drop-down menu in the Proof Control view.

The Proof Control view menu shows whether there are sequent prover preferences set for
the project containing the current proof obligation 3.44 or not 3.45. Indeed, the command

118 CHAPTER 3. REFERENCE

Figure 3.43: Project specific prefix settings

label in the menu tells if project specific settings are set, or if the workspace settings are
considered. The command opens the corresponding Auto/Post Tactic page.

This section describes the Auto/Post Tactic tab of the Auto/Post Tactic preference page.

There are two scopes for the preferences of auto and post tactics: the workspace level
and the project level. Note that if the automatic application of tactics is declared only at
the workspace level, this option will also be set for the project level.

To access these preferences, open the “Auto/Post Tactic” preference page that can be
found after Window 〉 Preference 〉 Sequent Prover.

Figure 3.46 shows the Auto/Post Tactic preference page.

Figure 3.44: (a) direct access to the
Celebrity project specific settings

Figure 3.45: (b) no project settings ex-
ist for the current PO, direct access to
workspace settings

3.1. THE RODIN PLATFORM 119

Figure 3.46: The “Auto/Post Tactic” preference page

The options shown by (1) and (2) allow you to activate/deactivate the automatic use of
auto- and post-tactics. Here you can also choose the profile that should be used for auto-
and post-tactics. Note that there is always a profile selected, and this profile can be changed
regardless of whether the tactics are automatically launched or not because there is always
a way to manually launch auto- and post-tactics. On the previously referenced figure, the
Default Auto Tactic Profile is used for the automatic tactic, and the Default Post Tactic Profile
is used for the post-tactic.

Preferences for available profiles This section describes the Profile tab of the Auto/Post
Tactic preference page.

Figure 3.47 shows the contents of the profile tab. There are two visible lists: a list of
profiles on the left and the tactics or provers that make up these profiles (Profile Details).
Here one can see the contents of the default Auto Tactic Profile.

There are 4 buttons available to the user:

120 CHAPTER 3. REFERENCE

Figure 3.47: Selecting a profile for the Auto-Tactics

• New: to create a new profile “from scratch”,

• Edit: to edit an existing profile (that can be edited),

• Remove: to delete a profile completely,

• Duplicate: to duplicate a selected profile for further slight modification.

Default profiles can not be edited nor removed. That is why these options are coloured
in gray in the previously referenced figure.

Figure 3.48 shows the dialog available to edit or create a profile. For instance, here we
create a profile named “MyFirstTacticProfile”.

In the box labelled Tactics on the left, there is a list of all the different tactics that can be
applied to a proof (tactics are explained in more detail in Section 3.4.3). In the box labelled
Combinators (combinators are explained in more detail below in Section 3.1.8), there is a list

3.1. THE RODIN PLATFORM 121

Figure 3.48: Selecting a profile for the Auto-Tactics

of all the combinators that can be used for the proof tactic. To create your proof tactic,
drag and drop one of the combinators into the center box. Then drag the proof tactics and
drop them on top of the combinator that you just added. This will add the proof tactic
to the combinator. You can also add more combinators or even other profiles (available in
the Profiles box on the right side) to the combinator that you are working on. If you aren’t
certain what a proof tactic or combinator does, select it, and a description of the proof tactic
or combinator will be be shown in the Description box that is shown in the lower right hand
corner. If the tactic profile that you have created is valid, you will be able to hit the Finish
button in the lower right hand corner in order to save it.

Project specific settings The user can select profiles locally for each project. To do so,
select the Auto/Post Tactic property page in the window that pops up when right-clicking on
a project and selecting the Properties item, or selecting the Configure project specific settings
link on the Auto/Post Tactic preference page. Figure 3.49 shows what this Auto/Post Tactic

122 CHAPTER 3. REFERENCE

tab looks like.

Figure 3.49: Auto/Post Tactic Tab for project specific settings for Auto/Post Tactic

Note that the enablement of automatic use of post and auto tactics is decided at the
workspace level. Figure 3.50 shows the Profiles tab of the Auto/Post Tactic page for a project
specific setting. At the project level, there is a contextual menu available via right click from
the list of defined profiles.

This contextual menu offers two options to the user:

• Import Workspace Profiles retrieve all the defined profiles in the workspace.

• Export to Workspace Profiles push a selected profile up in the list of workspace profiles.

Preferences for Tactic Profiles

Introduction The purpose of this section is to give a more detailed preferences to the user
so he can build his own automated tactics. More precisely, the user should have a way to
specify which parameters have to be passed to the reasoners and have a way to construct
complex proof strategies.

User Documentation Here is the documentation about the current implementation of
the Auto-tactic and Post-tactic preferences.

3.1. THE RODIN PLATFORM 123

Figure 3.50: Profiles Tab for project specific settings for Auto/Post Tactic

Tactic Combinators Tactic combinators can be used to construct complex proof strate-
gies.

Historically, one combinator has existed since the beginning of auto tactic preferences:
the “loop on all pending”. It takes one or more tactics and loops them over every pending
child until all tactic fail. Until Rodin 2.3 was released, this was the only combinator in Rodin.
It is used on the configurable list of auto and post tactics. Rodin 2.3 is easier to configure
because there are several other combinators and auto tactic editors.

The following is a list of combinators present by default.

One may notice the absence of child-specific combinator (i.e. combinators that apply
tactic T1 on the first child, T2 on the second child, etc.) even though this kind of combinator
exists in other provers. The reason is that these tactic profiles are applied automatically and
therefore are only used in a general context. Provers with child-specific combinators are used
to make manual proofs because they require proof-specific adaptation.

124 CHAPTER 3. REFERENCE

Composers A composer combinator applies its given tactic(s) to the given node. The
given node may be open or closed. It succeeds if at least 1 tactic application is successful.

Name Arity Description Stops when
Sequence 1..n applies given tactics in

given order
all tactics have been ap-
plied

Compose until
Success

1..n applies given tactics in
given order

a tactic application suc-
ceeds

Compose until
failure

1..n applies given tactics in
given order

a tactic application fails

Loop 1 applies given tactic re-
peatedly

the child tactic applica-
tion fails

Selectors A selector combinator applies its given tactic to the set of nodes it selects.
Selected nodes are computed from the given node. The given node may be open or closed.
It succeeds if the tactic application is successful for at least 1 selected node.

Name Arity Selects
On all pending 1 all pending children of the given node (the given

node itself if it is open)

Post Actions A post actions applies its given tactic to the given node. The given node
must be open (otherwise it fails). Then it performs a specific treatment which is guarded by
a trigger condition.

Name Arity Trigger Condition Post Action
Attempt 1 the given node still has

pending children (subtree
not closed)

prune proof tree at given
node

Loop on All pending

loopOnAllPending(T1 . . . Tn)
=̂ loop(onAllPending(composeUntilSuccess(T1 . . . Tn)))

Other Ideas timeout: a post action of arity 1 (with duration as input): limits the time
allocated for the tactic that it is applied to (fails after time has gone out)

limitDepth: a post action of arity 1 (with depth as input): limits the proof tree depth for
the tactic that it is applied to (prevents tree from growing beyond a given depth)

3.2. EVENT-B’S MODELLING NOTATION 125

3.2 Event-B’s modelling notation

In Event-B, we have two types of components: contexts and machines. Here we describe
briefly the different elements of a context or machine. We do not use a specific syntax for
describing the components because the syntax is dependent on the editor that is used.

Proof obligations are generated to guarantee that certain properties of the modelled sys-
tem are valid. We will explain here which proof obligations are generated, and we will list
the goal and hypotheses that can be used when performing the proof for each one. This will
be presented in the form:

Description
Name Label of the proof obligation (label refers to the label of

the respective axiom/invariant/guard/etc.)
Goal Goal that should be proved

Please note that Rodin often does not show a proof obligation if it is obviously
true. If you expect to see a proof obligation that Rodin does not show, you can
force that the proof obligation to be shown by changing the model temporarily
so that the proof obligation cannot be automatically discharged. For example,
you could introduce a division by zero to see the corresponding well-definedness
condition.

We will begin by describing contexts and machines and how to prove their consistency.
There are several locations where proof obligations for well-definedness conditions or pred-
icates marked as theorems are raised. We summarized the proof obligations in separate
sections. Well-definedness proof obligations are discussed in Section 3.2.5 and proof obliga-
tions for theorems are discussed in Section 3.2.6.

3.2.1 About the notation that we use

We denote a sequence of identifiers with x = x1, . . . , xn and x′ = x′1, . . . , x
′
n. As a convention,

we use

• c for constants

• v and w for variables of an abstract or a concrete machine respectively

• t and u for parameters of an abstract or concrete machine respectively

• A for axioms

• I and J for the invariants of the abstract machines or concrete machine respectively

• G and H for the guards of the abstract events or concrete event respectively

126 CHAPTER 3. REFERENCE

3.2.2 Substitutions

We use the notation P [E/x] for a substitution of all free occurrences of the variable x
in P by the expression E. Several substitutions can be performed simultaneously with
P (E1/x1, . . . , En/xn). In particular, we use the syntax P [x′/x] to denote the substitution
of each identifier x in the sequence x by x′. For more information on free identifiers, see
Section 3.3.1.

Examples:

• (x > y)[5 + 2/y] corresponds to the predicate (x > 5 + 2).

• (x > y)[2 · y/x, 5 + 2/y] corresponds to the predicate (2 · y > 5 + 2).

• (∃x·x ∈ S∧x > y)[2 ·y/x, 5+2/y] corresponds to the predicate (∃x·x ∈ S∧x > 5+2),
because the x is a quantified variable (i.e. it is not a free variable).

• For a sequence v = v1, v2, v3 the predicate (v1 ⊆ v2 ∧ v3 ∈ v1)[v
′/v] corresponds to

(v′1 ⊆ v′2 ∧ v′3 ∈ v′1).

3.2.3 Contexts

A context describes the static part of a model. It consists of

• Carrier sets

• Constants

• Axioms

• Extended contexts

Carrier Sets

A new data type can be declared by adding its name – an identifier – to the Sets section.
The identifier must be unique, i.e. it must not have been already declared as a constant or
set in the current context or an extended context. The identifier is then implicitly introduced
as a new constant (see below) that represents the set of all elements of the type.

A common pattern for declaring enumerated sets (sets where all elements are explicitly
given) is to use the partition operator. If we want to specify a set S with elements e1, . . . , en,
we declare S as a set, e1, . . . , en as constants and add the axiom partition(S, e1, . . . , en).

Extending a context

Other contexts can be extended by adding their name to the Extends section.
The resulting context consists of all constants and axioms of all extended contexts and

the extending context itself. Thus for a context or machine that extends or sees the contexts,
it makes no difference where a constant or axiom is declared.

3.2. EVENT-B’S MODELLING NOTATION 127

Extending two contexts which declare a constant or set using the same identifier will
result in an error.

Constants and axioms

Constants can be declared by adding their unique name (an identifier) to the Constants
section. An axiom must also be in place from which the type of the constant can be inferred.
We denote the sequence of all constants with c.

An axiom is a statement that is assumed to be true in the rest of the model. Each axiom
consists of a label and a predicate A. All free identifiers in A must be constants.

Axioms can be marked as theorems. The proof obligation that are then generated are
described in Section 3.2.6. The validity of a theorem can be proven from the axioms that
have already been declared.

The well-definedness of axioms must be proven if an axiom contains a well-definedness
condition (3.2.5).

3.2.4 Machines

A machine describes the dynamic behavior of a model by means of variables whose values
are changed by events.

There are two basic things that must be proven for a machine:

1. The machine must be consistent, i.e. it should never reach a state which violates the
invariant.

2. The machine is a correct refinement, i.e. its behavior must correspond to any machines
that it refines.

Refinement and Abstract machines

A machine can refine at most one other machine. We refer to the refined machine as the
abstract machine and refer to the refinement as the concrete machine. More generally, a
machine M0 can be refined by machine M1, M1 refined by M2 and so on. The most concrete
refinement would be Mn.

Basically, a refinement consists of two aspects:

1. The concrete machine’s state is connected to the state of the abstract machine. To do
this, an invariant is used to relate abstract and concrete variables. This invariant is
called a gluing invariant.

2. Each abstract event can be refined by one or more concrete events.

The full invariant of the machine consists of both abstract and concrete invariants. The
invariants are accumulated during refinements.

128 CHAPTER 3. REFERENCE

How to use Refinement: Refinement can be used to subsequently add com-
plexity to the model - this is called superposition refinement (or horizontal refine-
ment). It can also be used to add detail to data structures – this is called data
refinement (or vertical refinement). We’ve seen both types of refinement in the
tutorial (Chapter 2).

Seeing a context

If the machine sees a context, the sets and constants declared in the context can be used in
all predicates and expressions. The conjunction of axioms A can be used as hypotheses in
the proofs.

Variables and invariants

Variables can be declared by adding their unique name (an identifier) to the Variables section.
The type of the variables must be inferable by the invariants of the machine. We denote the
variables of the abstract machines M1, . . . ,Mn−1 with a v and the variables of the concrete
machine with a w.

An invariant is a statement that must be valid at each state of the machine. Each invariant
i consists of a label and a predicate Ii. An invariant can refer to the constants as well as the
variables of the concrete and all abstract machines.

We write I to denote the conjunction of all invariants of the abstract machines and J for
the conjunction of the concrete machine’s invariant.

Invariants that are marked as theorems derive their correctness from the preservation of
other invariants, so their preservation does not need to be proven. The proof obligation can
be found in Section 3.2.6.

If an invariant contains a well-definedness condition, a corresponding proof obligation is
generated (3.2.5).

