
Lecture Notes on Automated Verification

Deepak D’Souza
Dept. of Computer Science and Automation

Indian Institute of Science, Bangalore.
deepakd@csa.iisc.ernet.in

February 5, 2014

1 Transitions Systems and Automata

As a general theme in this course, labelled transition systems play the role of sys-
tem models, while automata will represent specifications of required behaviour.
In this section we introduce transition systems and classical automata and show
how we do automated reasoning in this framework.

An alphabet is a finite set of symbols. For example Σ = {a, b, c} is an
alphabet. A word over an alphabet Σ is a finite sequence of symbols from Σ,
denoted for example as abbc, baa etc. The empty word is denoted by ε. The set
of all words over Σ is denoted by Σ∗.

A language over an alphabet Σ is a subset of Σ∗. For example L1 =
{abbc, baa} is a finite language over Σ = {a, b, c}. L2 = {ε, ab, aabb, . . .}, and
L3 = {ai | i is prime} are infinite languages over Σ.

A (labelled) transition system over an alphabet Σ is a tuple T = (Q, s,→)
where:

• Q is a finite set of states

• s ∈ Q is the initial state

• →⊆ Q× Σ×Q is the transition relation

We will view a transition system as a generator of words. Let T = (Q, s,→)
be a transition system over Σ. A run of T on a word w = a1 · · · an ∈ Σ∗ (with
n ≥ 0) is a finite sequence of states q0q1q2 · · · qn, such that

• q0 = s, and

• for each i : 0 ≤ i ≤ n− 1, qi
ai+1→ qi+1.

The language generated by T is defined to be

L(T) = {w ∈ Σ∗ | S has a run on w}.

1

It is convenient to sometimes use a state-labelled transition system. This is
of the form T = (Q,S,→ l) where S is now a non-empty set of initial states,
→ Q×Q is an (un-labelled) transition relation, and l : Q→ Σ is a state-labelling
function. A run of T on a word w = a1 · · · an ∈ Σ∗ (n ≥ 0) is a finite (possibly
empty) sequence of states q1q2 · · · qn, such that

• If n ≥ 1 then q1 ∈ S, and

• for each i : 0 ≤ i ≤ n− 1, qi →i+1 and for each i : 1 ≤ i ≤ n, l(qi) = ai.

Both forms of transition systems accept prefix-closed regular languages.
As an example we show how we can model a synchronous sequential circuit

as a state-labelled transition system. This circuit is taken from [2]. The circuit is
meant to behave as an arbiter for a resource, say a memory bus in a processor. It
has two input lines req1 and req2 , and two output lines ack1 and ack2 . A process
asserts its request line when it needs the resource, and its acknowledgment line
is asserted (by the arbiter) in case it is granted the resource. Below is a diagram
of the circuit:

req1

req2

ack1

ack2

Clock
bit

We assume the circuit is driven by a clock and the latch is edge-triggered.
The circuit works in a latch–change-inputs–read-output cycle. The initial value
of the latch and request values is assumed to be 0.

The circuit is modelled as a state-labelled transition system in Figure 1.
Each state label is of the form (req1 , req2 , ack1 , ack2 , bit).

Turning now to specifications of behaviours, we will use automata to describe
specifications. In this section, we will look at “safety” specifications.

Recall that a (non-deterministic) finite state automaton (NFA) is a structure
of the form A = (Q,S,→ F) similar to a transition-labelled transition system,
except that S is a set of initial states, and F is a set of final states. A run of
A on a word w is now accepting only if it ends in a state in F . The language
generated by A is defined to be

L(A) = {w ∈ Σ∗ | S has an accepting run on w}.

A specification of safe behaviours (or a safety specification) is simply an
automaton which accepts a prefix-closed language (or equivalently a transition

2

1

0

1

0

0

0

1

0

1

0

1

1

1

0

0

0

0

0

0

1

0

1

0

1

1

1

1

0

1

1

1

0

1

0

1

0

0

0

0

0

Figure 1: Transition system for the arbiter circuit.

system). If we view the set of all words over an alphabet Σ as a downward
growing tree (as shown in Fig 2) then a safety specification can be viewed as a
“sub-cone” of this tree. A system modelled as a transition system T over Σ is
said to satisfy a safety spec L(A) iff L(T) ⊆ L(A).

