
Data Abstraction in VCC

Ernie COHEN a,1

a Microsoft Corporation

Keywords. Software Verification, Data Abstraction, Concurrency

In these notes, we present a methodology for verifying C code, i.e. proving mechani-
cally that it meets its functional specifications. We target C because it is (along with C++)
the the language of choice for writing “important” software (operating system kernels,
device drivers, compilers, etc.). The methodology has been developed for VCC, a verifier
for concurrent C code. VCC and papers about it can be found at vcc.codeplex.com.
These notes are not intended as a tutorial on VCC, its implementation, use, or mathemati-
cal underpinnings; instead, we focus on techniques for reasoning about data abstractions,
in both sequential and concurrent contexts.

1. Invariance Reasoning

We focus primarily on proving safety properties, i.e. that bad things don’t happen. Some
examples of bad things we don’t want to happen are (unintended) arithmetic overflows,
null or wild pointer dereferences, races on nonvolatile data, and wrong results returned
from functions. The usual way to prove that bad things don’t happen is to define a suitable
global invariant: a set of “good” program states such that (1) the system starts out in a
good state, and (2) if the system takes a single step from a good state, the resulting state
is good. If we can prove that our set of good states is an invariant, and that bad things
don’t happen in good states, we’ve proved that bad things don’t happen.

Goodness is defined as a big conjunction of properties, defined by annotations
added to the code. Almost all of these properties are of the form “this is true here”. For
example, here is a small, annotated program that adds two unsigned numbers:

unsigned add(unsigned x, unsigned y)
_(requires x+y <= UINT_MAX)
_(ensures \result==x+y)

{
unsigned i=x;
unsigned j=y;
while (i>0)
_(invariant i+j == x+y)

{
i--;
j++;

1E-mail: Ernie.Cohen@microsoft.com

}
return j;

}

Annotations in VCC are enclosed in the macro _(), which is defined to be whites-
pace to the C compiler. The first identifier after the _((e.g. requires) identifies the
kind of annotation. Within an annotation, identifiers beginning with \ (e.g. \result)
are VCC keywords; the remaining identifiers (e.g. i) refer to the surrounding context.

This program has three annotations, each of the form “this is true here”:

• _(requires p) says that p must hold on function entry (after the formals have
been bound to arguments); we then say that p is a precondition of the function;

• _(ensures p) says that p must hold on return from the function (\result
representing the value returned, if any); we then say that p is a postcondition of
the function;

• _(invariant p), when used to annotate a loop, says that p must hold every
time control reaches the top of the loop (before evaluating the loop test); p is what
is called a loop invariant.

Of course an appropriate definition of goodness implicitly includes what should be true
at other control points as well. For example, in the state after the first statement in the
loop, goodness should imply i+1+j == x+y, and in the state just after the loop it should
imply i+j == x+y && !(i > 0). In addition, there are certain implicit parts of the
invariant that can be deduced without explicit annotation; for example, since x and y

are not changed in the function body, VCC can automatically deduce that they always
have the value they had on entry to the function. More generally, any variable that isn’t
updated in the loop has the same value that it had just before loop entry.

We can reason about this function as follows. It’s easy to see that the loop invariant
holds when control reaches the loop. Inside the loop, We have to check that the oper-
ations on i and j do not overflow or underflow. We know that i-- doesn’t underflow
because of the loop test. We know that the increment to j doesn’t overflow because the
loop invariant, combined with the function precondition and the fact that x and y aren’t
modified, implies that i+j <= UINT_MAX on entry to the loop, so since i > 0, j <

UINT_MAX. Next, we have to show that the loop invariant holds when control transfers
back to the top of the loop; this is true because we added to j the same amount that we
subtracted from i. Finally, on loop exit, we know (from the loop invariant and the fact
that we exited the loop) that j == x+y, so the return statement satisfies the function
postcondition.

