Model-checking LTL properties

Deepak D'Souza

Department of Computer Science and Automation Indian Institute of Science, Bangalore.

5,6 February 2024

Outline of this lecture

- 1 Overview of LTL model-checking
- 2 Büchi automata
- 3 LTL to Büchi automata
- 4 Correctness of Formula Automaton
- Overall Algo and Exercise

Syntax and semantics of LTL

Syntax:

$$\varphi ::= p \mid \neg \varphi \mid \varphi \vee \varphi \mid X\varphi \mid \varphi U\varphi.$$

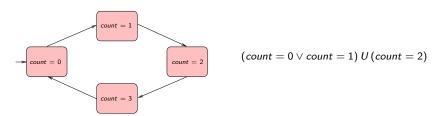
Semantics: Given an infinite sequence of states $w = s_0 s_1 \cdots$, and a position $i \in \{0, 1, \ldots\}$, we define the relation $w, i \models \varphi$ inductively as follows:

```
\begin{array}{lll} w,i \vDash p & \text{iff} & p \text{ holds true in } s_i. \\ w,i \vDash \neg \varphi & \text{iff} & w,i \not\vDash \varphi. \\ w,i \vDash \varphi \lor \psi & \text{iff} & w,i \vDash \varphi \text{ or } w,i \vDash \psi. \\ w,i \vDash X\varphi & \text{iff} & w,i+1 \vDash \varphi. \\ w,i \vDash \varphi U\psi & \text{iff} & \exists j: i \leq j, \ w,j \vDash \psi, \ \text{and} \\ \forall k:i \leq k < j, \ w,k \vDash \varphi. \end{array}
```

 $F\varphi$ is shorthand for $trueU\varphi$, and $G\varphi$ is shorthand for $\neg(F\neg\varphi)$.

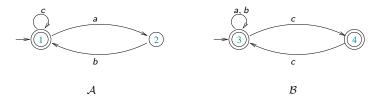
When a system model satisfies an LTL property

If $\mathcal T$ is a transition system and φ is an LTL formula with propositions that refer to values of variables in $\mathcal T$, then we say $\mathcal T \vDash \varphi$ (read " $\mathcal T$ satisfies φ ") iff each infinite execution of $\mathcal T$ satisfies φ in the initial position.



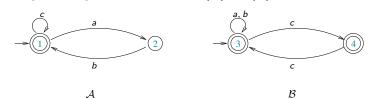
Model-Checking Algo: Idea

Can we give an algorithm to decide if $L(A) \subseteq L(B)$?

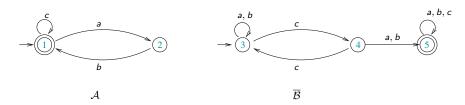


Model-Checking Algo: Idea

Can we give an algorithm to decide if $L(A) \subseteq L(B)$?



First complement \mathcal{B} :



Then construct the "product" of A and \overline{B} , and check for emptiness.

Overview of LTL model-checking procedure

Given a transition system \mathcal{T} and an LTL property φ , we want to know whether $\mathcal{T} \vDash \varphi$ (i.e. do all infinite executions of \mathcal{T} satisfy φ ?).

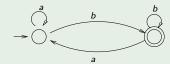
General idea:

- Compile given property φ into an automaton $\mathcal{A}_{\neg \varphi}$ accepting precisely the models of $\neg \varphi$.
- Take the "product" of \mathcal{T} and $\mathcal{A}_{\neg \varphi}$.
- Look for an "accepting" path in this product.
- If such a path exists, this is a counter-example to the claim that $\mathcal T$ satisfies the property φ .
- If no such path exists, then \mathcal{T} satisfies φ .

Büchi automata

- Finite state automata that run over infinite words. Example: $(ab)^{\omega}$ denotes the infinite string $ababababab \cdots$.
- How do we accept an infinite word? Acceptance mechanism proposed by Büchi: see if run visits a final state infinitely often.

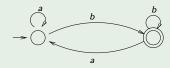
Büchi automaton for infinitely many b's



Büchi automata

- Finite state automata that run over infinite words. Example: $(ab)^{\omega}$ denotes the infinite string $ababababab \cdots$.
- How do we accept an infinite word? Acceptance mechanism proposed by Büchi: see if run visits a final state infinitely often.