- Give example of specs for example above.
- Other examples of specs
- Solving the verification problem. Complexity (refer to exercise).

2 Verification with Buchi Automata

Automata on infinite words were introduced by Büchi and Muller in the 1960’s
with a view to solving problems in Logic and switching theory respectively.
Our interest however is in using these automata as specifications of infinite
behaviours.

Why do we consider infinite (non-terminating) behaviours at all? Simply
because this is a natural thing to do when we want to reason about certain
properties of “reactive” systems. In particular, “liveness” properties like “a
request is eventually granted”, or in general, “something good eventually hap-
pens”. When the eventuality is bounded, as in “a request is granted within 5
steps”, then we can use classical automata on finite words to describe the good
behaviours we expect to see. However, when we have no bound in our specifi-
cation, it is not clear how one can specify such a property as a property of the

3

����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������

����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������

ε

a b

aa bbab ba

Figure 2: Tree of words over Σ = {a, b} and a safety spec.

finite behaviours that the system can generate. On the other hand, it is much
more natural to specify that all infinite runs of the system satisfy the property
that every request is eventually granted.

Though Linear-time Temporal Logic (LTL) is a more standard way of speci-
fying infinite behaviours, we use Büchi automata to model specifications for the
following reasons:

• Büchi automata are technically more expressive than LTL. Thus we could
potentially specify properties like “even number of a’s and b’s between
c’s” which cannot be specified in LTL (though in practice these properties
may not be very useful).

• We will solve the LTL model-checking problem later using the automata-
theoretic approach, where we translate an LTL formula into a correspond-
ing Büchi automaton. Thus the verification framework for Büchi automata
can be used there too.

• Some verification tools like Spin (and Mona?) allow specifications of ar-
bitrary Büchi automata.

[Material from [3]] - Introduction to Büchi automata, definitions, examples.
To follow the model-checking framework for classical automata, we need to

be able to complement Büchi automata, intersect it with the system, and check
the combined automaton for emptiness.

- Answering questions about automata: emptiness, closure under union,
intersection, and complementation.

Here is a characterisation of ω-regular languages along the lines of Kleene’s
regular expressions, via ω-regular expressions:

Theorem 2.1 ω-regular languages (i.e. those accepted by Büchi automata) can
be characterised as finite unions of ω-languages of the form U · V ω, where U
and V are regular languages of finite words.

4

a, b

b

b

1 2

1 1 1 1 1 1

2 2

ba a b a

Figure 3: an “accepting” run of the “subset automaton”.

Proof Let A = (Q, s,→, F) be a Büchi automaton. Let Wpq = {w | p w→ q}.
Then

L(A) =
⋃
f∈F

(Wsf · (Wff)ω)

Conversely, we note that if U is regular, and L is ω-regular, then Uω and
U · L are both ω-regular. 2

We give a fleshed-out version of the proof of complemenation from [3]. Before
that, we try to see why the classical “subset construction” fails for determinizing
non-deterministic Büchi automata. (One may ask “what if we could? how do we
complement a deterministic Büchi automaton?” This can be done by guessing
a point after which we see no more F states and going over to a copy in which
all F states are deleted, and all non-F states are now final.)

Consider the non-deterministic Büchi automaton accepting the language of
finitely many a’s given in Fig 2. Suppose we construct the subset automaton and
take the set of subset states that contain a final state of the original automaton
as the Büchi accepting states. Consider the run of the subset automaton on
(ab)ω as shown. The word (ab)ω is accepted as it sees a “final” subset state
infinitely often. However there is no infinite run of the original automaton
along these subset states that visits state 2 infinitely often.

As it turns out, deterministic Büchi automata are strictly less expressive
than their non-deterministic counterparts. (The above exercise is not entirely
futile as Safra shows how one can use essentially the same subset construction
– though with a Rabin condition – to get a deterministic version of the given
Büchi automaton).

Here is a characterisation of languages accepted by deterministic Büchi au-
tomata: they are all limits of a regular language.

lim(W) = {α | α has infinitely many prefixes in W}

Proof : Given A show that Lω(A) = lim(Lf (A)). 2

We can now show that L over {a, b} of finitely many a’s is not definable by
a deterministic Büchi automaton. If so then L = lim(W) for some regular W .