Common variables between machines With some restrictions, the abstract variables
v and concrete variables w can have variables in common. If a variable v is declared in a
machine Mi, it can be re-used in the direct refinement Mi+1. In that case, it is assumed that
the values of the abstract and concrete variable are always equal. To ensure this, special
proof obligations are generated (3.2.4). Once a variable disappears in a refinement, i.e. it is
not declared in machine Mi+2, it cannot be re-introduced in a later refinement.

Events

A possible state change for a machine is defined by an event. The condition under which an
event can be executed is given by a guard. The event’s action describes how the new and old
state relate to each other.

Events occur atomically (i.e. one event happens at a time) and to a new state. Two
events never happen at the same time. Time is also not factored into the execution of the
event.

3.2. EVENT-B’S MODELLING NOTATION 129

An event has the following elements:

• Name

• Parameters

• Guards

• Witnesses

• Actions

• Status (ordinary, convergent or anticipated): The status is used for termination proofs
(see Section 3.2.4 for details).

An event can refine one or more events of an abstract machine. To keep things simple, we
will first consider events with only one refined event. If there are several refinement steps, we
describe events from the refined machines as abstract events and the event from the concrete
machine as the concrete event. For example, if an event E1 is refined by E2 and E2 is refined
by E3, we call E1 and E2 the abstract events and E3 the concrete event. Likewise, if we
refer to the parameters of the abstract events, we mean all the parameters of all the abstract
events (e.g., the parameters of E1 and E2).

Parameters An event can have an arbitrary number of parameters. Their names must be
unique, i.e. there must be no constant or variable with the same name. The types of the
parameters must be declared in the guards of the event. We denote the parameters of all
abstract events with t and the parameters of the concrete event with u.

Similarly to variables, an event can have parameters in common with the event it refines.
If the refined event has a parameter t which is not a parameter of the refinement, a witness Wt

for the abstract parameter must be specified (3.2.4). All free identifiers in Wt must be either
constants, concrete or abstract variables, concrete parameters or the abstract parameter t.

Guards Each guard consist of a label and a predicate H. All free identifiers in H must
be constants, concrete variables or concrete parameters. Variables or parameters of abstract
machines are not accessible in a guard.

We write G for the conjunction of all guards of all abstract events.
Like axioms and invariants, guards can also be marked as theorems. The proof obligation

can be found in Section 3.2.6. If the guard contains WD-conditions, a proof obligation is
generated. See Section 3.2.5 for the proof obligation.

Actions An action is composed of a label and an assignment. Section 3.3.8 gives an
overview of how they are assigned. They can be put into two groups: deterministic and
non-deterministic assignments. Each assignment affects one or more concrete variables.

130 CHAPTER 3. REFERENCE

If an event has more than one action, they are executed in parallel. An error will occur if
a new value is assigned to a variable in more than one action. All variables to which no new
value is assigned keep the same value in new and old state.

We now define the before-after-predicate T of the actions together. Let Q1, . . . , Qn be
the before-after-predicate of the event’s assignments. Let x1, . . . , xk be the variables that are
assigned by any action of the event. Let y1, . . . , yl be the variables of the concrete machine
that are not modified by any of the event’s actions (i.e. w = x1, . . . , xk, y1, . . . , yl). Then the
before-after-predicate of the concrete event is T = Q1 ∧ . . . ∧Qn ∧ y1 = y′1 ∧ . . . ∧ yl = y′l.

Please note that Rodin optimizes proof obligations when a before-after-predicate is a
hypothesis. x′ is replaced directly by x when x is not changed by the event and replaced by
E when E is assigned to x deterministically.

Witnesses Witnesses are composed of a label and a predicate that establishes a link be-
tween the values of the variables and parameters of the concrete and abstract events. Most
of the time, this predicate is a simple equality.

Unlike other elements in Event-B that have a label, the label of a witness has a
meaning and cannot be chosen arbitrarily.

If the user does not specify a witness, Rodin uses the default witness >.
Witnesses are necessary in the following circumstances:

• The abstract event has a parameter p that is not a parameter of the concrete event.
In this case, the label of the witness must be p, and the witness has the form Wp.
All identifiers of Wp must be either constants, concrete or abstract variables, primed
concrete variables (i.e. v′ for each concrete variable v), concrete parameters or the
abstract parameter p.

• The abstract event assigns non-deterministically (using :∈ or :|) a value to a variable
x that is not a variable of the concrete machine. In this case, the label of the witness
must be x′, the witness has the form Wx′ . All identifiers of Wp must be either constants,
concrete or abstract variables, primed concrete variables (i.e. v′ for each concrete vari-
able v), concrete parameters or the primed abstract variable x′. x′ denotes the new
value of x.

We denote the conjunction of all witnesses of an event with W .
The feasibility of the witness must be proven, i.e. that there is actually a value for which

the predicate holds.

Witness feasibility for a parameter p
Name eventlabel/p/WFIS

Goal
A ∧ I ∧ J ∧H

⇒ ∃p·Wp

3.2. EVENT-B’S MODELLING NOTATION 131

Witness feasibility for an abstract variable x
Name eventlabel/x′/WFIS

Goal
A ∧ I ∧ J ∧H ∧ T

⇒ ∃x′ ·Wx′

A witness may contain well-definedness conditions. See 3.2.5 for the corresponding proof
obligation.

Initialisation The initialisation of a machine is given by a special event called INITIAL-
ISATION. Unlike other events, the initialisation must not contain guards and parameters.
The actions must not make use of variable values before the initialisation event occurs. All
variables must have a value assigned to them. If there is no assignment for the variable x,
Rodin assumes a default assignment of the form x :| >.

Ensuring machine consistency The following proof obligations are generated for events:
The assignment of each action must be well-defined when the event is enabled. See 3.2.5

for the corresponding proof obligation.
If the event’s guard is enabled, every action must be feasible. This is trivially true in the

case of the deterministic assignments. For a non-deterministic assignment a, the feasibility
F(a) must be proven. The feasibility operator F is described in Section 3.3.8.

Action feasibility
Name eventlabel/actionlabel/FIS

Goal
A ∧ I ∧ J ∧H ∧Wp ∧ S

⇒ F(a)

For each invariant Ji with the label invlabel that contains a variable affected by the
assignment, it must be proven that the invariant still is still valid for the new values.

Invariant preservation
Name eventlabel/invlabel/INV

Goal
A ∧ I ∧ J ∧H ∧Wv ∧ T

⇒ Ji[v
′/v,w′/w]

Rodin simplifies this proof obligations by replacing x′ with x for variables that are not changed
and x′ by E for variables that are assigned by a deterministic (x := E) assignment.

There are special proof obligations generated for the initialisation event:

Action feasibility (in the initialisation)
Name INITIALISATION/actionlabel/FIS
Goal A ∧W ∧ T ⇒F(a)

Invariant establishment
Name INITIALISATION/invlabel/INV
Goal A ∧W ∧ T ⇒ Ii[v

′/v,w′/w]

132 CHAPTER 3. REFERENCE

Ensuring a correct refinement

An event can refine one or more events of the abstract machine. We first consider the
refinement of only one event. For refining more than one event (i.e. merging events), please
refer below to Section 3.2.4.

If an event does not refine an abstract event, it is implicitly assumed that it refines skip,
the event that is always enabled (i.e. its guard is >) and does nothing (i.e. all variables keep
their values).

Guard strengthening A concrete event must only be enabled if the abstract event is
enabled. This condition is called guard strengthening. For each abstract guard Gi with label
guardlabel, the following proof obligation is generated:

Guard strengthening
Name eventname/guardlabel/GRD

Goal
A ∧ I ∧ J ∧H ∧Wp

⇒ Gi

Action simulation If an abstract event’s action i (with before-after predicate Qi) assigns
a value to a variable that is also declared in the concrete machine, it must be proven that
the abstract event’s behaviour corresponds to the concrete behaviour. The behaviour of the
concrete event is given by the concrete before-after-predicate T , and the relevant abstract be-
haviour is given by the before-after-predicate Qi. The relation between abstract and concrete
event is specified by witnesses.

Action simulation
Name eventname/actionlabel/SIM

Goal
A ∧ I ∧ J ∧H ∧W ∧ T

⇒ Qi

When the assignments are deterministic or the witnesses are equations, the proof obligation
can usually be simplified by Rodin.

Preserved variables If x is a variable of both the abstract and concrete machine and the
concrete event assigns a value to x but the abstract event does not, it must be proven that
the variable’s value does not change. Let Qi be the before-after-predicate of the action that
changes x.

Equality of a preserved variable x
Name eventname/x/EQL

Goal
A ∧ I ∧ J ∧H ∧Qi

⇒ x′ = x

3.2. EVENT-B’S MODELLING NOTATION 133

Merging events

Refining more than one abstract event by a single event is called merging of events. To merge
events, two conditions must be taken into account.

• If two abstract events declare the same parameter, they must be of the same type.

• All abstract events must have identical actions.

Instead of the guard strengthening proof obligation, the following proof obligation is cre-
ated with G1, . . . , Gn as the abstract guards of the merged events and t1, . . . , tn as their
parameters.

Guard strengthening (merge)
Name eventlabel/MRG

Goal
A ∧ I ∧ J ∧H ∧W ∧ T

⇒ G1 ∨ . . . ∨Gn

The other proof obligations are the same as for refining a single event. Also, the same rules
for defining witnesses apply.

Extending events

Instead of refining another event, an event can extend it. In this case the refined event
will implicitly have all the parameters, guards and actions of the refined event. It can have
additional parameters, guards and actions. The same effect can be achieved by manually
copying the parameters, guards and actions.

This is especially useful when additional features are gradually introduced into a model
by refinement (also called “superposition refinement”).

Termination

Event-B makes it possible to prove how an event will terminate. Termination means that
a chosen set of events are enabled only a finite number of times before an event that is
not marked as terminating occurs. To support proofs for termination, a variant V can be
specified in a model. All free identifiers in V must be constants or concrete variables. A
variant is an expression that is either numeric (V ∈ Z) or a finite set (V ∈ P(α), where α is
an arbitrary type).

Events can be marked as:

ordinary when the event may occur arbitrarily often and does not underlie any restrictions
regarding the variant.

convergent when the event must decrease the variant.

anticipated when the event must not increase the variant.

134 CHAPTER 3. REFERENCE

Informally, termination is proven by stating that the convergent events strictly decrease the
variant which has a lower bound. If a model contains a convergent event, a variant must be
specified. If only anticipated events are declared, it is sufficient to create a default constant
variant so that all anticipated events do not increase the variant. When an event is marked
as anticipated, one must just prove that the event does not increase the variant. The proof
of termination is then delayed to the refinements of the anticipated event. A refinement of
an anticipated event must be either anticipated or convergent.

If the convergence of an event is proven, the convergence of its refinements is also guar-
anteed due to guard strengthening.

A variant must be well-defined. The corresponding well-definedness proof obligations can
be found in Section 3.2.5. The following other proof obligations are generated:

Numeric variant If the variant is numeric, an anticipated or convergent event must only
be enabled when the variant is non-negative.

Numeric variant is a natural number
Name eventlabel/NAT

Goal
A ∧ I ∧ J ∧G ∧H

⇒ V ∈ N

A convergent event must decrease the variant

Decreasing of a numeric variant (convergent
event)

Name eventlabel/VAR

Goal
A ∧ I ∧ J ∧G ∧H ∧ T

⇒ V [w′/w] < V

and an anticipated event must not increase the variant.

Decreasing of a numeric variant (anticipated
event)

Name eventlabel/VAR

Goal
A ∧ I ∧ J ∧G ∧H ∧ T

⇒ V [w′/w] ≤ V

Set variant If the variant is a set t, it must be proven that the set is always finite:

Decreasing of a variant (anticipated event)
Name FIN

Goal
A ∧ I ∧ J

⇒ finite(V)

A convergent event must remove elements from the set

3.2. EVENT-B’S MODELLING NOTATION 135

Decreasing of a set variant (convergent event)
Name eventlabel/VAR

Goal
A ∧ I ∧ J ∧G ∧H ∧ T

⇒ V [w′/w] ⊂ V

and an anticipated event must not add elements.

Decreasing of a set variant (anticipated event)
Name eventlabel/VAR

Goal
A ∧ I ∧ J ∧G ∧H ∧ T

⇒ V [w′/w] ⊆ V

3.2.5 Well-definedness proof obligations

There are several locations where well-definedness proof obligations can be created. The
mathematical notation of the well-definedness conditions of each operator are defined by the
L-operator (3.3.1).

For well-definedness conditions, the order of axioms, invariants and guards is important.
Well-definedness conditions are not usually shown in Rodin if they are trivial (>).

Axioms For an axiom Aw, Ab denotes (the conjunction of) all axioms declared in extended
contexts and the axioms already declared in the current context before the axiom in question.

Well-definedness of an axiom
Name label/WD
Goal Ab⇒L(Aw)

Invariants For an invariant Jw, Jb denotes (the conjunction of) all the model’s invariants
declared before the theorem.

Well-definedness of an invariant
Name label/WD
Goal A ∧ I ∧ Jb⇒L(Jw)

Guards For an invariant Hw, Hb denotes (the conjunction of) all the model’s invariants
declared before the theorem.

Well-definedness of a guard
Name eventname/guardlabel/WD
Goal A ∧ I ∧ J ∧Hb⇒L(Hw)

136 CHAPTER 3. REFERENCE

Witnesses A witness W may contain well-definedness conditions.

Well-definedness of a witness
Name eventlabel/witnesslabel/WWD
Goal A ∧ I ∧ J ∧ T ⇒L(W)

Actions The assignment a of each action with the label actionlabel in an event must be
well-defined.