The annotations that appear before the function body constitute the specification or
contract of the function; in a larger program, these are typically be put on the declaration
of the function (in a header file). The function gets to assume that its preconditions hold
on function entry, and is obligated to establish the postconditions on every return from
the function. Dually, a caller of the function is obligated to establish the preconditions
on function entry, and gets to assume the postconditions when the function returns. For
example, consider the following function that calls add:

unsigned add3(unsigned x, unsigned y, unsigned z)
_(requires x+y+z <= UINT_MAX)
_(ensures \result == x+y+z)

{
unsigned i = add(x,y);
return add(i,z);

}

We can reason about this function as follows. First, the precondition, along with z >= 0

(because z is unsigned), implies x+y <= UINT_MAX, so the precondition of the first call
to add is satisfied. We can therefore assume the postcondition of the call when it returns,
so after the assignment to i we know that i == x+y. On the second call, since i==x+y,
we know that i+z <= UINT_MAX (thanks to the precondition), so the second call to add
satisfies its preconditions. Finally, the return from second call to add guarantees that
\result == i+z, and since i==x+y, this gives us the postcondition of the function.

Verification tools or methodologies that use contracts as the only interface between
functions and their callers are said to be (function-)modular. Modular verification has a
number of important practical advantages:

• Each function can be verified separately, which means that verification scales well
with program size, and can be easily paralellized.

• If you change only the body of a function of a verified program, you only have to
reverify that function body; the rest of the program is guaranteed to still verify.

• Irrelevant detail is hidden from the verification engine, making reasoning more
efficient.

• The specification of a function provides precise documentation for the function,
so that users can just read the specification, without having to read the code.
Moreover, verification guarantees that this documentation is up to date.

• You can verify code that calls a function as soon as the specification of the func-
tion is written, without having to implement the function first, so a function and
its callers can be implemented in parallel. This is particularly useful for func-
tions implemented in hardware; applications can be written and verified before
the hardware even exists.

Note that we have not proved that these functions terminate, only that if they return,
they give the right answer. While VCC can prove termination, it is not central to the
subject of these notes, so we will not go into the details; interested readers are referred
to the VCC documentation.

2. Ghost Data and Code

Consider the following function that computes remainder of integer division by repeated
subtraction:

unsigned mod(unsigned x, unsigned d)
_(requires d > 0)

{
unsigned r = x;
unsigned q = 0;
while (r >= d)
_(invariant x == r + q * d)

{
r -= d;
q += 1;

}
return r;

}

(We will give this a proper postcondition in a moment.) In this function, we don’t really
care about the quotient q, just the remainder r. However, q is still useful, because it
allows us to write a suitable loop invariant. We would like to hide q from the compiler,
but keep it around for reasoning. We do this by declaring q and the code that updates it
as ghost:

unsigned mod(unsigned x, unsigned d)
_(requires d > 0)

{
unsigned r = x;
_(ghost unsigned q = 0;)
while (r >= d)
_(invariant x == r + q * d)

{
r -= d;
_(ghost q += 1;)

}
return r;

}

We reason about ghost code as if it was actually executed, even though it is hidden
from the compiler. The reason that this is sound is that the program with the ghost code
simulates the program without the ghost code. To make sure that this is the case, we
check that each piece of ghost code terminates and that it doesn’t update the concrete
(non-ghost) state. We can extend q for use in the specification by declaring it as an output
parameter of the function:

unsigned mod(unsigned x, unsigned d _(out unsigned q))
_(requires d > 0)
_(ensures x == \result + q * d && \result < d)

(A call to mod has the form mod(e0,e1 _(out v)) where v is a ghost variable.)
You might wonder why we would use a ghost variable instead of just existentially

quantifying over q wherever it appears. Using a ghost variable has several advantages:

• It saves the annotational clutter of having to existentially quantify the variable in
each assertion.

• It saves the theorem prover from having to find a suitable instantiation for the
variable when trying to prove the assertion.

• Existential quantification doesn’t distribute through conjunction. This means that
if we want to decompose a formula into conjuncts that are maintained by different
parts of the program, we have to use a shared ghost variable, rather than existential
quantification.

Note that in addition to ordinary C types, ghost data can use other mathematically
well-defined types, since the data doesn’t have to be implemented at runtime. VCC ghost
types include unbounded types like natural numbers and integers, map types, and even
a state type (which can be viewed as a mapping from memory addresses to arbitrary
values, including states). Similarly, ghost code can use unexecutable program constructs
such as unbounded quantification.