5

Now since abω ∈ L, we have abi0 ∈ W for some i0. Similarly, abi0 abω ∈ L,
hence abi0 abi1 ∈ W for some i1. Continuing in this way, we can conclude that
L must contain the ω-word α = abi0abi1 · · ·, since it has infinitely many prefixes
in W and hence belongs to lim(W), which is L. This is a contradiction, since
α has infinitely many a’s.

We can have other acceptance conditions which preserve the class of lan-
guages defined by non-deterministic Büchi automata, but which admit deter-
minization.

Muller: We have an underlying transition system (Q, s,−→) as before, along
with a set of subsets of Q: {F1, . . . , Fk}, with each Fi ⊆ Q. A run ρ is accepting
according to this condition iff inf (ρ) = Fi for some i.

Rabin: A set of pairs of subsets of Q: {(R1, G1), (R2, G2), . . . (Rk, Gk)}. A
run ρ is accepting according to such a Rabin condition iff for some i, inf (ρ)∩Ri =
∅ and inf (ρ) ∩Gi 6= ∅.

Street (this is the negation of the Rabin condition): A set of pairs of subsets
of Q: {(R1, G1), (R2, G2), . . . (Rk, Gk)}, with a run ρ being accepting iff for all
i, inf (ρ) ∩Ri 6= ∅ or inf (ρ) ∩Gi = ∅.

It is easy to see that BA = MA = RA = SA and that the translation from
BA to MA, and RA to MA, both preserve the structure of the automata (in
particular if the automaton is deterministic to begin with, its translation to
MA is also deterministic). In general, however, going from MA to BA or RA
introduces non-determinsm.

Routes for complementation:

• Safra shows that it is possible to extend the idea of the subset construction
to determinize an Büchi automaton into a deterministic Rabin automa-
ton. The same automaton viewed as a Street automaton recognizes the
complement of the original Büchi automaton. We can now convert the
deterministic Street automaton to a non-deterministic Büchi automaton.
This can be done by taking the intersection of the Büchi automata cor-
responding to each (Ri, Gi) pair. The Büchi automaton simply checks if
either an Ri state is seen infinitely often, or – after a point – the Gi states
are never seen. Note that intersection works here because the automaton
was deterministic to begin with. Alternately, one can use a more efficient
construction due to Vardi (see [1]).

• McNaughton showed that Buchi automata are equivalent in expressive
power to deterministic Muller automata. Since deterministic Muller au-
tomata can be easily complemented, we can now translate the comple-
mented Muller automaton to a non-deterministic Büchi automaton.

Note that Safra’s construction gives an alternate proof of McNaughton’s
result: Given a MA we can go to a (non-det) BA, from there to a deter-
ministic RA (using Safra’s construction), and (trivially) back to a deter-
ministic MA.

• Büchi: using congruences. We describe this below.

6

Büchi’s procedure for complementation.
Given A = (Q, s,−→, F) a Büchi automaton over Σ. We proceed as follows:

Show that we can define a congruence ∼A of finite index on Σ∗ with the following
properties. Let S be the set of equivalence classes of ∼A. Then

1. For any U, V ∈ S, if L(A) ∩ U · V ω 6= ∅ then U · V ω ⊆ L(A).

2. Σω =
⋃
U,V ∈S U · V ω.

It follows that both L(A) and Σω−L(A) are finite unions of sets of the form
U · V ω, for U, V ∈ S. This proves that ω-regular languages are closed under
complement. To see that this gives us an effective procedure for complementing
A, we observe that the languages U in S are regular languages (being equivalence
classes of a congruence of finite index) and in fact computable (i.e. we can
construct automata for each of the languages in S (Exercise!)). Hence we can
find all the U.V ω which have an empty intersection with L(A) and take their
union to get an automaton accepting Σω − L(A).

• Define ∼A.

• Show that |S| ≤ 22.n
2

. Every equivalence class has a unique pair (X,Y)
associated with it, where X and Y are subsets of 2Q×Q, representing
respectively the exact set of pairs (q, q′) on which there is a path on all u
in the equivalence class from q to q′, and the set of pairs on which there
is a path that visits F . The number of such pairs (X,Y) is at most 22.n

2

.