Well-definedness of an action
Name eventlabel/actionlabel/WD
Goal A ∧ I ∧ J ∧G ∧H⇒L(a)

Variants A variant V must be well-defined.

Well-definedness of a variant
Name VWD
Goal A ∧ J ⇒L(V)

3.2.6 Theorems

Axioms, invariants and guards can be marked as theorems. This means that the validity
of the theorems must be proven from the axioms, invariants or guards declared before the
theorem.

Sometimes an axiom/invariant/guard marked as theorem is also called a derived ax-
iom/invariant/guard.

Axioms For an axiom Athm, Ab denotes (the conjunction of) all axioms declared in ex-
tended contexts and the axioms already declared in the current context before the axiom in
question.

An axiom as theorem
Name label/THM
Goal Ab⇒ Athm

Invariants For an invariant Jthm, Jb denotes (the conjunction of) all the model’s invariants
declared before the theorem.

An invariant as theorem
Name label/THM
Goal A ∧ I ∧ Jb⇒ Jthm

3.2. EVENT-B’S MODELLING NOTATION 137

generated in contexts
well-definedness of an axiom label/WD 3.2.5
axiom as theorem label/THM 3.2.6
generated for machine consistency
well-definedness of an invariant label/WD 3.2.5
invariant as theorem label/THM 3.2.6
well-definedness of a guard event/guardlabel/WD 3.2.5
guard as theorem event/guardlabel/THM 3.2.6
well-definedness of an action event/actionlabel/WD 3.2.5
feasibility of a non-det. action event/actionlabel/FIS 3.2.4
invariant preservation event/invariantlabel/INV 3.2.4
generated for refinements
guard strengthening event/abstract grd label/GRD 3.2.4
action simulation event/abstract act label/SIM 3.2.4
equality of a preserved variable event/variable/EQL 3.2.4
guard strengthening (merge) event/MRG 3.2.4
well definedness of a witness event/identifier/WWD 3.2.5
feasibility of a witness event/identifier/WFIS 3.2.4
generated for termination proofs
well definedness of a variant VWD 3.2.5
finiteness for a set variant FIN 3.2.4
natural number for a numeric variant event/NAT 3.2.4
decreasing of variant event/VAR 3.2.4

Table 3.1: Generated Proof Obligations

Guards For a guard Hthm, Hb denotes (the conjunction of) all the event’s guards declared
before the theorem.

A guard as theorem
Name label/THM
Goal A ∧ I ∧ J ∧Hb⇒Hthm

3.2.7 Generated proof obligations

Table 3.1 shows a brief overview about the different proof obligations that are generated.
The user can use this table to identify a specific proof obligation. For further information, a
reference to the relevant reference section is provided.

3.2.8 Visibility of identifiers

Expressions and predicates are comprised of certain Event-B elements. The following table
describes the elements that each predicate or expression use:

138 CHAPTER 3. REFERENCE

sets constants variables parameters
concrete abstract concrete abstract

axiom × ×
invariant × × × ×
variant × × × ×
guard × × × ×
witness∗ × × × × × ×
action∗ × × × ×

However, expressions and predicates can only use elements that are identified within a
specific scope:

Sets Sets can be used when they are defined in the context (in case of an axiom) or in a
seen context. If a context extends another context, the sets of the extended context
are treated as if they are defined in the extending context.

Constants Constants can be used when they are defined in the context (in the case of an
axiom) or in a seen context.

Concrete Variables Concrete variables that are defined in the machine itself can be used.

Abstract Variables Abstract variables that are defined in an abstract machine can be used.

Concrete Parameters Parameters that are defined in the event itself can be used.

Abstract Parameters Parameters that are defined in an abstract event can be used.

∗ Witnesses and actions have additional elements in their scope. Section 3.2.4 provides
more information about witnesses, and Section 3.3.8 explains the scope for actions that have
different types of assignments in further detail.

3.3. MATHEMATICAL NOTATION 139

3.3 Mathematical Notation

3.3.1 Introduction

In the following section, we use sans serif letters like a, A, b, B, . . . as placeholders for arbitrary
expressions instead of a, A, b, B which represent Event-B identifiers. For example, the e and
S in e ∈ S could be a placeholder for 5 + 2 and N.

We use the A =̂ B to state that an expression, predicate or assignment A can be equiv-
alently rewritten as B if A’s well-definedness condition is fulfilled. We have tried to find
a balance between having a precise and concise description for all Event-B’s mathematical
components and having a text that is still easily readable. Many of the operators can be
expressed using other, simpler constructs. Other, like equality (=) or universal quantification
(∀) are simply described with natural language.

When we introduce new identifiers while expressing an operator (e.g. by using a set
comprehension), we assume that the new identifier does not occur free in the rewritten
expressions (see Section 3.3.1 for more information on free identifiers).

For a concise summary of the Event-B mathematical toolkit, download the four-
page Event-B Cheat Sheet3. We would like to thank Ken Robinson for making it
available.

Data types

In Event-B we have 3 kinds of basic data types:

• Z is the set of all integers.

• BOOL is the set of Booleans. It has two elements BOOL = {TRUE,FALSE}.

• Users can define carrier sets. These are defined in the Sets section of a context. Carrier
sets are never empty. There is no other assumption made about carrier sets unless it
is stated explicitly as an axiom.

From all data types α, β, two other kinds of data types can be constructed:

• P(α) contains the sets of elements of α.

• α× β is the set of pairs where the first element is of type α and the second element is
of type β.

Expressions that are constructed by the rules above are called type expressions.

3The URL of the resource is: http://handbook.event-b.org/current/files/EventB-Summary.pdf

http://handbook.event-b.org/current/files/EventB-Summary.pdf
http://handbook.event-b.org/current/files/EventB-Summary.pdf

140 CHAPTER 3. REFERENCE

A note about the notation We use the Greek letters α, β, γ, . . . to represent arbitrary
data types. For an expression E, we write E ∈ α to state that E is of type α. In the following
descriptions of Event-B’s mathematical constructs, we will describe the types of all constructs
and their components.

For example, we will describe the maplet E 7→ F whose type is defined by E 7→ F ∈ α× β
with E ∈ α and F ∈ β. We do not restrict the types of α and β.

For predicates, we simply describe the data types of their components. The predicate
itself does not have a type. For example, consider the components’ types for the equality
of two expressions E = F: E ∈ α and F ∈ α. By stating that E and F are both of type
α, we express that both expressions must have the same type but do not make any further
assumptions about their types.

Well-definedness

A predicate which describes the condition under which an expression or predicate in Event-B
can be safely evaluated is the well-definedness condition. An example with integer division
makes this clear: The expression x÷ y only makes sense when y 6= 0.

Well-definedness conditions are usually used for well-definedness proof obligations (3.2.5).

In Rodin, the L-operator defines which well-defined condition a predicate or expression
has. When applied to the above example, integer division can be formatted as follows:
L(x÷ y) =̂ y 6= 0.

In the following sections, we state for each mathematical construct what the well-definedness
conditions are. In many cases, this is just the conjunction of the well-definedness conditions
for the different syntactical parts of a construct.

The L-operator cannot be expressed in Event-B itself. It is only used to de-
scribe Event-B’s concept of well-definedness and how the well-definedness proof
obligations are generated.

Free identifiers

Free identifiers in predicates and expressions are those identifiers which are used but not
introduced by quantifiers. More formally, we define the set of free identifiers Free(E) of an
expression or predicate E recursively as follows:

3.3. MATHEMATICAL NOTATION 141

Expression / Predicate Free identifiers
Identifier x {x}
Integer n ∅
> ⊥ BOOL TRUE FALSE
∅ id prj1 prj2 Z
N N1

∅

¬A bool(A) P(A) P1(A)
finite(A) card(A) union(A) inter(A)
A−1 dom(A) ran(A) −A
min(A) max(A)

Free(A)

A ∧ B A ∨ B A⇒ B A⇔ B A = B
A 6= B A ∈ B A 6∈ B A ⊆ B A 6⊆ B
A ⊂ B A 6⊂ B A ∪ B A ∩ B A \ B
A× B A↔ B A←↔ B A↔→ B A↔↔ B
AC B AC− B AB B AB− B A ; B
A ◦ B AC− B A ‖ B A⊗ B A[B]
A 7→ B A→ B A 7� B A� B A 7� B
A� B A�� B A(B) A + B A− B
A · B A÷ B A mod B A ̂ B A ◦◦ B

Free(A) ∪ Free(B)

{ E1, . . . ,En } partition(E1, . . . ,En) Free(E1) ∪ . . . ∪ Free(En)
∀ids · P ∃ids · P Free(P) \ ids
{ ids · P | E }

⋃
ids · P | E

⋂
ids · P | E (Free(P) ∪ Free(E)) \ ids

{ E | P }
⋃

E | P
⋂

E | P Free(P) \ Free(E)

Structure of the subsections

The following reference subsections will have the form the form:

math. Symbol — ASCII representation — Name of the operator
. . . — . . . — . . .

Description A short description of what the operator does

Definition A formal definition of what the operator does

Types A description of the types of all arguments and, if the operation is an
expression, the expression’s type

WD A description of the well-definedness conditions using the L operator

Feasibility Non-deterministic assignments may have feasibility conditions. These are
used in the proof obligations of an event (3.2.4).

Example For some constructs, an example is provided to clarify their use.

142 CHAPTER 3. REFERENCE

3.3.2 Predicates

Logical primitives

> — true — True
⊥ — false — False

Description The predicates > and ⊥ are the predicates that are true and false respec-
tively.

WD L(>) =̂ >
L(⊥) =̂ >

Logical operators

∧ — & — Conjunction
∨ — or — Disjunction
⇒ — => — Implication
⇔ — <=> — Equivalence
¬ — not — Negation

Description These are the usual logical operators.

Definition The following truth tables describe the behaviours of these operators:

P Q P ∧ Q P ∨ Q P⇒ Q P⇔ Q
⊥ ⊥ ⊥ ⊥ > >
⊥ > ⊥ > > ⊥
> ⊥ ⊥ > ⊥ ⊥
> > > > > >

P ¬P
⊥ >
> ⊥

Types All arguments are predicates.

WD Please note that the operators ∧ and ∨ are not commutative because
their well-definedness conditions distinguish between the first and second
argument. Therefore, if their arguments have well-definedness conditions,
the order matters. For example, x 6= 0 ∧ y ÷ x = 3 is always well-defined,
but y ÷ x = 3 ∧ x 6= 0 still has the well-definedness condition x 6= 0.

L(P ∧ Q) =̂ L(P) ∧ (P⇒L(Q))
L(P ∨ Q) =̂ L(P) ∧ (P ∨ L(Q))
L(P⇒ Q) =̂ L(P) ∧ (P⇒L(Q))
L(P⇔ Q) =̂ L(P) ∧ L(Q)
L(¬(P)) =̂ L(P)

3.3. MATHEMATICAL NOTATION 143

Quantified predicates

∀ — ! — Universal quantification
∃ — # — Existential quantification

Description The universal quantification ∀x1, . . . , xn · P is true if P is satisfied for
all possible values of x1 . . . , xn. A usual pattern for quantification is
∀x1 . . . , xn · P1⇒P2 where P1 is used to specify the types of the identifiers.

The existential quantification ∀x1 . . . , xn · P is true if a value of x1 . . . , xn
exists such that P is satisfied.

The types of all identifiers x1 . . . , xn must be inferable by P. They can be
referenced in P.

Types The quantifiers and the P are predicates.

WD L(∀x1 . . . , xn · P) =̂ ∀x1 . . . , xn ·L(P)
L(∃x1 . . . , xn · P) =̂ ∀x1 . . . , xn ·L(P)

Equality

= — = — equality
6= — /= — inequality

Description Checks if both expressions are or are not equal.

Definition E 6= F =̂ ¬(E = F)

Types E = F and E 6= F are predicates with E ∈ α and F ∈ α, i.e. E and F must
have the same type.

WD L(E = F) =̂ L(E) ∧ L(F)
L(E 6= F) =̂ L(E) ∧ L(F)

Membership

∈ — : — set membership
6∈ — /: — negated set membership

Description Checks if an expression E denotes an element of a set S.

Definition E 6∈ S =̂ ¬(E ∈ S)

Types E ∈ S and E 6∈ S are predicates with E ∈ α and S ∈ P(α).

WD L(E ∈ S) =̂ L(E) ∧ L(S)
L(E 6∈ S) =̂ L(E) ∧ L(S)

144 CHAPTER 3. REFERENCE

3.3.3 Booleans

BOOL — BOOL — Boolean values
TRUE — TRUE — Boolean true
FALSE — FALSE — Boolean false
bool — bool — Convert a predicate into a Boolean value

Description BOOL is a pre-defined carrier set that contains the constants TRUE and
FALSE.

bool(P) denotes the Boolean value of a predicate P. If P is true, the
expression is TRUE. If P is false, the expression is FALSE.

Definition partition(BOOL, {TRUE}, {FALSE})
bool(P) = TRUE⇔ P

Types BOOL ∈ P(BOOL)
TRUE ∈ BOOL
FALSE ∈ BOOL
bool(P) ∈ BOOL with P being a predicate.

WD L(BOOL) =̂ >
L(TRUE) =̂ >
L(FALSE) =̂ >
L(bool(P)) =̂ L(P)

3.3.4 Sets

Set comprehensions

{ ids · P | E } — {ids.P|E} — Set comprehension
{ E | P } — {E|P} — Set comprehension (short form)

Description ids is a comma-separated list of one ore more identifiers whose type must be
inferable by the predicate P. The predicate P and E can contain references
to the identifiers ids.