Büchi automaton for infinitely many b's



Büchi automaton for finitely many a's

Exercise

Give a Büchi automaton over the alphabet $\{a, b, c\}$ that accepts all infinite strings in which every a is eventually followed by a b.

Büchi Automata more formally

A (non-deterministic) Büchi automaton over an alphabet A is of the form

$$\mathcal{A} = (Q, S, \Delta, F)$$
 where

- Q is a finite set of states
- $S \subseteq Q$ is the set of start states
- $\Delta \subseteq Q \times A \times Q$ is the transition relation
- $F \subseteq Q$ is the set of final states

A run of ${\mathcal A}$ on an $\omega\text{-word }\alpha\in A^\omega$ is a sequence of states

$$ho = q_0, q_1, \dots$$
 satisfying

- $q_0 \in S$, and
- For each i, $(q_i, a_{i+1}, q_{i+1}) \in \Delta$.

Run ρ is accepting iff $inf(\rho) \cap F \neq \emptyset$, where $inf(\rho)$ is the set of states occurring infinitely often along ρ .

A word α is accepted by \mathcal{A} iff there is an accepting run of \mathcal{A} on α .

L(A) is the set of words accepted by A.

Checking non-emptiness of Büchi automata

- Büchi automata have similar closure properties to classical FSA's: closed under union, intersection, and complement.
- Non-emptiness is efficiently decidable: Look for a path from initial state to a final state that can reach itself.
- Can be checked efficiently: in time linear in the number of states and transitions of automaton.

Checking non-emptiness of Büchi automata

- Büchi automata have similar closure properties to classical FSA's: closed under union, intersection, and complement.
- Non-emptiness is efficiently decidable: Look for a path from initial state to a final state that can reach itself.
- Can be checked efficiently: in time linear in the number of states and transitions of automaton.

Checking non-emptiness

Generalized Büchi condition: F_1, \ldots, F_k and a run is accepting if each F_i is seen infinitely often. Can be easily converted to a normal Büchi condition.

LTL models as sequences of propositional valuations

- LTL can be interpreted over a sequence of valuations to the propositions used in the formula.
 - E.g. In the formula G((count = 1) => X(count = 2)),
 count = 1 and count = 2 are the only propositions (say p and q), and a state can be viewed as a valuation to these propositions
- Example propositional valuation: $\langle p \mapsto true, q \mapsto false \rangle$.
- We represent such a valuation as simply $\{p\}$ (that is the subset of propositions that are true).
- Further use a propositional formula (like $p \lor q$) to represent sets of propositional valuations, namely those in which the formula is true.
 - E.g. $p \lor q$ represents the 3 valuations $\{p, q\}$, $\{p\}$, and $\{q\}$.

Compiling LTL properties into Büchi automata

Every LTL property φ over a set of propositions P can be expressed in the form of a BA \mathcal{A}_{φ} over the the alphabet 2^{P} , that accepts precisely the models of φ .

Some examples over set of propositions $P = \{p, q\}$. The label " $\neg p$ " is short for the set of labels $\{q\}$ and $\{\}$.

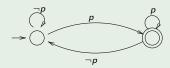
Büchi automaton for G(F(p))

Compiling LTL properties into Büchi automata

Every LTL property φ over a set of propositions P can be expressed in the form of a BA A_{ω} over the the alphabet 2^{P} , that accepts precisely the models of φ .

Some examples over set of propositions $P = \{p, q\}$. The label " $\neg p$ " is short for the set of labels $\{q\}$ and $\{\}$.

Büchi automaton for G(F(p))



Büchi automaton for pUq

Every LTL property φ over a set of propositions P can be expressed in the form of a BA \mathcal{A}_{φ} over the the alphabet 2^{P} , that accepts precisely the models of φ .

Some examples over set of propositions $P = \{p, q\}$. The label " $\neg p$ " is short for the set of labels $\{q\}$ and $\{\}$.

Büchi automaton for G(F(p))

Büchi automaton for pUq

Automata with State-Based Labels

Step 1: Form the closure $cl(\varphi)$ of the given LTL formula φ as follows:

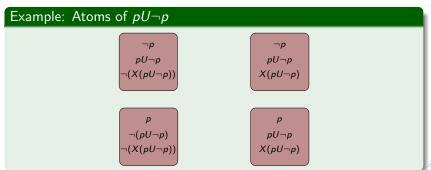
- Throw in all sub-formulas of φ .
- Throw in $X(\theta U \eta)$ whenever $\theta U \eta$ is a subformula.
- Throw in $\neg \psi$ for each ψ thrown in (identify $\neg \neg \theta$ with θ for this purpose).