To prove the first part of the claim, let α ∈ U.V ω ∩L(A), and let β ∈ U.V ω.
Then α = u · v0 · v1 · · · and β = u′ · v′0 · v′1 · · · for some u, u′ ∈ U and vi, v

′
i ∈ V .

An accepting run ρ of A on α now easily gives rise to an accepting run ρ′ of A
on β, using the properties of ∼A.

To prove the second part of the claim: Let α ∈ Σω. We want to break up α
into u · v1 · v2 · · · with the vi’s ∼A-equivalent. Refer to figure 4.

• Define an equivalence on positions of α as follows: k ∼ k′ iff there exists
some m ≥ k, k′ with α[k,m] ∼A α[k′,m] (in this case we say k and k′

merge at m).

• ∼ is of finite index over N.

If not, ∼ has infinitely many positions ki, no two of which merge at
any point. Let ∼A have n equivalence classes. Consider the positions
k0, . . . , kn. At the postion kn + 1, the words α[ki, kn + 1] for each i ∈
{0, . . . , n} belong to distinct equivalence classes of ∼A. But this is a con-
tradiction.

• So there is an equivalence class of ∼ that repeats infinitely often along α.
Let these positions be k0, k1,

Now there is a subsequence of < ki >, say < li > which has the property
that α[l0, li] ∼A α[l0, lj] for all i, j. This is true since, if we consider the

7

l0 l2 l3 l4 l5

l0 l2 l3 l4 l5

l0 l2 l3 l4 l5

Figure 4: Arguing “completeness”

position k0, the ∼A equivalence classes it sees at the subsequent ki’s are
finite, and hence there must be one class which repeats infinitely often.
Take these positions as the li’s.

• We can further assume that the li’s are such that each of l0, . . . , li merge
at li+1, for each i.

• This now lets us argue that the α[li, li+1]’s are all ∼A-equivalent.

• Mention that size of complemented automaton is 24.n
2

. It seems easy to
see it is 2O(n2).

3 Linear-Time Temporal Logic

Motivation for using LTL: simpler to use than automata, fairly natural and
concise for most specifications.

We consider the following syntax of LTL(P) parameterised by a countable
set of propositions P .

ϕ ::= > | p | Oϕ | (ϕUϕ) | 3ϕ | 2ϕ | ¬ϕ | (ϕ ∨ ϕ)

Here p ∈ P .
The logic is interpreted over infinite sequences of “worlds” or propositional

valuations for P . We represent a propositional valuation as a subset v of P , in
which the variables in v are set to true, and the rest to false. A model for a

8

formula ϕ in the logic is thus of the form α ∈ (2P)ω. The satisfaction relation,
α |= ϕ (“αmodelsϕ”) is given by:

α, i |= >
α, i |= p iff p ∈ α(i)
α, i |= Oϕ iff α, i+ 1 |= ϕ
α, i |= ϕUη iff ∃k ≥ i : α, k |= η and ∀j : i ≤ j < k, α, j |= ϕ
α, i |= 3ϕ iff ∃k ≥ i : α, k |= ϕ
α, i |= 2ϕ iff ∀k ≥ i : α, k |= ϕ
α, i |= ¬ϕ iff α, i 6|= ϕ
α, i |= ϕ ∨ ψ iff α, i |= ϕ or α, i |= ψ

The modalities 3 and 2 are expressible using U : 3ϕ = >Uϕ, and 2ϕ =
¬(>U¬ϕ). We say α |= ϕ if α, 0 |= ϕ. We denote by L(ϕ) the set {α ∈
(2P)ω | α |= ϕ}.

Examples: for mutual exclusion: safety: 2(¬(1atl3 ∧ 2atl3)) and liveness:
2((1atl1 ⇒ 31atl3) ∧ (2atl1 ⇒ 32atl3)). For alternating bit protocol: fairness
(messages are delivered infinitely often implies sent message eventually reaches).

Satisfiability and Model-checking problems: The satisfiability problem for
LTL is given an LTL formula ϕ is there a model α such that α |= ϕ?