The set comprehension { x1, . . . , xn · P | E } contains all values of E for
the values of x1, . . . , xn where P is true.

3.3. MATHEMATICAL NOTATION 145

{ E | P } is a short form for { Free(E) · P | E } where Free(E) denotes the
list of free identifiers occurring in E (see Section 3.3.1)).

Definition { E | P } =̂ { Free(E) · P | E }

Types With x1 ∈ α1, . . . , xn ∈ αn and E ∈ β:
{ x1, . . . , xn · P | E } ∈ P(β)
{ E | P } ∈ P(β)

WD L({ x1, . . . , xn · P | E }) =̂ ∀x1, . . . , xn ·L(P) ∧ (P⇒L(E))
L({ E | P }) =̂ ∀Free(E)·L(P) ∧ (P⇒L(E))

Example The following set comprehensions contain all the first 10 squares numbers:
{1, 4, 9, 16, 25, 36, 49, 64, 81, 100}
= { x · x ∈ 1 .. 10 | x ̂ 2}
= { x | ∃y ·y ∈ 1 .. 10 ∧ x = y ̂ 2 }
= { x ̂ 2 | x ∈ 1 .. 10 }

Basic sets

∅ — {} — Empty set
{exprs} — {exprs } — Set extension

Description exprs is a comma-separated list of one or more expressions of the same
type.

The empty set ∅ contains no elements. The set extension {E1, . . . ,En} is
the set that contains exactly the elements E1, . . . ,En.

Definition ∅ =̂ { x | ⊥ }
{E1, . . . ,En} =̂ { x | x = E1 ∨ . . . ∨ x = En}

Types ∅ ∈ P(α), where α is an arbitrary type.
{E1, . . . ,En} ∈ P(α) with E1 ∈ α, . . . ,En ∈ α

WD L(∅) =̂ >
L({E1, . . . ,En}) =̂ L(E1) ∧ . . . ∧ L(En)

146 CHAPTER 3. REFERENCE

Subsets

⊆ — <: — subset
6⊆ — /<: — not a subset
⊂ — <<: — strict subset
6⊂ — /<<: — not a strict subset

Description S ⊆ T checks if S is a subset of T, i.e. if all elements of S occur in T. S ⊂ T
checks if S is a subset of T and S does not equal T. S 6⊆ T and S 6⊂ T are
the respective negated variants.

Definition S ⊆ T =̂ ∀e·e ∈ S⇒ e ∈ T
S 6⊆ T =̂ ¬(S ⊆ T)
S ⊂ T =̂ S ⊆ T ∧ S 6= T
S 6⊂ T =̂ ¬(S ⊂ T)

Types S�T is a predicate with S ∈ P(α), T ∈ P(α) for each operator � of ⊆, 6⊆,
⊂, 6⊂.

WD L(S� T) =̂ L(S) ∧ L(T) for each operator � of ⊆, 6⊆, ⊂, 6⊂.

Operations on sets

∪ — \/ — Union
∩ — /\ — Intersection
\ — \ — Set subtraction

Description The union S∪T denotes the set that contains all elements that are in S or
T. The intersection S ∩ T denotes the set that contains all elements that
are in both S and T. The set subtraction or set difference S \ T denotes
all elements that are in S but not in T.

Definition S ∪ T =̂ { x | x ∈ S ∨ x ∈ T }
S ∩ T =̂ { x | x ∈ S ∧ x ∈ T }
S \ T =̂ { x | x ∈ S ∧ x 6∈ T }

Types S� T ∈ P(α) with S ∈ P(α) and T ∈ P(α) for each operator � of ∪, ∩, \

WD L(S� T) =̂ L(S) ∧ L(T) for each operator � of ∪, ∩, \

3.3. MATHEMATICAL NOTATION 147

Power sets

P — POW — Power set
P1 — POW1 — Set of non-empty subsets

Description P(S) denotes the set of all subsets of the set S. P(S) denotes the set of all
non-empty subsets of the set S.

Definition P(S) =̂ { x | x ⊆ S }
P1(S) =̂ P(S) \ {∅}

Types P(α) ∈ P(P(α)) and P1(α) ∈ P(P(α)) with S ∈ P(α).

WD L(P(S)) =̂ L(S)
L(P1(S)) =̂ L(S)

Finite sets

finite — finite — Finite set
card — card — Cardinality of a finite set

Description finite(S) is a predicate that states that S is a finite set. card(S) denotes
the cardinality of S. The cardinality is only defined for finite sets.

Definition finite(S) =̂ ∃n, b · n ∈ N ∧ b ∈ S�� 1 .. n
∃b · b ∈ S�� 1 .. card(S)

Types finite(S) is a predicate and card(S) ∈ Z with S ∈ P(α), i.e. S must be a
set.

WD L(finite(S)) =̂ L(S)
L(card(S)) =̂ L(S) ∧ finite(S)

Partition

partition — partition — Partitions of a set

Description partition(S, s1, . . . , sn) is a predicate that states that the sets s1, . . . , sn
constitute a partition of S. The union of all elements of a partition is S
and all elements are disjoint.

partition(S) is equivalent to S = ∅ and partition(S, s) to S = s.

Definition partition(S, s1, . . . , sn) =̂ S = s1 ∪ . . . ∪ sn ∧ ∀i, j ·i 6= j⇒ si ∩ sj = ∅

Types partition(S, s1, . . . , sn) is a predicate with S ∈ P(α) and si ∈ P(α) for
i ∈ 1 .. n

WD L(partition(S, s1, . . . , sn)) =̂ L(S) ∧ L(s1) ∧ . . . ∧ L(sn)

148 CHAPTER 3. REFERENCE

Generalized union and intersection

union — union — Generalized union
inter — inter — Generalized intersection

Description union(S) is the union of all elements of S. inter(S) is the intersection of all
elements of S. The intersection is only defined for non-empty S.

Definition union(S) =̂ { x | ∃s·s ∈ S ∧ x ∈ s }
inter(S) =̂ { x | ∀s·s ∈ S⇒ x ∈ s }

Types union(S) ∈ P(α) and inter(S) ∈ P(α) with S ∈ P(P(α)).

WD L(union(S)) =̂ L(S)
L(inter(S)) =̂ L(S) ∧ S 6= ∅

Quantified union and intersection⋃
— UNION — Quantified union⋂
— INTER — Quantified intersection

Description
⋃
x1 . . . , xn · P | E is the union of all values of E for valuations of the

identifiers x1 . . . , xn that fulfill the predicate P. The types of x1, . . . , xn
must be inferable by P.

Analogously is
⋂
x1 . . . , xn · P | E the intersection of all values of E for

valuations of the identifiers x1 . . . , xn that fulfill the predicate P.

Like set comprehensions (3.3.4), the quantified union and intersection have
a short form where the free variables of the expression are quantified im-
plicitly:

⋃
E | P and

⋂
E | P.

Definition
⋃
x1 . . . , xn · P | E = union({ x1 . . . , xn · P | E})⋂
x1 . . . , xn · P | E = inter({ x1 . . . , xn · P | E})⋃
E | P =

⋃
Free(E) · P | E⋂

E | P =
⋂

Free(E) · P | E

Types With E ∈ P(α) and P being a predicate:
(
⋃
x1 . . . , xn · P | E) ∈ P(α)

(
⋂
x1 . . . , xn · P | E) ∈ P(α)

(
⋃

E | P) ∈ P(α)
(
⋂

E | P) ∈ P(α)

WD L(
⋃
x1 . . . , xn · P | E) =̂ (∀x1 . . . , xn ·L(P) ∧ (P⇒L(E)))

L(
⋂
x1 . . . , xn · P | E) =̂ (∀x1 . . . , xn ·L(P)∧(P⇒L(E)))∧∃x1 . . . , xn ·L(P)

L(
⋃

E | P) =̂ (∀Free(E)·L(P) ∧ (P⇒L(E)))
L(

⋂
E | P) =̂ (∀Free(E)·L(P) ∧ (P⇒L(E))) ∧ ∃Free(E)·L(P)

3.3. MATHEMATICAL NOTATION 149

3.3.5 Relations

Pairs and Cartesian product

7→ — |-> — Pair
× — ** — Cartesian product

Description E 7→ F denotes the pair whose first element is E and second element is F.

S×T denotes the set of pairs where the first element is a member of S and
second element is a member of T.

Definition S× T =̂ { x 7→ y | x ∈ S ∧ y ∈ T }

Types E 7→ F ∈ α× β with E ∈ α and F ∈ β.
S× T ∈ P(α× β) with S ∈ P(α) and T ∈ P(β).

WD L(E 7→ F) =̂ L(E) ∧ L(F)
L(S× T) =̂ L(S) ∧ L(T)

Relations

↔ — <-> — Relations
←↔ — <<-> — Total relations
↔→ — <->> — Surjective relations
↔↔ — <<->> — Total surjective relations

Description S↔ T is the set of relations between the two sets S and T. A relation
consists of pairs where the first element is of S and the second of T. S↔T
is just an abbreviation for P(S× T).

A total relation is a relation which relates each element of S to at least one
element of T.

A surjective relation is a relation where there is at least one element of S
for each element of T such that both are related.

Definition S↔ T =̂ P(S× T)
S←↔ T =̂ { r | r ∈ S↔ T ∧ dom(r) = S }
S↔→ T =̂ { r | r ∈ S↔ T ∧ ran(r) = T }
S↔↔ T =̂ (S←↔ T) ∧ (S↔→ T)

Types For S ∈ P(α) and T ∈ P(β) for each operator � of ↔, ←↔, ↔→, ↔↔:
S� T ∈ P(P(α× β))

WD L(S� T) =̂ L(S) ∧ L(T) for each operator � of ↔, ←↔, ↔→, ↔↔.

150 CHAPTER 3. REFERENCE

Domain and Range

dom — dom — Domain
ran — ran — Range

Description If r is a relation between the sets S and T, the domain dom(r) is the set
of the elements of S that are related to at least one element of T by r.

Likewise the range ran(r) is the set of elements of T to which at least one
element of S relates by r.

Definition dom(r) =̂ { x | ∃y · x 7→ y ∈ r }
ran(r) =̂ { y | ∃x · x 7→ y ∈ r }

Types dom(r) ∈ P(α) and ran(r) ∈ P(β) with r ∈ P(α× β).

WD L(dom(r)) =̂ L(r)
L(ran(r)) =̂ L(r)

Domain and Range Restrictions

C — <| — Domain restriction
C− — <<| — Domain subtraction
B — |> — Range restriction
B− — |>> — Range subtraction

Description The domain restriction SC r is a subset of the relation r that contains all
of the pairs whose first element is in S. SC− r is the subset where the pair’s
first element is not in S.

In the same way, the range restriction rB S is a subset that contains all of
the pairs whose second element is in S and rB−S is the set where the pair’s
second element is not in S.

Definition SC r =̂ { x 7→ y | x 7→ y ∈ r ∧ x ∈ S}
SC− r =̂ { x 7→ y | x 7→ y ∈ r ∧ x 6∈ S}
rB S =̂ { x 7→ y | x 7→ y ∈ r ∧ y ∈ S}
rB− S =̂ { x 7→ y | x 7→ y ∈ r ∧ y 6∈ S}

Types SC r ∈ P(α× β) and SC− r ∈ P(α× β) with r ∈ P(α× β) and S ∈ P(α)
rB S ∈ P(α× β) and rB− S ∈ P(α× β) with r ∈ P(α× β) and S ∈ P(β)

WD L(S� r) =̂ L(S) ∧ L(r) for each operator � of C, C−, B, B−

3.3. MATHEMATICAL NOTATION 151

Operations on relations

; — ; — Relational forward composition
◦ — circ — Relational backward composition
C− — <+ — Relational override
‖ — || — Parallel product
⊗ — >< — Direct product
−1 — ~ — Inverse

Description An element x is related by r ; S to an element y if there is an element z
such that r relates x to z and S relates z to y.

s ◦ r can be written as an alternative to r ; s. This reflects the fact that
f(g(x)) = (f ◦ g)(x) holds for two functions f and g.

The relational overwrite rC−s is equal to r except all entries in r whose first
element is in the domain of s are replaced by the corresponding entries in
s.

The parallel product r ‖ s relates a pair x 7→ y to a pair m 7→ n when r
relates x to m and s relates y to n.

If a relation r relates an element x to y and s relates x to z, the direct
product r⊗ s relates x to the pair y 7→ z.

The inverse relation r−1 relates an element x to y if the original relation r
relates y to x.

Definition r ; s =̂ { x 7→ y | ∃z · x 7→ z ∈ r ∧ z 7→ y ∈ s }
r ◦ s =̂ s ; r
rC− s =̂ s ∪ (dom(s)C− r)
r ‖ s =̂ { (x 7→ y) 7→ (m 7→ n) | x 7→ m ∈ r ∧ y 7→ n ∈ s }
r⊗ s =̂ { x 7→ (y 7→ z) | x 7→ y ∈ r ∧ x 7→ z ∈ s }
r−1 =̂ {y 7→ x | x 7→ y ∈ r }

Types r ; s ∈ P(α× γ) with r ∈ P(α× β) and s ∈ P(β × γ)
r ◦ s ∈ P(γ × α) with r ∈ P(α× β) and s ∈ P(β × γ)
rC− s ∈ P(α× β) with r ∈ P(α× β) and s ∈ P(α× β)
r ‖ s ∈ P((α× γ)× (β × δ)) with r ∈ P(α× β) and s ∈ P(γ × δ)
r⊗ s ∈ P(α× (β × γ)) with r ∈ P(α× β) and s ∈ P(α× γ)
r−1 ∈ P(β × α) with r ∈ P(α× β)

WD L(r� s) =̂ L(r) ∧ L(s) for each operator � of ;, ◦, C−, ‖, ⊗
L(r−1) =̂ L(r)

152 CHAPTER 3. REFERENCE

Relational image

[. . .] — [. . .] — Relational image

Description The relational image r[S] are those elements in the range of r that are
mapped from S.