3. The Heap

So far, we’ve considered functions that use only “purely local” variables (local variables
and parameters to which the address operator is never applied). These variables have the
property that they cannot alias with other variables or be referenced by pointers. Purely
local variables are easy to reason about, because in a function with purely local variable
i, the value of i can be changed only by a syntactically identifiable assignment to i.
However, most C programs have visible side effects through the heap (by which we
mean any memory that is not purely local). Moreover, it is only through the heap that
concurrent threads can interact. To understand how we specify and verify functions that
operate on the heap, we have to describe how the heap is organized in VCC, and how
heap memory is shared between functions and threads.

The state is given by the state of a fixed set of objects, each with a number of fields,
some of which are ghost. For a given program, this set of objects is fixed; for example, it
doesn’t change when memory is allocated or deallocated. The objects are disjoint; chang-
ing a field of one object doesn’t change fields of other objects. We represent an object as
a (typed) C pointer to the object. For most purposes, an object can be thought of as an in-
stance of a C struct type; primitive types like ints, pointers, and arrays of primitives,
are fields of objects, but are not themselves objects. For example, for each user-defined
struct type, there is an object of that type for every properly aligned address where
an object of that type could be placed. (There are some artificial objects introduced to
contain disembodied bits of memory of primitive types, such as global variables or local
variables whose address is taken.)

Each object has a ghost field \valid that says whether it is one of the “real” objects
of the current state. At each step, we allow fields of invalid objects to change arbitrarily.
Moreover, a global invariant maintained by any verified program is that concrete fields
of \valid objects do not alias (when laid out in physical memory). These properties
guarantee that executions of the real program (reading and writing physical memory)
simulate executions of the ideal program (operating on objects).

Each object has a Boolean field \closed and a field \owner (a pointer to an ob-
ject, which might be a thread). We say an object o is said to own an object o’ iff
o’->\owner==o. Verification implies the global invariants that \closed objects are
\valid, and that open (non-closed) objects are owned by threads. In the context of a
thread, we say that an object is \mutable iff it is owned by the thread and not \closed,
and \wrapped iff it is owned by the thread and \closed. A field of an object is said to
be \mutable iff the object itself is \mutable. (A pointer to a primitive implicitly in-
cludes the object of which it is a field, so such pointers really represent fields of particular
objects rather than just primitive memory locations.) Only threads can own open objects,
and only the thread owning an object can wrap/unwrap the object (make it closed/open).

A memory access can be either sequential or atomic. A sequential read or write
might be broken up into a number of steps, and/or reordered with respect to other se-
quential memory operations, by a compiler that implicitly assumes that the memory is
not being changed by other threads. An atomic read or write is done as part of an action
that is guaranteed to be atomic by the underlying platform, and must appear inside an
explicitly declared atomic action. (We won’t be getting to these for a while.) An atomic
read or write can only access mutable fields or fields of objects that are known to be
closed, and can only modify a field of a closed object if the field is marked volatile.
A sequential write is allowed only to a field that is mutable (and satisfies an additional
condition). A sequential read is allowed if the field is mutable or is a nonvolatile field
of an object that is known to be closed; by default, VCC tries to prove that the field is
\thread_local, which means that the field is either mutable, a nonvolatile field of an
object that is wrapped, or owned by a wrapped object, or owned by an object owned by
a wrapped object, etc.

Here’s an example of a function that reads sequentially from the heap:

size_t lsearch(unsigned *a, size_t len, unsigned v)
_(requires \thread_local_array(a,len))
_(ensures \forall size_t i; i < \result ==> a[i] != v)
_(ensures \result < len ==> a[\result] == v)

{
for (size_t i=0; i < len; i++)

_(invariant \forall size_t j; j<i ==> a[j] != v)
{
if (a[i] == v) return i;

}
return len;

}

This example makes use of a few new annotations. \thread_local_array{a,len}
means that the unsigneds a[0],a[1], ... a[len-1] are all thread-local; ==> is
logical implication; p ==> q is essentially the same as !p || q, except that ==> has
lower precedence than the built-in C operators. Similarly, <== is reverse implication, and
<==> is iff and only iff. \forall T v; p is true iff p is true (i.e., nonzero) for every v

of type T.
Note that the reasoning in this program depends on the fact that the elements of a

aren’t changing. (A change to a[j], where j<i, could break the loop invariant.) In fact,
VCC assumes that no other threads even run while it executes purely sequential code;
we’ll see why that pretense is sound later.