In the model-checking problem we are given a finite state program modelled
as a state-labelled transition system T , where the labels come from 2P , and an
LTL(P) formula ϕ, and we have answer whether T |= ϕ in the sense that every
run of T satisfies ϕ: more precisely is L(T) ⊆ L(ϕ)?

Both problems are equivalent in a sense (Exercise!).
Both problems can be solved if we can show that we can construct for any

given LTL(P) formula, a Büchi automaton Aϕ over the alphabet 2P , accepting
precisely the models of ϕ: i.e. L(Aϕ) = L(ϕ).

Some examples of manually constructing BA for given LTL formulas: 3(pUq),
2(pUq).

A natural approach to try: inductively associate a BA with each subformula.
This works fine for p, Op, and boolean combinations. But for ϕUψ it is not
easy. We can guess a point where ψ will be true, and spawn off a copy of Aψ to
verify that. However, we need to check that ϕ is true at each point till then, and
this would require spawning off copies of Aϕ at all these points. Thus, maybe
with a theory of alternating Büchi automata one could pull this off.

We now sketch the technique due to Vardi and Wolper (construction of
the Vardi-Wolper formula automaton). Idea: use state to specify exacly the
sub-formulas we are going to satisfy, use a “two-state” (current-state and next-
state) semantics for the temporal operators, and use the transition relation of
the automaton to locally ensure this, and use the Büchi acceptance condition
to ensure that eventualities like µ in ψUµ are met.

Let ϕ be an LTL formula over the set of propositions P . We define a Büchi
automaton Aϕ over 2P which accepts precisely the set of models of ϕ.

Let sfc(ϕ) be the set of subformulas of ϕ. We define cl(ϕ), the Fisher-Ladner

9

closure of a formula ϕ, to be

cl(ϕ) = X ∪ {¬β | β ∈ X},

where X = sfc(ϕ) ∪ {O(ψUµ) | ψUµ ∈ sfc(ϕ)}
Define an atom of ϕ to be a maximally consistent subset of cl(ϕ). Formally,

a subset A of cl(ϕ) is an atom of ϕ iff

1. ∀ψ ∈ cl(ϕ), ¬ψ ∈ A iff ψ 6∈ A. (Here we identify ¬¬ψ with ψ.)

2. ∀(ψ ∨ µ) ∈ cl(ϕ), (ψ ∨ µ) ∈ A iff ψ ∈ A or µ ∈ A.

3. ∀(ψUµ) ∈ cl(ϕ), (ψUµ) ∈ A iff µ ∈ A, or, both ψ, O(ψUµ) ∈ A.

We can now define the automaton ALTL
ϕ = (Q,Q0,−→,F). We use a gener-

alized Büchi condition which is of the form F = {F1, . . . , Fm}. A run ρ : N→ Q
is accepting according to F iff for each i ∈ {1, . . . ,m}, ρ(j) ∈ Fi for infinitely
many j ∈ N. A generalized Büchi condition can be easily converted to a Büchi
condition by augmenting the states with a 0–k counter.

• Take Q to be the set of atoms of ϕ.

• Q0 is the set of atoms in Q which contain ϕ.

• The transition relation→ e is given by the following rule. We have A
v→ B

iff each of the following is satisfied:

1. v = A ∩ P .

2. For each Oψ ∈ cl(ϕ), Oψ ∈ A iff ψ ∈ B.

• For the final states we have a generalized Büchi condition F = {F1, . . . , Fm}
wherem ≥ 0 is the number of until formulas in cl(ϕ). Let {ψ1Uµ1, . . . , ψmUµm}
be the set of until formulas in cl(ϕ). Then for each i ∈ {1, . . . ,m} we de-
fine Fi = {A | ψiUµi 6∈ A or µi ∈ A}.

Example of p Uq.
Claim: L(A) = L(ϕ).
Proof: soundess and completeness.

References

[1] [M96]Madhavan Mukund: Automata on infinite inputs, Technical
Report TCS-96-2, Chennai Mathematical Institute (1996).

[2] [M98]K. L. McMillan, Getting started with SMV, 1998.

[3] [T90]W. Thomas: Automata on Infinite Objects, in J. V. Leeuwen
(Ed.), Handbook of Theoretical Computer Science, Vol. B, 133–191,
Elsevier Science Publ., Amsterdam (1990).

10