Definition r[S] =̂ { y | ∃x · x ∈ S ∧ x 7→ y ∈ r }

Types r[S] ∈ P(β) with r ∈ P(α× β) and S ∈ P(α)

WD L(r[S]) =̂ L(r) ∧ L(S)

Constant relations

id — id — Identity relation
prj1 — prj1 — First projection
prj2 — prj2 — Second projection

Description id is the identity relation that maps every element to itself.

prj1 is a function that maps a pair to its first element. Likewise prj2 maps
a pair to its second element.

id, prj1 and prj2 are generic definitions. Their type must be inferred from
the environment.

Definition id =̂ { x 7→ x | > }
prj1 =̂ { (x 7→ y) 7→ x | > }
prj2 =̂ { (x 7→ y) 7→ y | > }

Types id ∈ P(α× α) for an arbitrary type α.
prj1 ∈ P((α× β)× α) and prj1 ∈ P((α× β)× β) for arbitrary types α and
β.

WD L(id) =̂ >
L(prj1) =̂ >
L(prj2) =̂ >

Example The assumption that a relation r is irreflexive can be expressed by:
r ∩ id = ∅

3.3. MATHEMATICAL NOTATION 153

Sets of functions

7→ — +-> — Partial functions
→ — --> — Total functions
7� — >+> — Partial injections
� — >-> — Total injections
7� — +->> — Partial surjections
� — -->> — Total surjections
�� — >->> — Bijections

Description A partial function from S to T is a relation that maps an element of S to
at most one element of T. A function is total if its domain contains all
elements of S, i.e. it maps every element of S to an element of T.

A function is injective (is an injection) if two distinct elements of S are
always mapped to distinct elements of T. It is also equivalent to say that
the inverse of an injective function is a also a function.

A function is surjective (is a surjection) if for every element of T there
exists an element in S that is mapped to it.

A function is bijective (is a bijection) if it is both injective and surjective.

Definition S 7→ T =̂ { f | f ∈ S↔ T ∧ (∀e, x, y ·e 7→ x ∈ f ∧ e 7→ y ∈ f ⇒ x = y) }
S→ T =̂ { f | f ∈ S 7→ T ∧ dom(f) = S }
S 7� T =̂ { f | f ∈ S 7→ T ∧ f−1 ∈ T 7→ S }
S� T =̂ (S 7� T) ∩ (S→ T)
S 7� T =̂ { f | f ∈ S 7→ T ∧ ran(f) = T }
S� T =̂ (S 7� T) ∩ (S→ T)
S�� T =̂ (S� T) ∩ (S� T)

Types S ∈ P(α), T ∈ P(β) for each operator � of 7→, →, 7�, �, 7�, �, ��:
S� T ∈ P(P(α× β))

WD For each operator � of 7→, →, 7�, �, 7�, �, ��:
L(S� T) =̂ L(S) ∧ L(T)

154 CHAPTER 3. REFERENCE

Function application

(. . .) — (. . .) — Function application

Description The function application f(a) yields the value for a of the function f. It is
only defined if a is in the domain of f and if f is actually a function.

Definition a 7→ f(a) ∈ f

Types f(a) ∈ β with f ∈ P(α× β) and a ∈ α

WD L(f(a)) =̂ L(f) ∧ L(a) ∧ f ∈ α 7→ β ∧ a ∈ dom(f) with P(α × β) being the
type of f.

Lambda

λ — % — Lambda

Description (λ p · P | E) is a function that maps an “input” p to a result E such that
P holds.

p is a pattern of identifiers, parentheses and 7→ which follows the following
rules:

• An identifier x is a pattern.

• An identifier x, followed by an ◦◦ operator is a pattern (See 3.3.7 for
more details).

• A pair a 7→ b is a pattern if a and b are patterns.

• (a) is pattern if a is pattern.

In the simplest case, p is just an identifier.

Definition (λ p · P | E) =̂ { p 7→ E | P }

Types (λ p · P | E) ∈ P(α× β) with p ∈ α, P being a predicate and E ∈ β.

WD L(λ p · P | E) =̂ ∀Free(p) · L(P) ∧ (P⇒L(E))

Example A function double that returns the double value of a natural number:
double = (λx · x ∈ N | 2 · x)

The dot product of two 2-dimensional vectors can be defined by:
dotp = (λ (a 7→ b) 7→ (c 7→ d) · a ∈ Z∧ b ∈ Z∧ c ∈ Z∧ d ∈ Z | a · c+ b · d)

3.3. MATHEMATICAL NOTATION 155

3.3.6 Arithmetic

Sets of numbers

Z — INT — Integers
N — NAT — Natural numbers, starting with 0
N1 — NAT1 — Natural numbers, starting with 1
.. — .. — Range of numbers

Description The set of all integers is denoted by Z. It contains all elements of the type.
The two subsets N and N1 contain all elements greater than or equal to 0
and 1 respectively. The range of numbers between a and b is denoted by
a .. b.

Definition N =̂ { n | n ∈ Z ∧ n ≥ 0 }
N1 =̂ { n | n ∈ Z ∧ n ≥ 1 }
a .. b =̂ { n | n ∈ Z ∧ a ≤ n ∧ n ≤ b }

Types Z ∈ P(Z)
N ∈ P(Z)
N1 ∈ P(Z)
a .. b ∈ P(Z) with a ∈ Z and b ∈ Z

WD L(Z) =̂ >
L(N) =̂ >
L(N1) =̂ >
L(a .. b) =̂ L(a) ∧ L(b)

Arithmetic operations

+ — + — Addition
− — - — Subtraction or unary minus
· — * — Multiplication
÷ — / — Integer division
mod — mod — Modulô — ^ — Exponentiation

Description These are the usual arithmetic operations.

Definition Addition, subtraction and multiplication behave as expected.

The division is defined in a way that 1÷ 2 = 0 and −1÷ 2 = 0:
a÷ b = max({ c | c ∈ N ∧ b · c ≤ a }) for a ∈ N and b ∈ N
(−a)÷ b = −(a÷ b)
a÷ (−b) = −(a÷ b)

156 CHAPTER 3. REFERENCE

a mod b = c =̂ c ∈ 0 .. b− 1 ∧ ∃k · k ∈ N ∧ k · b + c = a

Types With a ∈ Z, b ∈ Z for each operator � of +, −, ·, ÷, mod:
a� b ∈ Z
−a ∈ Z

WD L(a + b) =̂ L(a) ∧ L(b)
L(a− b) =̂ L(a) ∧ L(b)
L(−a) =̂ L(a)
L(a · b) =̂ L(a) ∧ L(b)
L(a÷ b) =̂ L(a) ∧ L(b) ∧ b 6= 0
L(a mod b) =̂ L(a) ∧ L(b) ∧ a ≥ 0 ∧ b > 0
L(a ̂ b) =̂ L(a) ∧ L(b) ∧ a ≥ 0 ∧ b ≥ 0

Minimum and Maximum

min — min — Minimum
max — max — Maximum

Description min(S) and max(S) denotes the smallest and largest number in the set of
integers S respectively.

The minimum and maximum are only defined if such a number exists.

Definition min(S) ∈ S ∧ (∀x·x ∈ S⇒min(S) ≤ x)
max(S) ∈ S ∧ (∀x·x ∈ S⇒max(S) ≥ x)

Types min(S) ∈ Z and max(S) ∈ Z with S ∈ P(Z).

WD L(min(S)) =̂ L(S) ∧ S 6= ∅ ∧ ∃b·∀x·x ∈ S⇒ b ≤ x
L(max(S)) =̂ L(S) ∧ S 6= ∅ ∧ ∃b·∀x·x ∈ S⇒ b ≥ x

3.3.7 Typing

◦◦ — oftype — of type

Description E◦◦α is an expression that has exactly the value of E but its type is specified
by the type expression α (3.3.1).

E is restricted to expressions whose type does not depend on an argument
of that expression. These are the constant relations id, prj1, prj2 and the
empty set ∅.

3.3. MATHEMATICAL NOTATION 157

Another location where the operator can be used is the declaration of
bound variables in quantifiers and patterns in lambda expressions. Each
identifier can be followed by ◦◦ and the identifier’s type.

Definition E ◦◦ α = E

Types E ◦◦ α ∈ α with E ∈ α

WD L(E ◦◦ α) =̂ L(E)

Example The predicate ∅ = ∅ is not correctly typed in Event-B because the types
of ∅ are not inferable. A valid alternative would be:
(∅ ◦◦ Z) = ∅
The predicate ∃x, y · x 6= y is not correctly typed because the types of x
and y cannot be inferred: A valid alternative (for integers) is:
∃x ◦◦ Z, y · x 6= y

The following lambda expression uses the ◦◦ operator:
(λx ◦◦ Z 7→ y ◦◦ BOOL | x > 0 · x+ 1)
An arguably more readable version without the use of ◦◦ is:
(λx 7→ y | x > 0 ∧ y ∈ BOOL · x+ 1)

3.3.8 Assignments

Deterministic Assignments

:= — := — deterministic assignment

Description x1, . . . , xn := E1 . . . ,En assigns the expressions Ei to the variable xi, with
i ∈ 1 .. n. All xi must be distinct identifiers that refer to variables of the
concrete machine.

There is a special form of the assignment which uses a relational overwrite:
x(F) := E.

Definition The before-after-predicate of x1, . . . , xn := E1, . . . ,En is
x′1 = E1 ∧ . . . ∧ x′n = En.

This assignment is equivalent to x1, . . . , xn :| x′1 = E1 ∧ . . . ∧ x′n = En.

The special form for this assignment is:
x(F) := E =̂ x := xC− { F 7→ E }

Types xi and Ei must have the same type: xi ∈ αi and Ei ∈ αi for i ∈ 1 .. n.

WD L(x1, . . . , xn := E1, . . . ,En) =̂ L(E1) ∧ . . . ∧ L(En)
L(x(F) := E) =̂ L(F) ∧ L(E)

158 CHAPTER 3. REFERENCE

Non-deterministic assignment with before-after-predicate

:| — :| — non-deterministic assignment with a before-after-predicate

Description x1, . . . , xn :| Q assigns any value to the variables x1 . . . , xn such that the
the before-after-predicate Q is fulfilled. Each xi is an identifier that refers
to a variable of the concrete machine.

All free identifiers in Q must be constants, concrete parameters, concrete
variables or primed versions of the modified variables (x′1, . . . , x

′
n).

This is the most general form of assignment. All other assignments can be
converted to this.

Definition The before-after-predicate is Q.

Types Q is a predicate and all xi and x′i must have the same type: x1 ∈ αi and
x′1 ∈ αi for i ∈ 1 .. n.

WD L(x1, . . . , xn :| Q) =̂ ∀x′1, . . . , x′n ·L(Q)

Feasibility F(x1, . . . , xn :| Q(x′1, . . . , x
′
n))

=̂ ∃x′1, . . . , x′n · Q(x′1, . . . , x
′
n)

Non-deterministic assignment by sets

:∈ — :: — non-deterministic assignment of a set member

Description x :∈ E assigns any value of the set E to the variable x. x is an identifier
that refers to a variable of the concrete machine.

All free identifiers in E must be constants, concrete variables or concrete
parameters.

Definition The before-after-predicate is x′ ∈ E.
The assignment is equivalent to x :| x′ ∈ E.

Types x ∈ α and E ∈ P(α)

WD L(x :∈ E) =̂ L(E)

Feasibility F(x :∈ E) =̂ E 6= ∅

3.4. PROVING 159

3.4 Proving

In Section 3.2.7, we learned what proof obligations are generated by Rodin from an Event-B
model. We validate the model by discharging proof obligations. This is what we call proving.

In this chapter we will:

• Explain proof rules

• Explain tactics

• Explain and describe provers

• Explain reasoners

• Describe how to perform automatic and manual proving

• Purge proofs for maintenance

• Simplify proofs for maintenability and storage

3.4.1 Sequents

A sequent is a formal statement describing something we want to prove.
Sequents are of the following form
H ` G
where H is the set of hypotheses (predicates) and G is the goal that can be proved from

the predicates.
The above statement can be read as follows: Under the hypotheses H, prove the goal G.

3.4.2 Proof Rules

In its pure mathematical form, a proof rule is a tool to perform a formal proof and is denoted
by:

A

C

where A is a (possibly empty) list of sequents (the antecedents of the proof rule) and C
is a sequent (the consequent of the rule). We interpret the above proof rule as follows: The
combination of the proofs of each sequent of A prove the sequent C.

Example: Consider the following proof rule:

E1

E1 ∨ E2

This says that if E1 is valid, then the statement E1 ∨ E2 must be valid as well.
Thus, we can replace the sequent by the consequent.

160 CHAPTER 3. REFERENCE

Proof Rule Representation in Rodin

In Rodin, the representation for proof rules is more structured not only to reduce the space
required to store the rule but, more importantly, to support proof reuse. A proof rule in
Rodin contains the following:

used goal A used goal predicate.

used hypotheses The set of used hypotheses.

antecedents A list of antecedents (to be explained later).

reasoner The reasoner used to generate this proof rule (see Section 3.4.6).

reasoner input The input for the reasoner to generate this proof rule (reasoners are ex-
plained in Section 3.4.6).