We mentioned above that writing a field sequentially requires a stronger condition
than mutability. To see why, consider the following function that calls lsearch:

void test() {
unsigned a[10];
a[3] = 0;
lsearch(a,10,3);
_(assert a[3] == 0)

}

We want this function to verify; that is, in the absence of further annotations, a
caller should be able to assume that thread-local data isn’t changed across a function call.
Note that this doesn’t prevent lsearch from declaring and updating local variables, or
allocating and modifying new memory; it only stops the function from updating data that
was thread-local to the caller on function entry, so it does stop lsearch from modifying
a[3].

To be more precise, if an object is wrapped and not mentioned in the writes clause,
then that object remains closed for the duration of the function so the entire sequential
domain rooted at that object is unchanged by the call. If a field of a mutable object
is not mentioned in the writes clause, it is not changed by the call. To enforce these
rules, a function can write to a field of an object only if (1) the field is mentioned in the
writes clause of the function, or (2) the object became mutable after entry to the function.
Similarly, a function can wrap or unwrap an object only if it is mentioned in a writes
clause, or if the object became mutable or wrapped after entry to the function.

4. Data Invariants

Recall that we said that we reason about a program by defining a big invariant for the
whole program, and checking that it is preserved by each state change. We’ve talked
about invariants that link conditions to program control points. But other invariants are
independent of program control, and are more naturally expressed as invariants on data.

We attach data invariants to objects, in particular, to user-defined struct types.
We guarantee that closed objects satisfy their invariants by (1) checking the invariant of
an object when it is wrapped (i.e., when it goes from open to closed), (2) checking the
invariants of a closed object whenever one of its (volatile) fields is modified (in an atomic
action), and (3) checking that all object invariants are “admissible”, which essentially
shows that the invariants of a closed object cannot be broken by updates to other objects.

Here is an example of a data structure that represents a double-precision unsigned
number:

#define ONE ((\natural) 1)
#define RADIX (UINT_MAX + ONE)
#define DBL_MAX (UINT_MAX + UINT_MAX * RADIX)

typedef struct Double {
// abstract value
_(ghost \natural val)

// implementation
unsigned low;
unsigned high;

//coupling invariant
_(invariant val == low + high * RADIX)

} Double;

Each Double d functions as an implementation of a natural number (with value no
greater than DBL_MAX). The field d.val gives its abstract value; the coupling invariant
connects the abstract value with the concrete representation.

The typical way to “construct” an object is to initialize its fields and wrap the object.
For example, here is the code to initialize a new Double:

void dblNew(Double *d)
_(writes \extent(d))
_(ensures \wrapped(d) && d->val == 0)

{
d->low = 0;
d->high = 0;
_(ghost d->val = 0)
_(wrap d)

}

Here, \extent(d) is d along with all of its fields. When a field is included in a writes
clause, it implicitly requires that the field is mutable, so the writes clause implicitly re-
quires that d is mutable.) The ghost statement _(wrap d) closes d, checking its invari-
ant. Note that the postcondition of the function is stated in terms of the abstract value of
the object, without mentioning the concrete implementation. This allows swapping the
implementation out for another type providing essentially the same contracts, without
breaking clients. Note that had we chosen another value for, say, d->low, the verification
of _(wrap d) would fail because the coupling invariant would not be satisfied.