Example: Closure of $pU \neg p$

$$cl(pU\neg p) = \{p, \neg p, pU\neg p, X(pU\neg p), \neg X(pU\neg p), \neg (pU\neg p)\}.$$

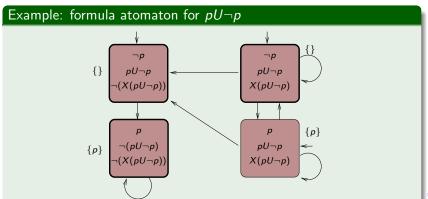
Step 2: Form "atoms" of given LTL formula φ . Atoms will play the role of states in the resulting BA.

- An atom of φ is a "maximally consistent" subset A of $cl(\varphi)$:
 - For each $\neg \psi \in cl(\varphi)$, A contains exactly one of ψ or $\neg \psi$.
 - For each $\theta \lor \psi \in cl(\varphi)$, A contains $\theta \lor \psi$ iff it contains θ or ψ .
 - For each $\theta U \eta \in cl(\varphi)$, A contains $\theta U \eta$ iff it contains η or both θ and $X(\theta U \eta)$.



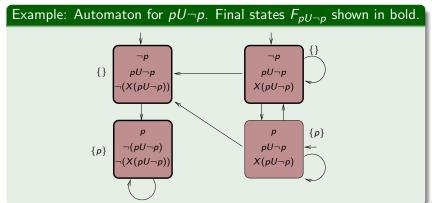
Step 3:

- Label atom A with valuation s consistent with A (i.e. $s = A \cap P$).
- Add transition from atoms A to B if for each $X\psi$ in $cl(\varphi)$: • $X\psi \in A$ iff $\psi \in B$.



- Step 4: Make atom A initial if A contains φ .
- Step 5. Have a generalised Büchi acceptance: For each $\theta U\eta$ in $cl(\varphi)$:

$$F_{\theta U\eta} = \{A \mid \theta U\eta \not\in A \text{ or } \eta \in A\}.$$



Correctness of construction

Let \mathcal{A}_{arphi} be the Büchi automaton constructed by our algorithm. Then

Theorem

 $L(A_{\varphi})$ accepts precisely the models of φ .

Correctness of construction

Let \mathcal{A}_{arphi} be the Büchi automaton constructed by our algorithm. Then

Theorem

 $L(A_{\varphi})$ accepts precisely the models of φ .

Prove Soundess and Completeness of the formula automaton wrt the models of φ .

Model-checking LTL properties

Given a transition system \mathcal{T} and an LTL property φ over a set of propositions P, we want to know whether $\mathcal{T} \vDash \varphi$ (i.e. do all infinite executions of \mathcal{T} satisfy φ ?).

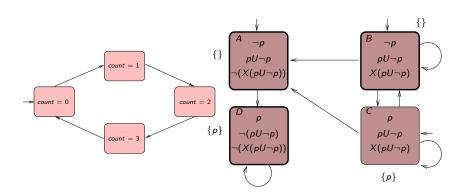
- Compile given property φ into an automaton $\mathcal{A}_{\neg \varphi}$ accepting precisely the models of $\neg \varphi$.
- Take the "product" of \mathcal{T} and $\mathcal{A}_{\neg\varphi}$. (Pair states t of \mathcal{T} and A of $\mathcal{A}_{\neg\varphi}$ together iff the set of propositions p true in t is exactly $A \cap P$.)
- Look for an "accepting" path in this product.
- If such a path exists, this is a counter-example to the claim that \mathcal{T} satisfies the property φ .
- If no such path exists, then \mathcal{T} satisfies φ .

Exercise

If p is the proposition "count \neq 2" then check if the mod-4 counter transition system satisfies the formula $\neg(pU\neg p)$.

- Construct the product of the mod-4 counter transition system and formula automaton for $pU\neg p$.
- Describe your counter-example if any.

Exercise



Material for Temporal Logic based model-checking

- Textbook by Clarke, Grumberg, and Peled: Model Checking.
- Textbook by Christel Baier and Joost-Pieter Katoen: *Principles of Model Checking*, MIT Press 2008.