Each antecedent of the proof rule contains the following information:

new goal A new goal predicate.

added hypotheses The set of added hypotheses.

With this representation, a proof rule in Rodin corresponding to a proof schema as follows:

H,Hu, HA0 ` GA0 . . . H,Hu, HAn−1 ` GAn−1
H,Hu ` Gu

Where:

• Hu is the set of used hypotheses

• Gu is the used goal

• HAi
is the set of added hypotheses corresponding to the ith antecedent.

• GAi
is the new goal corresponding to the ith antecedent.

• H is the meta-variable that can be instantiated.

Applying Proof Rules

Given a proof rule of the form mentioned above, the following describes how to apply this
rule to an input sequent. If the process is successful, a list of output sequences is produced.

• The rule is not applicable if the goal of the sequent is not exactly the same as the used
goal or if any of the used hypotheses are not contained in the set of hypotheses of the
input sequent.

3.4. PROVING 161

• If the rule is applicable, the antecedent sequents are returned. The goal of each an-
tecedent sequent is the new goal. The hypotheses of each antecedent sequent are the
union of the old hypotheses and added hypotheses of the corresponding antecedent.

The user interface for proving is explained in Section 3.1.7. The practical appli-
cation of proof rules is explained in Section 2.9.6.

3.4.3 Proof Tactics

Tactics provide an easier way to construct and manage proof search and manipulation. They
provide calls to the underlying reasoners or other tactics to modify proofs.

A list of all proof tactics is maintained in the Rodin Wiki.4 This list is very
comprehensive — be sure to check it out!

Tactics can be applied as follows:

Automatic Rodin can automatically apply a number of tactics after each manual proof
step.

Proof tree Pruning the proof tree is a tactic that can be applied from the proof tree through
the context menu. Other tactics may be available there.

In sequents Some sequents have elements that are highlighted in red. Clicking on these
elements brings up a menu with all applicable tactics so that they can be applied
manually.

It may be useful to consider the following categories of tactics:

Basic Tactics

Basic tactics are tactics that change the proof tree only at the point of application.

• Prune - This tactic is a direct application of the pruning facility providing by the proof
tree. The tactic is successful if the input node is not pending.

• Rule Application Tactics - Tactics of this class provide a wrapper around a proof rule
(3.4.2). The tactic is successful if the proof rule is successfully applied to the input
node.

• Reasoner Application Tactics - Tactics of this class provide a wrapper around a reasoner
(3.4.6). The tactic is successful if the reasoner is successfully applied to the input node.

4http://wiki.event-b.org/index.php/Rodin_Proof_Tactics

http://wiki.event-b.org/index.php/Rodin_Proof_Tactics

162 CHAPTER 3. REFERENCE

Tactical Tactics

Tactical tactics are constructed from existing tactics. They indicate different strategic or
heuristic decisions.

• Apply on All Pending - A tactic to apply a specific sub-tactic to all pending nodes at
the point of application. The tactic is successful if the sub-tactic is successful on one
of the pending nodes.

• Repeating - A tactic that repeats a specific sub-tactic at the point of application until
it fails. The tactic is successful if a sub-tactic is successful at least once.

• Composing Sequential - A tactic to compose a list of sub-tactics that can be applied to
the point of application. The tactic is successful if one of the sub-tactics is successful.

More complex proof strategy can be constructed by combining the above tactical tactics.

3.4.4 Provers

In the end, provers perform the actual work. Rodin comes with one prover installed (New
PP). It is strongly recommended that you install the third-party provers from Atelier B (as
described in Section 3.4.4) in order to add the PP and ML provers. More provers may be
available as plugins.

We will now give a very brief overview of the existing provers by pointing out their
strengths/weaknesses.

PP

We recommend trying the PP prover first because it is sound and does a pretty good job.

Names in the proof control: P0, P1, PP

Names in the proof tree: PP

Names in the preferences: Atelier B P0, Atelier B P1, Atelier B PP

Input: In the configuration “P0”, all selected hypotheses and the goal are passed to PP. In
the configuration “P1”, one lasso operation is applied to the selected hypotheses and
the goal and the result is passed to PP. In the configuration “PP”, all the available
hypotheses are passed to PP.

How the Prover Proceeds: The input sequent is translated to classical B and fed to the
PP prover of Atelier B. PP works in a manner similar to newPP but with support for
equational and arithmetic reasoning.

Some Strengths:

3.4. PROVING 163

• PP has limited support for equational and arithmetic reasoning.

Some Weaknesses:

• PP does not output a set of used hypotheses.

• PP is unaware of some set theoretical axioms.

• PP has similar problems to New PP with regard to well-definedness.

• If unnecessary hypotheses are present, they may prevent PP from finding a proof
even when the proof obligation obviously holds.

ML

The ML prover can be quite helpful when the proofs involve arithmetic.

Names in the proof control: M0, M1, M2, M3, ML

Names in the proof tree: ML

Names in the preferences: Atelier B ML

Input: All visible hypotheses are passed to ML. The different configurations refer to the
configuration (proof force) of the ML prover.

How the Prover Proceeds: ML applies a mix of forward, backward and rewriting rules
in order to discharge the goal (or detect a contradiction among hypotheses).

Some Strengths:

• ML has limited support for equational and arithmetic reasoning.

• ML is more resilient to unnecessary hypotheses than newPP and PP.

Some Weaknesses:

• ML does not output a set of used hypotheses.

• Not all set theoretical axioms are part of ML.

New PP

New PP is unsound. There have been several bug reports. Some have been fixed,
but at this point we do not recommend New PP for inexperienced users.

Names in the proof control: nPP R., nPP with a lasso symbol, nPP

Names in the proof tree: Predicate Prover

Names in the preferences: PP restricted, PP after lasso, PP unrestricted

164 CHAPTER 3. REFERENCE

Input: In the configuration “restricted”, all selected hypotheses and the goal are passed
to New PP. In the configuration “after lasso”, a lasso operation is applied to the se-
lected hypotheses and the goal and the result is passed to New PP. The lasso operation
selects any unselected hypothesis that have a common symbol with the goal or a hy-
pothesis that is currently selected. In the configuration “unrestricted”, all the available
hypotheses are passed to New PP.

How the Prover Proceeds: First, all function and predicate symbols that are different
from “∈” and not related to arithmetic are translated away. For example A ⊆ B is
translated to ∀x · x ∈ A⇒ x ∈ B. Then New PP translates the proof obligation to
CNF (conjunctive normal form) and applies a combination of unit resolution and the
Davis Putnam algorithm.

Some Strengths:

• New PP outputs a set of “used hypotheses”. If an unused hypotheses changes,
the old proof can be reused.

• New PP has limited support for equational reasoning.

Some Weaknesses:

• New PP is unsound. There have been several bug reports.

• New PP does not support arithmetic; hence, `L 1 = 1 is discharged, but `L 1+1 =
2 is not. Note that arithmetic reasoning when the formula is not ground (i.e. the
formula contains variables) is a long standing challenge.

• New PP is unaware of set theoretical axioms. In particular, `L ∃A · ∀x · x ∈
A⇔ x ∈ B ∨ x ∈ C is not recognized because the union axiom is not available
within New PP. This means that New PP can only reuse sets that already appear
in the formula, but it is unable to introduce new sets. Note that set theoretical
reasoning is perceived as a hard problem.

• If unnecessary hypotheses are present, they may prevent New PP from finding a
proof even when the proof obligation obviously holds. We therefore advise you to
unselect unnecessary hypotheses.

• New PP does not take well-definedness into account: Lemma `L b ∈ f−1[{f(b)}]
is not discharged. In fact, this sequent has exactly the same translation as `L b ∈
dom(f), which cannot be proved.

• New PP tends to run out of memory if the input is large.

3.4.5 How to Use the Provers Effectively

It is very hard, in general, to predict whether a certain automatic prover can or cannot
discharge a given proof obligation within a given amount of time. (This is also the case for

3.4. PROVING 165

many other automatic first order theorem provers.) Therefore applying the 11 configurations
in a trial and error fashion is often frustrating.

The following guidelines may be useful:

• Add PP restricted, P0, and ML to the auto-tactic. If the auto-tactic runs out of
memory, remove PP.

• If the model is small, add PP after lasso and P1 to the auto-tactic.

• Whenever you think that the current proof obligation should be discharged automati-
cally, invoke the auto-tactic () instead of some particular automatic prover.

• If the auto-tactic fails, it is usually best to simplify the proof obligation in some way.
The most important ways of simplifying the proof obligation are:

– Remove unnecessary hypotheses; add required hypotheses that have been missing.

– Create a case distinction

– Instantiate quantifiers.

– Apply ae (abstract expression) to replace complicated expressions with fresh vari-
ables.

• You can also apply one of the automatic provers. They may be more successful than
the auto-tactic because they have a longer timeout.

– The configurations that act on more than the selected hypotheses (unrestricted
P1, PP and ML) become useless when the model grows.

• When everything fails, try to solve the proof obligation manually by clicking on the red
symbols.

– You may discover that some assumption was missing.

– You may complete the proof.

– If you observe that a valid proof obligation cannot be proved manually, please
send a bug report (4.2.9).

3.4.6 Reasoners

Reasoners are applied to the sequent of a given proof tree node and provide a way to con-
tribute to the provers. They are typically of more interest to the developer than the user.

A reasoner is (and has to be) quite “rough” : it takes a given sequent and produces a
proof rule that will (if possible) apply to this given sequent. A tactic can use several reasoners
by applying them in loops, combining them, or even calling other tactics.

166 CHAPTER 3. REFERENCE

3.4.7 Purging Proofs

Proofs are stored in proof files. Each time a new proof obligation is generated by the tool,
a corresponding (initially empty) proof is created. However, proofs are never removed auto-
matically by the Rodin platform. As time passes and a model has been worked out, obsolete
proofs (i.e., proofs that do not have a corresponding proof obligation anymore) accumulate
and clutter proof files.

The purpose of the proof purger is to allow the user to delete obsolete proofs.

Why proofs become obsolete

Proof obligations are named after the main elements related to it, such as events and invari-
ants. Therefore, each time such an element is renamed manually, the corresponding proof
obligations get a new name. However, the existing proof is not renamed, and a new proof
gets created with the new name.

Consequently, after a lot of model editing, more and more obsolete proofs are stored in
proof files.

Selecting purge input

In any view, right-clicking an Event-B project or file will display a popup menu with a Purge
Proofs... option. If several files or projects (or both) are selected, purging will apply to all of
them.

Firstly, the proof purger tries to find obsolete proofs in the selection. If no obsolete
proofs are found, a message will pop up informing the user that no proof needs to be purged.
Otherwise, a new window will pop up displaying a list of all POs that are considered obsolete,
i.e. all proofs that exist in some proof file and but no longer correspond to any concrete project
or file.

Choosing proofs to delete

For the moment, nothing has been erased. The new window (see Figure 3.51) shows obsolete
proofs and allows the user to choose among them and select the ones which should be deleted.
One may wish to keep some of them knowing they might be useful in the future.

Once the selection has been decided, hit the Delete button to actually delete the selected
proofs from the proof files. Files that become empty will be deleted as well.

Caution

Proof purging should not be performed on models that are not in a stable state. For in-
stance, it should not be applied to a model that has some errors or warnings issued by the
type checker. This is because if there are errors and warnings, not all proof obligations are
generated. Therefore, some proofs may have been considered wrongly as obsolete.

3.4. PROVING 167

Figure 3.51: Proof Purger Selection Window

3.4.8 Simplifying Proofs

Proofs consists of trees where each node is a proof step. Storing or investigating a proof
consists in saving or reviewing all these nodes. With post tactics activated, some unneeded
steps might be added to the proof, after each manual step. Indeed, the post tactics try
to apply some rewriting and inference rules which are themselves grouped into proof steps.
When the proof step concern some useless hypotheses, for example, the applied rules are not
useful in the proof. They can even appear cumbersome regarding storage or later investigation
of the proofs. Hence, it is recommended to apply simplification before storage of huge proofs
and/or proofs involving extensively post tactics.

Selecting simplification input

In any view, right-clicking an Event-B project or file will display a popup menu with a Simplify
Proof(s) option. If several files or projects (or both) are selected, simplification will apply to
all of them.

168 CHAPTER 3. REFERENCE

Automatic simplification option

It is possible to automatically launch the simplification on proof save. However, because this
task can be performance consuming this feature is disabled by default. It can be enabled
by selecting Window 〉 Preferences 〉 Event-B 〉 Sequent Prover 〉 Simplify complete proofs when
saving.

Chapter 4

Frequently Asked Questions

4.1 General Questions

4.1.1 Where can I get help?

In addition to this handbook, consider looking in the Rodin Wiki (1.1.2) for an answer.
There is also a vibrant community that is helpful and responsive. You can contact it via

the Rodin user mailing list at rodin-b-sharp-user@lists.sourceforge.net.

4.1.2 What is Event-B?

Event-B is a formal method for system-level modelling and analysis. Key features of event-B
are the use of set theory as a modelling notation, the use of refinement to represent systems at
different abstraction levels and the use of mathematical proofs to verify consistency between
refinement levels. More details are available at http://www.event-b.org.

4.1.3 What is the difference between Event-B and the B method?

Event-B (2.2.4) is derived from the B method. Both notations have the same inventor, and
share many common concepts (set-theory, refinement, proof obligations, etc.). However,
they are used for quite different purposes. The B method is devoted to the development of
correct by construction software, while the purpose of Event-B is used to model full systems
(including hardware, software and environment of operation).