The destructor of a data structure essentially reverses the pre and post-conditions:

void dblDestroy(Double *d)
_(requires \wrapped(d))
_(writes d)
_(ensures \extent_mutable(d))

{
_(unwrap d)

}

A typical operation of the data type maintains (i.e., requires and ensures) that
the object is wrapped, writes the object, and has pre/postconditions written in terms of
the abstract value of the object:

void dblInc(Double *d)
_(maintains \wrapped(d))
_(writes d)
_(requires d->val + 1 < DBL_MAX)
_(ensures d->val == \old(d->val) + 1)

{
_(unwrapping d) {
if (d->low == UINT_MAX) {
d->high++;
d->low = 0;

} else {
d->low++;

}
_(ghost d->val = d->val + 1)

}
}

5. Model Fields

We’ve seen that one way to express abstract state and its connection to concrete state is to
keep the abstract state as a ghost. An alternative is to define the abstract state as a function
of the concrete state; such functions are sometimes called abstraction functions. In some
OO methodologies, these functions can be (syntactically) presented as fields; in this case,
they are usually called model fields.

We can rewrite the Double type using model fields as follows:

typedef struct Double {
unsigned low;
unsigned high;

} Double;

_(def \natural dblVal(Double *d) {
return d->low + d->high * RADIX;

})

Here, _(def dblVal(...)...) defines a pure ghost function whose contract is
derived directly from the code for the function. A pure function is one that doesn’t mod-
ify the state; only pure functions can be used in assertions, preconditions, postconditions,
and invariants.

void dblNew(Double *d)
_(requires \extent_mutable(d))
_(writes \extent(d))
_(ensures \wrapped(d) && dblVal(d) == 0)

{
d->low = 0;
d->high = 0;
_(wrap d)

}

void dblDestroy(Double *d)
_(requires \wrapped(d))
_(writes d)
_(ensures \extent_mutable(d))

{
_(unwrap d)

}

void dblInc(Double *d)
_(maintains \wrapped(d))

_(writes d)
_(requires dblVal(d) < DBL_MAX)
_(ensures dblVal(d) == \old(dblVal(d)) + 1)

{
_(unwrapping d) {
if (d->low == UINT_MAX) {
d->high++;
d->low = 0;

} else {
d->low++;

}
}

}

Note that the only changes are that (1) we omit the ghost field giving the abstract value,
as well as updates to that field; and (2) the abstraction function dblVal is used in place
of the ghost field in writing contracts.

Model fields have some substantial advantages and disadvantages when compared
to ghost fields. Some advantages of model fields:

• As we’ve seen above, using model fields can reduce the amount of annotation
needed.

• Updating a piece of data invisibly updates any model fields that depend on it. This
is particularly useful in concurrent settings, where the model field might have to
be updated in the same atomic action as the representation, but might not be in
scope of the code that updates the representation.

Model fields also have some disadvantages:

• They can only substitute for ghost state in those cases where the abstract state can
be determined from concrete state, independent of the history. A typical example
where this cannot be done is a ring buffer or sliding window, where the abstract
value most convenient for reasoning is a sequence of all the values produced, not
just those remaining in the buffer.

• The connection between the model field and the concrete state normally holds
only when the data is in a consistent state (e.g., when the object containing them
is closed). In a concurrent setting, we often want to maintain an abstract state at
all times (e.g., by defining it to remain unchanged while the object is open). This
generally cannot be done with a model field. (Note, this objection, as well as the
last, might be mitigated by defining an extended sort of model field whose value
is defined as a recursive function of the state history.)

• Sometimes, the function needed to compute the model field from the data is com-
plex enough that it is hard to reason about. A typical example is the abstract value
of an inductive data structure, where the model field typically has a recursive def-
inition. On the other hand, it might be relatively easy to update ghost data in a
first-order way; the update itself can be viewed as an inductive proof of a lemma
about the model field.

• Because ghost fields are explicitly updated, they are governed by the framing
rules (writes clauses), making it easy to detect syntactically the vast majority of
cases where the field is known not to change. Conversely, because model fields

need not be explicitly updated or declared in writes clauses, it is sometimes very
difficult to guess or prove that a model field has not changed, particularly if it is
defined recursively.

• Because ghost fields are explicit object fields, any change to the field causes of
check of the object invariant. Thus, an invariant of the object is checked only for
those updates that actually occur in the code. Conversely, if the invariant makes
use of a model field, one must prove that the invariant cannot be broken by updates
that change the model field without changing other fields of the object.

