
Formal Methods in Software Engineering

Assignment 2 (Spin and Model-Checking)

(Due on Thu 15th Feb 2024. Total marks 80)

1. Consider the pairs of LTL assertions below. For each pair either give
an informal proof that they are equivalent, or a counter-example model
(an infinite sequence of propositional valuations) that shows they are not
equivalent. Your counter-example should be in the form of an ulitmately
periodic word of the form u · (vω), where u and v are finite sequences of
propsitional valuations over the propositions {p, q, r}. (Marks 10 )

(a) G(Fp) and F (Gp).

(b) ¬(pUq) and (¬q)U(¬p).

2. Consider the Promela model below. (Marks 20 )

byte x = 1;

proctype counter() {
do
:: x <= 1 -> x = x + 1;
:: x >= 1 -> x = x - 1;
od

}

init {
run counter();

}

(a) Describe the transition system that Spin compiles this model into.
You may choose to ignore the intermediate states Spin uses to move
to a satisfied guard. Show only the reachable states.

(b) Does this model satisfy the property “(x = 1) =⇒ F (x = 2)”?
Justify your answer.

(c) Construct a state-based Büchi automaton (by hand if you like) for
the negation of this formula, over the propositions p representing
x = 1, and q representing x = 2.

(d) Construct the product of the transition system of the model and the
Büchi automaton for the formula above. Describe the counterexam-
ple path if any.

3. Construct the formula automaton for the LTL formula true Up, using the
algorithmic construction described in class. You could treat true as p∨¬p.

(Marks 10 )

4. Imagine that you have been asked to implement a traffic light for a junction
as shown in the figure below. The aim of this exercise is to use Spin to (a)
design your system and model it in Promela, and (b) debug and eventually
verify it, before you move on to implementing/fabricating it. (Marks 40 )



SN Vehicle Sensor

WE Vehicle Sensor

Traffic at the junction moves in two directions: West-to-East (WE) or
South-to-North (SN). There are two sets of lights: one for WE direction
and the other for SN direction. Each light goes from green to amber
for 1 sec and then to red; and from red directly to green. There are
two sensors “WEsen” and “SNsen” which give a “true” signal whenever
there is a vehicle waiting to cross in the respective directions. Your light
subsystem runs at a certain clock speed, while the timer subsystem which
counts seconds, sends clock ticks at a slower, non-deterministic speed.
Your system should satisfy the following requirements:

(a) (Safety) The WE and SN lights are never green at the same time.

(b) (Utility) If a light is green and there is no vehicle waiting in the other
direction, then the light should remain green.

(c) (Stability) The lights stay green for at least 3 sec at a stretch.

(d) (Liveness) Vehicles should not have to wait for more than 10 sec at a
signal.

Build a Promela model of your design, taking into account these require-
ments, with three active proctypes, “tlight”, “timer”, and “vehicle” as
shown below. Specify the last four requirements above as LTL properties
in your Promela model.

mtype = { GREEN, AMBER, RED };
mtype = { GO, CHANGE, STOP };

bool tick = false;
bool WEsen = false;
bool SNsen = false;
WElight = GREEN;
SNlight = RED;

2



...

active proctype tlight() {
bool ctr = 0;
do

...
od;

}

active proctype timer() {
do
:: tick = false;
:: tick = true;
od;

}

active proctype vehicle() {
do
:: SNsen = false;
:: SNsen = true;
:: WEsen = false;
:: WEsen = true;
od;

}

You could generate multiple versions of your design. For each version
first test it out (manually or using simulate option of Spin) and con-
vince yourself that your model is correct, before using the verify option
in Spin. Your answer should contain a series of Promela models named
tlight-v1.pml, tlight-v2.pml, . . . , accompanied with a description of
the issues you found (if any) while using Spin to verify the four proper-
ties, and how you plan to fix it in the next model. Submit as a zipped file
tlight-your-name.zip.

3