Event-B and the B method use mathematical languages which are similar but do not
match exactly (in particular, operator precedences are different).

4.1.4 What is Rodin?

The Rodin Platform is an Eclipse-based IDE for Event-B that provides support for re-
finement and mathematical proofs. The platform is open source, contributes to the Eclipse
framework and can be extended with plugins.

169

mailto:rodin-b-sharp-user@lists.sourceforge.net
http://www.event-b.org
http://en.wikipedia.org/wiki/B-Method
http://en.wikipedia.org/wiki/Jean-Raymond_Abrial

170 CHAPTER 4. FREQUENTLY ASKED QUESTIONS

4.1.5 Where does the Rodin name come from?

The Rodin Platform (3.1) was initially developed within the European Commission funded
Rodin project (IST-511599), where Rodin is an acronym for “Rigorous Open Development
Environment for Complex Systems”. Rodin is also the name of a famous French sculptor.
One of his most famous works is the Thinker.

4.1.6 Where I can download Rodin?

Rodin is available for download at the Rodin Download page: http://wiki.event-b.org/

index.php/Rodin_Platform_Releases

4.1.7 How to contribute and develop?

Glad to hear that you want to help! Please see the http://wiki.event-b.org/index.php/

Developer_FAQ page.

4.1.8 My operating system is not supported! How can I install
Rodin on my platform?

At the time of writing this document, prebuild versions exist for only a small number of
operating systems. There are two recommended approaches for running Rodin in these
situations:

Build Rodin from the sources Users who have some experience in building Java software
can simply build Rodin from source. For more information, please consult the Developer
Documentation in the Rodin Wiki: http://wiki.event-b.org/index.php/Rodin_

Developer_Support

Run Rodin in a virtual environment With a fast computer, you can also use a virtual
environment (e.g. VirtualBox) and install an operating system into that environment
that supports Rodin (e.g. a 32bit version of Linux).

There are other options available for more specialized scenarios (e.g. running 32bit Rodin
on a 64bit Linux system). However, the two approaches described above are the most simple.

4.2 General Tool Usage

4.2.1 Do I lose my proofs when I clean a project?

No! This is a common misunderstanding of what a project clean does. A project contains
two kinds of files:

• those you can edit: contexts, machines, proofs

http://en.wikipedia.org/wiki/The_Thinker
http://wiki.event-b.org/index.php/Rodin_Platform_Releases
http://wiki.event-b.org/index.php/Rodin_Platform_Releases
http://wiki.event-b.org/index.php/Developer_FAQ
http://wiki.event-b.org/index.php/Developer_FAQ
http://wiki.event-b.org/index.php/Rodin_Developer_Support
http://wiki.event-b.org/index.php/Rodin_Developer_Support

4.2. GENERAL TOOL USAGE 171

• those generated by a project build: proof obligations, proof statuses (each proof obli-
gation is either discharged or not discharged)

The cleaner just undoes what the builder does, i.e. it removes proof obligations and
statuses, but it never modifies any proof.

A status may change from discharged to not discharged when the proof is no longer
compatible with the corresponding proof obligation (e.g. when a hypothesis is changed), but
the proof itself is still there! You can try to replay it.

Confusion may arise when automatic provers have been launched. The cleaner does not
undo these automatic proofs (why would it ?!!). Once a proof has been made, the platform
does not modify or delete it by itself. Even obsolete proofs are preserved (3.4.7)!

4.2.2 How do I install external plugins without using the Eclipse
Update Manager?

Although it is recommended that you install additional plugins into the Rodin platform using
the Eclipse Update Manager, this might not always be practical. In this case, you can install
these plugins by emulating the operations normally performed by the Update Manager either
manually or by using ad-hoc scripts.

The manual installation of plugins is described in Installing external plugins manually .

4.2.3 The builder takes too long

Generally, the builder spends most of its time attempting to prove POs. There are basically
two ways to shorten this process:

• Disable the automated prover in the Preferences panel.

• Mark a PO as reviewed if you do not want the auto-prover to attempt it anymore.

Note that if you disable the automated prover, you always can run it later on some files
by using the contextual menu in the Event-B Explorer.

To disable the automated prover, open Rodin Preferences (menu Window 〉 Preferences...).
In the tree on the left-hand panel, select Event-B 〉 Sequent Prover 〉 Auto/Post-tactic. Then,
in the main panel ensure that the checkbox labelled Enable auto-tactic for proving for proving
is not selected.

To review a proof obligation, just open it in the interactive prover and then click on the
review button (this is a round blue button with a R in the Proof Control toolbar). The proof
obligation should now labelled with the same icon in the Event-B explorer.

http://wiki.event-b.org/index.php/Proof_Obligation_Commands#Proof_Replay_on_Undischarged_POs
http://wiki.event-b.org/index.php/Installing_external_plugins_manually

172 CHAPTER 4. FREQUENTLY ASKED QUESTIONS

4.2.4 What are the ASCII shortcuts for mathematical operators?

A page describing the ASCII shortcuts that can be used for entering mathematical operators
can be found in the Help menu. To view this page, select Help 〉 Help Contents and then select
Rodin Keyboard User Guide 〉 Getting Started 〉 Special Combos in the window that pops up.

This page is also available in the dynamic help system. The advantage of using dynamic
help is that it is able to display the help page side-by-side with the other views and editors.
To start the dynamic help, click Help 〉 Dynamic Help, then select Contents and select the
page in the tree.

4.2.5 Pretty Print does not work on Linux

Configuring Rodin on Linux can be tricky. In particular, the pretty print view of the original
editor requires an HTML control to render. It it does not work after installing Rodin, you
may have to configure xulrunner as follows:

Add a property by appending the following code to your eclipse/eclipse.ini or rodin/rodin.ini
file:

-Dorg.eclipse.swt.browser.XULRunnerPath=/usr/lib/xulrunner/xulrunner-xxx

4.2.6 Some mathematical characters are wrong

The Rodin editor must use the correct font to work properly, which is Brave Sans Mono.
Depending on the editor, the font has to be configured via Window 〉 Preferences 〉 Colors
and Fonts 〉 Basic Text 〉 Font.

4.2.7 No More Handles

On Windows platforms, Rodin may crash and generate the error message “no more handles”.
An OS specific limitation is described here and here. A workaround is provided at this site.

4.2.8 Software installation fails

The installation of software from update sites (Help 〉 Install New Software...) sometimes fails
with an error saying something like:

No repository found containing:

osgi.bundle,org.eclipse.emf.compare,1.0.1.v200909161031

No repository found containing:

osgi.bundle,org.eclipse.emf.compare.diff,1.0.1.v200909161031

...

This is an eclipse/p2 bug that is referenced here.
To fix this problem:

http://journals.jevon.org/users/jevon-phd/entry/19833
https://bugs.eclipse.org/bugs/show_bug.cgi?id=211124
http://blogs.msdn.com/b/ntdebugging/archive/2007/01/04/desktop-heap-overview.aspx
http://stackoverflow.com/questions/511367/error-when-updating-eclipse

4.2. GENERAL TOOL USAGE 173

• Go to Window 〉 Preferences 〉 Install/Update 〉 Available Software Sites

• Remove all of the sites and then add them back again. This can be achieved in the
Available Software Sites preference page by:

– Selecting all of the update sites (highlighting all those that are checked)

– Exporting them

– Removing them

– Restarting Rodin

– Going back to the preference page and importing the update sites back (from the
previously exported file)

4.2.9 How do I send a bug report?

This depends on the nature of the bug:

• Problems with the core Rodin platform, as well as feature requests, should be filed
via the SourceForge bug tracker: http://wiki.event-b.org/index.php/Bugs_and_

Feature_Requests

• To file problems with individual plugins, check the plugin’s documentation in the wiki
(1.1.2).

• If you are unsure whether to file a bug or not, consider asking a question on the Rodin
user list at rodin-b-sharp-user@lists.sourceforge.net.

• To report a problem with the handbook, use the feedback button that is present in the
HTML and Eclipse Help version of the handbook.

4.2.10 Where did the GUI window go?

When you are looking for a particular view, and the view does not appear or if it appears in
a different place than is usual, try clicking on Window 〉 Reset Perspective.... This will reset
the different views back to their default positions. If you can’t find menu buttons from one
of the views, try resizing the view in question to see if part of the menu has been hidden.

4.2.11 Where vs. When: What’s going on?

You may have noticed that both in this tutorial, as well as in the tool, events sometimes
use the keyword “when” and sometimes “where”. The idea of this was to make the formal
statements more intuitive. Unfortunately, this created more confusion than anything else.

The short answer is: “when” and “where” in events have exactly the same meaning, for
all practical purposes.

http://wiki.event-b.org/index.php/Bugs_and_Feature_Requests
http://wiki.event-b.org/index.php/Bugs_and_Feature_Requests
mailto:rodin-b-sharp-user@lists.sourceforge.net

174 CHAPTER 4. FREQUENTLY ASKED QUESTIONS

The long answer is: In some contexts (but not all), the tool changes the keywords to
make the meaning of the event more apparent. The distinguishing factor is the parameter:
an event without a parameter uses the keyword “when”, and an event with a parameter uses
the keyword “where”.

To make things even more confusing, this doesn’t apply everywhere: The Event-B struc-
tural editor always uses the keyword “where”, but the pretty print for the Event-B structural
editor switches between the two. The default Rodin editor always uses the keyword ”where”.
The Event-B syntax in this handbook has been generated with the LATEXplugin, which also
switches between the two keywords.

4.3 Modelling

4.3.1 Witness for Xyz missing. Default witness generated

A parameter has disappeared during a refinement. If this is intentional, add a witness (3.2.4)
to tell the machine how the abstract parameter should refined.

4.3.2 Identifier Xyz should not occur free in a witness

This means that the Xyz identifier appears in a witness predicate, but Xyz is a disappearing
abstract variable or parameter and is not set as the witness label. To resolve this error, set
change the witness label to the identifier Xyz.

4.3.3 Witness Xyz must be a disappearing abstract variable or
parameter in the INITIALISATION event

The witness is for the after value of the abstract variable, hence you should use the primed
variable. The witness label should be Xyz’, and the predicate should refer to Xyz’ too.

4.3.4 I’ve added a witness for Xyz but it keeps saying “Identifier
Xyz has not been defined”

As specified in the Section 3.2.4, the witness must be labelled with the name Xyz of the
abstract parameter of the event that is being refined. A concrete example can be found in
Section 2.8.5.

4.3.5 How can I create a new Event-B Project?

Please read Section 2.4.2 to learn how to create a new Event-B project.

4.3. MODELLING 175

4.3.6 How can I remove a Event-B Project?

In order to remove a project, first select it on the Project Explorer and then right click with
the mouse. The contextual menu will appear on the screen as indicated in Figure 4.1.

Figure 4.1: Removing a Event-B Project

Simply click on Delete, and your project will be deleted (after you confirm that you want
to delete it in the window that pops up). It is then removed from the Project Explorer.

4.3.7 How can I export an Event-B Project?

Exporting a project is the operation by which you can construct automatically a “.zip” file
containing the entire project. Such a file can be sent by email. Once received, an exported
project can be imported (next section). It then becomes a project like the other ones which
were created locally. In order to export a project, select it and then select on File 〉 Export...
from the menubar as indicated in Figure 4.2.

The Export wizard will pop up. In this window, select General 〉 Archive File and click the
Next > button. Specify the path and name of the archive file into which you want to export
your project and finally select Finish. This menu sequence (and the various options) is a part
of the Eclipse platform. For more information, refer to the Eclipse documentation.

4.3.8 How can I import a Event-B Project?

A “.zip” file corresponding to a project which has been exported elsewhere can be imported
locally. In order to do this, click on File 〉 Import from the menubar. In the import wizard,
select General 〉 Existing Projects into Workspace and click Next >. Then choose the Select
archive file option and hit the Browse... button to find the zip file that you want to import.
Now click Finish. As with exporting, this menu sequence and layout are part of Eclipse.

The importation will fail if the name of the imported project (not the name of the file) is
the same as the name of an existing local project. This means that when you are exporting
a project, it is a good idea to modify its name in case the person who imports the project

176 CHAPTER 4. FREQUENTLY ASKED QUESTIONS

Figure 4.2: Export a Event-B Project

already has a project with that same name (which could be a previous version of the exported
project). Changing the name of a project is explained in the next section.

4.3.9 How can I change the name of a Event-B Project?

Select the project whose name you want to modify, and then click on File 〉 Rename.... Modify
the name and click on OK. The name of your project will then have been modified accordingly.

4.3.10 How can I create a Event-B Component?

Please check Section 2.4.2 to learn how to create a new Event-B component.

4.3.11 How can I remove a Event-B Component?

In order to remove a component, press the right-click on the component. In the context
menu, select Delete. This component is removed from the Project Explorer.

4.3.12 In the new Rodin Editor, how can I add an element to
machine?

Please also consult Section 3.1.4. The editor is described in more detail there.

Whenever you pull up a context menu in the new editor, please pay attention to the
following two issues:

• Make sure that the cursor already is on the correct line. If you right-click and the
cursor is on the wrong line or in the wrong position within the line, you will get an
incorrect context menu.

4.3. MODELLING 177

• Make sure the cursor is not in “edit” mode. This is the case when you are able to edit
a textual element. If this is the case, you will also get an incorrect context menu.

The different elements of the machine, can of course, be added using the different wizards
for element creation (New Variable Wizard , New Variant Wizard , New Invariant
Wizard , and New Event Wizard) which are described in more detail in Section 3.1.6.

