
Overview Transition Systems Example 1: mod-4 counter Specifying properties in LTL Example 2: Traffic light

Introduction to Model-Checking using Spin

Deepak D’Souza

Department of Computer Science and Automation
Indian Institute of Science, Bangalore.

18, 23 January 2024

Overview Transition Systems Example 1: mod-4 counter Specifying properties in LTL Example 2: Traffic light

Methods and tools covered in this course

Requirements Design TestingCoding

Analysing Requirements

Model−Checking

Functional Correctness

Systematic Testing

(Spin)

(Alloy)

(Rodin, VCC)

(JPF/AFL)

Software Development Stages

T
o

o
ls

Overview Transition Systems Example 1: mod-4 counter Specifying properties in LTL Example 2: Traffic light

Model-checking using Spin: Plan of lectures

Lecture 1 & 2: Intro to model-checking using Spin.

Lecture 3 & 4: How LTL model checking works.

Overview Transition Systems Example 1: mod-4 counter Specifying properties in LTL Example 2: Traffic light

Outline of this lecture

1 Overview

2 Transition Systems

3 Example 1: mod-4 counter

4 Specifying properties in LTL

5 Example 2: Traffic light

Overview Transition Systems Example 1: mod-4 counter Specifying properties in LTL Example 2: Traffic light

Overview of Spin

Spin is a model-checking tool, in which we can

Describe transition system models.

Suited for concurrent protocols, supports different
synchronization constructs.

Simulate them, explore paths in them.

Describe desirable properties of the system in temporal logic.

Check that the system satisfies these properties.

Proves that property is satisfied
Produces counter-examples (execution that violates property).

Overview Transition Systems Example 1: mod-4 counter Specifying properties in LTL Example 2: Traffic light

Systems where Spin was successfully used

Software control of Flood control barrier in The Netherlands.
Verified the control algorithms.
Call Processing logic of PathStar telephone switch: extraction
of the model and verification of properties related to
call-waiting/forwarding etc.
Mission-Critical Software in Mars Rover and other space
missions. Verification of resource (including motors) manager,
hand-off protocols, etc.

More details at spinroot.com/spin/success.html.

spinroot.com/spin/success.html

Overview Transition Systems Example 1: mod-4 counter Specifying properties in LTL Example 2: Traffic light

Transition systems: states

A state (over a set of variables Var with associated types) is a
valuation for the variables in Var .
Thus a state is a map s : Var → Values, that assigns to each
variable x a value s(x) in the domain of the type of x .

Example of a state

Consider Var = {loc, ctr}, with type of loc = {sleep, try, crit},
and type of ctr = N.
Example state s: 〈loc 7→ sleep, ctr 7→ 2〉, depicted as:

ctr = 2

loc = sleep

Overview Transition Systems Example 1: mod-4 counter Specifying properties in LTL Example 2: Traffic light

Transition systems

A transition system is of the form T = (S , I ,→) where

S is a set of states,

I ⊆ S is a set of initial states,

→⊆ S × S is a transition relation.

A run or execution of T is a (finite or infinite) sequence of states
s0, s1, s2, . . . such that

s0 ∈ I , and

for each i , si → si+1.

Overview Transition Systems Example 1: mod-4 counter Specifying properties in LTL Example 2: Traffic light

Example transition system: a mod-4 counter

Transition system of a mod-4 counter

Here Var = {count}, with type of count = {0, 1, 2, 3}.

T = (S = {〈count 7→ 0〉, 〈count 7→ 1〉, 〈count 7→ 2〉, 〈count 7→ 3〉},
I = {〈count 7→ 0〉},
→ = {(〈count 7→ 0〉, 〈count 7→ 1〉),

(〈count 7→ 1〉, 〈count 7→ 2〉),
(〈count 7→ 2〉, 〈count 7→ 3〉),
(〈count 7→ 3〉, 〈count 7→ 0〉)}).

Overview Transition Systems Example 1: mod-4 counter Specifying properties in LTL Example 2: Traffic light

Example transition system: a mod-4 counter

Diagrammatic representation

count = 0 count = 2

count = 1

count = 3

Example run:

count = 0 count = 2count = 1 count = 3 count = 0

Overview Transition Systems Example 1: mod-4 counter Specifying properties in LTL Example 2: Traffic light

Mod-4 counter in Spin

byte count = 0;

proctype counter() {

do

:: true -> count = (count + 1) % 4;

od

}

init {

run counter();

}

Overview Transition Systems Example 1: mod-4 counter Specifying properties in LTL Example 2: Traffic light

Property specifications in Temporal Logic

Linear-time Temporal Logic (LTL) proposed by Amir Pnueli in
1978 to specify properties of program executions.