You can also add new elements by placing your cursor directly to the left of the small
green arrow () that appears next to your machine name in MACHINE section. Now right
click and select the component that you want to add from the Add Child menu. You can
also add an element by right clicking on the heading of the section of the element you want
to add (e.g. VARIABLES) and selecting Add Child, or by placing your cursor directly to the
left of the small green arrow () next to the name of any of the components that already
exist and selecting Add Sibling. Unfortunately, if your cursor is not directly next to the small
green arrow (while the cursor is blinking, the left side of the arrow is actually touching the
cursor), these methods do not actually work.

4.3.13 How can I use multiple lines for a comment, predicate or
expression (using the new editor)?

To insert a line break while editing any field, use Ctrl-Return.

4.3.14 How can I save a Context or a Machine?

Once a machine or context is (partially) edited, you can save it by using the save button as
indicated in Figure 4.3.

Figure 4.3: Save a context or a machine

Once a “Save” has been completed, three tools are called automatically, these are:

• the Static Checker

• the Proof Obligation generator (3.2.7)

• the Auto-Prover (3.1.7)

178 CHAPTER 4. FREQUENTLY ASKED QUESTIONS

This can take some time. A “Progress” view can be opened at the bottom right of the
screen to see which tools are working (most of the time, it will be the auto-prover). This is
done via Window 〉 Show View 〉 Progress.

4.4 Proving

4.4.1 Help! Proving is difficult!

Yes, it is. Check out Section 3.4.5 to begin using the provers.

4.4.2 How can I do a Proof by Induction?

This page about proof by induction will give you some starting tips.

4.4.3 What do the labels on the proof tree mean?

• ah means add hypothesis,

• eh means rewrite with equality from hypothesis from left to right,

• he means rewrite with equality from hypothesis from right to left,

• rv tells us that this goal has been manually reviewed (3.1.7),

• sl/ds means selection/deselection,

• PP means discharged by the predicate prover,

• ML means discharged by the mono lemma prover

http://wiki.event-b.org/index.php/Induction_proof

Index

⊥ (false), 142
> (true), 142
∧ (conjunction), 142
⇔ (equivalence), 142
⇒ (implication), 142
¬ (negation), 142
∨ (disjunction), 142

abstract machine, 127
abstract machine notation, 20
action, 129
addition (+), 155
anticipated, 133
arithmetic, 39
assignment, 129, 157

become element of (:∈), 158
become such (:|), 158
deterministic (:=), 157
non-deterministic, 158

Atelier B provers, 162
auto prover, 110
auto-tactic, 113, 122

preferences, 117, 122
axiom, 45, 127

using a wizard to create an axiom, 100

become element of assignment (:∈), 158
become such assignment (:|), 158
before-after predicate, 130, 158
bijection (��), 153
Boolean

as type, 37
boolean, 144

as type, 139
the operator bool, 144

cardinality (card), 147

carrier set, 37, 126, 139
using a wizard to create a carrier set, 98

Cartesian product (×), 149
combinator, 123
comment, 28
component, 27
composition

backward composition of relations (◦), 151
forward composition of relations (;), 151

conjunction (∧), 142
consistency of a machine, 131
constant, 45, 127

using a wizard to create a constant, 100
context, 39, 45, 126

creation of, 40
dependencies, 96
synthesis, 97

convergent, 133

data type, 37, 139
Boolean, 37
carrier set, 37
integer, 37
user defined, 38

deadlock, 73
derived, 136
discharged, 103
disjunction (∨), 142
division (÷), 155
domain (dom), 150
domain restriction (C), 150
domain subtraction (C−), 150

Eclipse, 20, 85
editor

Camille text editor, 28

179

180 INDEX

default editor, 92
structural editor, 92

EQL (equality of preserved variable proof obli-
gation), 137

equality (=), 143
equivalence (⇔), 142
establishment of the invariant, 131
event, 47, 128

merging events, 133
using a wizard to create an event, 101

Event-B, 20, 169
explorer, 89
perspective, 87

exists (∃), 143
exponentation (̂), 155
extending

a context, 126
an event, 133

extends, 46

false
as expression (FALSE), 144
as predicate (⊥), 142

fast view bar, 89
feasibility

of actions, 131
of witnesses, 130

FIN (finiteness proof obligation), 137
FIS (feasibility proof obligation), 137
Font, 172
for all (∀), 143
free identifiers, 140
function (7→, →), 153
function application, 154

gluing invariant, 52, 127
goal, 106
GRD (guard-strengthening proof obligation),

137
guard, 129

strengthening, 132

identifier, 137
identity relation (id), 152

implication (⇒), 142
import project, 60
proof by induction, 178
initialisation, 47, 131
injection (7�,�), 153
integer, 37

as set (Z), 155
as type, 139

intersection
generalized intersection (inter), 148
intersection (∩), 146
quantified intersection (

⋂
), 148

INV (invariant proof obligation), 137
invariant, 31, 47, 128

using a wizard to add an invariant, 101
inverse (−1), 151

L-operator, 140
lamba expression (λ), 154
live lock, 79

machine, 46, 127
dependencies, 97
synthesis, 97

mailing list, 169
maplet (7→), 149
mathematical notation, 35
mathematical symbols, 29
maximum (max), 156
membership (∈), 143
merging events, 133
minimum (min), 156
minus (−), 155
modelling, 174
modulo (mod), 155
MRG (guard-strengthening (merge) proof obli-

gation), 137
multiplication (·), 155

NAT (natural number proof obligation), 137
natural numbers (N), 155
negation (¬), 142
notation

Event-B, 125

INDEX 181

mathematical, 139

oftype operator (◦◦), 156
ordinary, 133

pair, 37, 149
as type, 139

parameter, 31, 129
partition, 147
pending, 103
perspective

customisation, 89
Event-B, 87
proving, 102

plus (+), 155
post-tactic, 113

preferences, 117
post-tactics, 74
predicate, 35
predicate logic, 19
preferences, 115

prefix, 116
profile, 119
tactics, 117, 122

pretty print, 98
ProB, 32, 44
product

direct product of relations (⊗), 151
of integers (·), 155
parallel product of relations (‖), 151

project, 26, 85, 174
clean, 170

projection (prj1,prj2), 152
proof control view, 107
proof obligation, 31

action feasibility (FIS), 131
action simulation (SIM), 132
axiom as theorem (THM), 136
equality of a preserved variable (EQL),

132
generation, 137
guard as theorem (THM), 137
guard strengthening (GRD), 132
invariant as theorem (THM), 136

invariant preservation (INV), 131
merging events (MRG), 133
well-definedness of a guard (WD), 135
well-definedness of a variant (VWD), 136
well-definedness of a witness (WWD), 136
well-definedness in an action (WD), 136
well-definedness of an axiom (WD), 135
well-definedness of an invariant (WD), 135
witness feasibility (WFIS), 130

ProR Requirements Tool, 25
proving, 59, 159, 178

perspective, 102
proof obligation, 46
proof rule, 159
proof tactics, 161
provers, 162
pruning, 105
purging, 166
simplifying, 167
the proof tree, 102

purging proofs, 166

quantification
existential (∃), 143
universal (∀), 143

range (ran), 150
range restriction (B), 150
range subtraction (B−), 150
reasoner, 165
refinement, 48, 127

data refinement, 127
horizontal, 127
superposition, 127, 133
vertical, 127

refines, 46
relation, 39

backward composition (◦), 151
direct product (⊗), 151
forward composition (◦), 151
identity (id), 152
image, 152
inverse (−1), 151
parallel product (‖), 151

182 INDEX

relation (↔,←↔,↔→,↔↔), 149
relational image, 152
reminder, see modulo
requirements, 25
reviewed, 103
Rodin, 85, 169
Rodin problems view, 89

sees, 46
selected hypotheses, 106
sequent, 159
set, 45

as type, 37
cardinality (card), 147
comprehension set, 144
difference set (\), 146
empty set (∅), 145
finite, 147
operations, 37
partition, 147
power set (P), 147
set extension, 145
set subtraction (\), 146

SIM (simulation proof obligation), 137
simplifying proofs, 167
skip, 132
specification, 25
status of an event, 133
strengthening of a guard, 132
subset (⊆,⊂), 146
subtraction

of integers (−), 155
of sets (\), 146

superposition refinement, 127
surjection (7�,�), 153
symbols, 172
Symbols view, 29

tactic combinator, 123
tactics, 161

auto-tactic, 113, 117
post-tactic, 113, 117

theorem, 46, 136
THM (theorem proof obligation), 137

traceabililty, 25
true

as expression (TRUE), 144
as predicate (>), 142

type, see data type
type expression, 139

union
generalized union, 148
quantified union (

⋃
), 148

union (∪), 146

VAR (decreasing of variant proof obligation),
137

variable, 46, 128
common variable, 128
creating a variable, 28

variant, 133
view

Proof Control, 107
Rodin Problems view, 89
Search Hypotheses, 110
Symbols View, 89

VWD (well-definedness of variant proof obli-
gation), 137

warnings, 60
WD (well-definedness proof obligation), 137
well-definedness, 140
WFIS (witness feasibility proof obligation),

137
when, 173
where, 173
witness, 49, 54, 130, 174
wizard

New Axioms Wizard, 100
New Carrier Sets Wizard, 98
New Constants Wizard, 100
New Enumerated Set Wizard, 41, 99
New Event Wizard, 101
New Invariants Wizard, 101
New Variable Wizard, 100

WWD (well-definedness of witness proof obli-
gation), 137

INDEX 183

xulrunner, 172

yellow highlighting, 30

	Contents
	Preface
	Foreword
	Introduction
	Overview
	Formats of this Handbook
	Rodin Wiki
	Contributing

	Further Reading
	Modeling in Event-B: System and Software Engineering, J.-R. Abrial (2010)
	Rodin: An Open Toolset for Modelling and Reasoning in Event-B (2009)
	The B-Method, an Introduction (Steve Schneider)
	Event-B Cookbook
	Proofs for the Working Engineer (2008)
	The Proof Obligation Generator (2005)

	Conventions
	Acknowledgements
	DEPLOY
	Creative Commons Legal Code

	Tutorial
	Outline
	Before Getting Started
	Systems Development
	Formal Modelling
	Predicate Logic
	Event-B
	Rodin
	Eclipse

	Installation
	Install Rodin for the first time
	Install new plugins

	The First Machine: A Traffic Light Controller
	Excursus: The specification process
	Project Setup
	Camille, a text-based editor
	Building the Model
	The Final Traffic Light Model

	Mathematical notation
	Predicates
	Data types
	Operations on Sets
	Introducing user-defined types
	Relations
	Arithmetic

	Introducing Contexts
	Create a Context
	Populate the Context
	The Final Context

	Event-B Concepts
	Contexts
	Machines
	Events
	Refinement

	Contexts and Refinement
	Data Refinement
	A Context with Colours
	The Actual Data Refinement
	The refined machine with data refinement for peds_go
	Witnesses
	Discussion
	The Refined Machine with All Data Refinement
	One more Refinement: The Push Button
	Discussion

	Proving
	The Celebrity Problem
	Importing a project
	Fixing Problems
	The Final Second Refinement
	The Celebrity algorithm
	The First Proof
	Proving — an Art or a Science?

	Proving Deadlock Freeness
	Deadlock Freeness of initial model
	Deadlock Freeness of First Refinement

	Outlook

	Reference
	The Rodin Platform
	Eclipse in General
	The Event-B Perspective
	Customizing a perspective suitable for RODIN
	The Event-B Editor
	The Structural Event-B Editor
	Wizards
	The Proving Perspective
	Preferences

	Event-B's modelling notation
	About the notation that we use
	Substitutions
	Contexts
	Machines
	Well-definedness proof obligations
	Theorems
	Generated proof obligations
	Visibility of identifiers

	Mathematical Notation
	Introduction
	Predicates
	Booleans
	Sets
	Relations
	Arithmetic
	Typing
	Assignments

	Proving
	Sequents
	Proof Rules
	Proof Tactics
	Provers
	How to Use the Provers Effectively
	Reasoners
	Purging Proofs
	Simplifying Proofs

	Frequently Asked Questions
	General Questions
	Where can I get help?
	What is Event-B?
	What is the difference between Event-B and the B method?
	What is Rodin?
	Where does the Rodin name come from?
	Where I can download Rodin?
	How to contribute and develop?
	My operating system is not supported! How can I install Rodin on my platform?

	General Tool Usage
	Do I lose my proofs when I clean a project?
	How do I install external plugins without using the Eclipse Update Manager?
	The builder takes too long
	What are the ASCII shortcuts for mathematical operators?
	Pretty Print does not work on Linux
	Some mathematical characters are wrong
	No More Handles
	Software installation fails
	How do I send a bug report?
	Where did the GUI window go?
	Where vs. When: What's going on?

	Modelling
	Witness for Xyz missing. Default witness generated
	Identifier Xyz should not occur free in a witness
	Witness Xyz must be a disappearing abstract variable or parameter in the INITIALISATION event
	I've added a witness for Xyz but it keeps saying ``Identifier Xyz has not been defined''
	How can I create a new Event-B Project?
	How can I remove a Event-B Project?
	How can I export an Event-B Project?
	How can I import a Event-B Project?
	How can I change the name of a Event-B Project?
	How can I create a Event-B Component?
	How can I remove a Event-B Component?
	In the new Rodin Editor, how can I add an element to machine?
	How can I use multiple lines for a comment, predicate or expression (using the new editor)?
	How can I save a Context or a Machine?

	Proving
	Help! Proving is difficult!
	How can I do a Proof by Induction?
	What do the labels on the proof tree mean?

	Index