What can we say in LTL? An LTL formula describes a
property of an infinite sequence of “states.”

p: an atomic proposition p (like “count = 2” or “tick =
false”) holds in the current state.
Xp (“next p”): property p holds in the tail of the sequence
starting from the next state.
Fp (“future p”): property p holds eventually at a future state.
Gp (“globally p”): property p holds henceforth (at all future
states).
U(p, q) (“p Until q”): property q holds eventually and p holds
till then.

p
q

¬p
¬q

p
¬q

p
¬q

¬p
q

p
q

Overview Transition Systems Example 1: mod-4 counter Specifying properties in LTL Example 2: Traffic light

Illustrating Semantics of an LTL formula

Example formula: (count = 0 ∨ count = 1)U (count = 2)

U

∨ count = 2

count = 1count = 0

Overview Transition Systems Example 1: mod-4 counter Specifying properties in LTL Example 2: Traffic light

Syntax and semantics of LTL

Syntax:
ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | Xϕ | U(ϕ,ϕ).

Semantics: Given an infinite sequence of states w = s0s1 · · · , and
a position i ∈ {0, 1, . . .}, we define the relation w , i |= ϕ
inductively as follows:

w , i |= p iff p holds true in si .
w , i |= ¬ϕ iff w , i 6|= ϕ.
w , i |= ϕ ∨ ψ iff w , i |= ϕ or w , i |= ψ.
w , i |= Xϕ iff w , i + 1 |= ϕ.
w , i |= U(ϕ,ψ) iff ∃j : i ≤ j , w , j |= ψ, and

∀k : i ≤ k < j , w , k |= ϕ.

Fϕ is shorthand for U(true, ϕ), and Gϕ is shorthand for ¬(F¬ϕ).

Overview Transition Systems Example 1: mod-4 counter Specifying properties in LTL Example 2: Traffic light

When a system model satisfies an LTL property

If T is a transition system and ϕ is an LTL formula with
propositions that refer to values of variables in T , then we say
T |= ϕ (read “T satisfies ϕ”) iff each infinite execution of T
satisfies ϕ in its initial state.

Overview Transition Systems Example 1: mod-4 counter Specifying properties in LTL Example 2: Traffic light

Example properties for counter model

byte count = 0;

proctype counter() {

do

:: true -> count = (count + 1) % 4;

od

}

init {

run counter();

}

ltl prop1 { [](count <= 3) };

ltl inc { []((count == 1) -> X(count == 2)) }

ltl prop3 { ((count == 0) || (count == 1)) U (count == 2));

ltl prop4 { [](count == 0) };

Overview Transition Systems Example 1: mod-4 counter Specifying properties in LTL Example 2: Traffic light

Transition System generated by Spin

Extended transition system generated by Spin:

true; skip

true; skip

true; count = (count + 1) % 4

1 2

4

Corresponding transition system:

Overview Transition Systems Example 1: mod-4 counter Specifying properties in LTL Example 2: Traffic light

Transition System generated by Spin: Example from Spin
Primer and Ref book

active proctype not_euclid(int x, y)

{

if

:: (x > y) -> L: x = x - y

:: (x < y) -> y = y - x

:: (x == y) -> assert (x != y); goto L

fi;

printf(";%d\n", x)

}

Corresponding transition
system:

Transition Relation
 Every PROMELA proctype defines a finite state automaton, (S, s0, L, T, F), as defined in Chapter 6. The set of
states of this automaton S corresponds to the possible points of control within the proctype. Transition relation T
defines the flow of control. The transition label set L links each transition in T with a specific basic statement that
defines the executability and the effect of that transition. The set of final states F, finally, is defined with the help of
PROMELA end-state, accept-state, and progress-state labels. A precise description of how set F is defined for
safety and for liveness properties can be found in Appendix A.

 Conveniently, the set of basic statements in PROMELA is very small. It contains just six elements: assignments,
assertions, print statements, send or receive statements, and PROMELA's expression statement (cf. p. 51). All other
language elements of PROMELA serve only to specify the possible flow of control in a process execution, that is,
they help to specify the details of transition relation T. As one small example, note that goto is not a basic statement in
PROMELA. The goto statement, much like the semicolon, merely defines control-flow.

 As a small example of how PROMELA definitions translate into automata structures, consider the PROMELA
model shown in Figure 7.1, which corresponds to the automaton structure shown in Figure 7.2. The presence of the
goto achieves that the execution of the assertion statement leads to control state s2, instead of s4. Thereby it changes
the target state of a transition, but it does not in itself add any transitions. In other words, the goto effects a change in
transition relation T, but it does not, and cannot, appear in label set L.

 Figure 7.1 Sample PROMELA Model

active proctype not_euclid(int x, y)

{

 if

 :: (x > y) -> L: x = x - y

 :: (x < y) -> y = y - x

 :: (x == y) -> assert(x!=y); goto L

 fi;

 printf(";%d\n", x)

}

 Figure 7.2. Transition Relation for the Model in Figure 7.1

 Two points are especially worth noting here. First, language elements such as if, goto, the statement separators
semicolon and arrow, and similarly also do, break, unless, atomic, and d_step, cannot appear as labels on transitions:
only the six basic types of statements in PROMELA can appear in set L.

 Second, note that expression statements do appear as first-class transition labels in the automaton, and they are from
that point of view indistinguishable from the other types of basic statements. In PROMELA every basic statement has
a precondition that defines when it is executable, and an effect that defines what happens when it is executed. We
explore many of these issues in more detail in the remainder of this chapter.

Overview Transition Systems Example 1: mod-4 counter Specifying properties in LTL Example 2: Traffic light

Example with inputs: Traffic light model

“Stop” says the red light, “Go” says the green.
“Change” says the amber light, blinking in between.
That’s what they say, and that’s what they mean.
We all must obey them, even the Queen!

Overview Transition Systems Example 1: mod-4 counter Specifying properties in LTL Example 2: Traffic light

Traffic light model in Spin

mtype = { GREEN, AMBER, RED };

mtype = { GO, CHANGE, STOP };

bool tick = false;

mtype status = GO;

mtype light = GREEN;

byte ctr = 0;

active proctype TrafficLight() {

do

:: atomic {

if

:: tick = false;

:: tick = true;

fi;

if

:: (status == GO) && (ctr == 3) && tick -> status = CHANGE; ctr = 0;

:: (status == CHANGE) && (ctr == 1) && tick -> status = STOP; ctr = 0;

:: (status == STOP) && (ctr == 3) && tick -> status = CHANGE; ctr = 0;

:: else -> ctr = (tick -> (ctr + 1) % 4 : ctr);

fi;

if

:: status == GO -> light = GREEN;

:: status == CHANGE -> light = AMBER;

:: status == STOP -> light = RED;

fi;

}

od;

}

ltl liveness { []((light == RED) -> <>(light == GREEN)) };

ltl sequence { []((light == RED) U ((light == AMBER) U (light == GREEN))) };

Overview Transition Systems Example 1: mod-4 counter Specifying properties in LTL Example 2: Traffic light

Transition system for traffic light (partial)

tick = false
status = go
light = green
ctr = 0

tick = true
status = go
light = green

tick = false
status = go
light = green
ctr = 1

ctr = 2

tick = false
status = go
light = green

ctr = 3

tick = true
status = go
light = green

ctr = 1

ctr = 2

tick = true
status = go
light = green

Overview Transition Systems Example 1: mod-4 counter Specifying properties in LTL Example 2: Traffic light

Exercise

1 Which of the properties below are true of the traffic light
model?

G((light = red) => F(light = green));

G((light = red) U ((light = amber) U (light = green)));

2 Fix model based on error trail found by Spin.

3 Give modified properties that the system satisfies.

Overview Transition Systems Example 1: mod-4 counter Specifying properties in LTL Example 2: Traffic light

Exercise

1 Which of the properties below are true of the traffic light
model?

G((light = red) => F(light = green));

G((light = red) U ((light = amber) U (light = green)));

2 Fix model based on error trail found by Spin.

3 Give modified properties that the system satisfies.

Overview Transition Systems Example 1: mod-4 counter Specifying properties in LTL Example 2: Traffic light

Exercise

1 Which of the properties below are true of the traffic light
model?

G((light = red) => F(light = green));

G((light = red) U ((light = amber) U (light = green)));

2 Fix model based on error trail found by Spin.

3 Give modified properties that the system satisfies.

Overview Transition Systems Example 1: mod-4 counter Specifying properties in LTL Example 2: Traffic light

Some example models

Simple example modelling concurrency (race.pml,
inc-dec-lock.pml)

Example using channels for communication (prod-con.pml)

Example of post-facto use of Spin (Detecting races in
FreeRTOS)

Overview Transition Systems Example 1: mod-4 counter Specifying properties in LTL Example 2: Traffic light

Spin resources and other material

Spin webpage: http://spinroot.com/

Current version: Spin v6.5.1
Useful documentation:

Spin documentation (tutorial, reference manual, etc):
http://spinroot.com/spin/Man/.

Material for other topics:

Textbook by Huth and Ryan, Logic in Computer Science:
Specifications, semantics, and model-checking techniques for
LTL.

	Overview
	Transition Systems
	Example 1: mod-4 counter
	Specifying properties in LTL
	Example 2: Traffic light