6. Nested Ownership

A good methodology allows user-defined types like Double to be used much like built-
in types like unsigned. Here is an example of a Quad type defined on top of Double,
much as Double was defined on top of unsigned. The most important difference is that
while primitive fields are not objects (and therefore do not have independent owners),
fields of compound types are considered independent objects. However, we can get a
similar effect by having an object own those “child” objects that serve as part of its
representation; this works whether the children are contained within the object struct or
not.

#define DRADIX (DBL_MAX + ONE)
#define QUAD_MAX (DBL_MAX + DBL_MAX * DRADIX)

typedef struct Quad {
// abstract value
_(ghost \natural val)

Double low;
Double high;
_(invariant \mine(&low) && \mine(&high))

//coupling invariant
_(invariant val == low.val + high.val * DRADIX)

} Quad;

The annotation \mine(x) is shorthand for x->\owner == \this. The first invariant
says that the Quad owns the two Doubles contained inside it. (This invariant has to hold
only when the Quad is closed; since only threads can own open objects, this implies that
the two \Doubles are also closed.) Note that the couping invariant is stated in terms of
the abstract values of the subobjects.

The constructor is much like the constructor for Doubles, except that its low and
high components have to be explicitly constructed:

void quadNew(Quad *q)
_(requires \extent_mutable(q))
_(writes \extent(q))
_(ensures \wrapped(q) && q->val == 0)

{

dblNew(&q->low);
dblNew(&q->high);
_(ghost q->val = 0)
_(wrap q)

}

Every object o has a ghost field o->\owns that gives the set of objects owned by o when
it is closed. When a thread wraps o, it checks that all objects of o->\owns are wrapped,
and transfers ownership of these objects to o. Conversely, when unwrapping an object, it
takes ownership of all objects that were owned by o. By default, o->\owns is determined
by the invariants of the form \mine(o’) in the type definition of o. In the case of a Quad,
these invariants say that for a Quad q, q->\owns is the set {q->low, q->high}. Thus
ownership of these objects transfers to q when it is wrapped.

The reason that it is important for q to own q->low and q->high is that without
this ownership invariant, the coupling invariant of q could be broken by the owner of
q->low unwrapping it and changing q->val. With the ownership invariant, we know
that q->low and q->high must remain closed (since non-thread objects can only own
closed objects); since a nonvolatile field of a closed object cannot change, q->low.val
and q->high.val cannot change, so the couppling invariant cannot be broken.

Destruction is analogous:

void quadDestroy(Quad *q)
_(requires \wrapped(q))
_(writes q)
_(ensures \extent_mutable(q))

{
_(unwrap q)
_(unwrap &q->low)
_(unwrap &q->high)

}

Note that the contracts on construction and destruction are identical to the corre-
sponding contracts from Double. In particular, only q has to be mentioned in the writes
clause, because the thread obtained ownership of q->low and q->high after the func-
tion was called.

Operations on Quads look just like operations on Doubles (except for allowing the
larger range represented by Doubles):

void quadInc(Quad *q)
_(maintains \wrapped(q))
_(writes q)
_(requires q->val + 1 < QUAD_MAX)
_(ensures q->val == \old(q->val) + 1)

{
_(assert \inv(&d->low))
_(unwrapping q) {
if (isDblMax(&q->low)) {
dblInc(&q->high);
dblZero(&q->low);

} else {

dblInc(&q->low);
}
_(ghost q->val = q->val + 1)

}
}

We could likewise implement Quads with model fields instead of ghost fields:

typedef struct Quad {
Double low;
Double high;
_(invariant \mine(&low) && \mine(&high))

} Quad;

_(def \natural qval(Quad *q) {
return dblVal(&q->low) + dblVal(&q->high) * DRADIX;

})

7. Maps

Of course most interesting values cannot be conveniently described in terms of natural
numbers or integers; but most can be described naturally using maps. In VCC, maps look
much like arrays (except that the entire map constitutes a single primitive value).

Here’s a simple example of (small) sets of unsigneds implemented using arrays:

typedef unsigned Val;

typedef struct Set {
// abstract value of the set (a function from Val to \bool)
_(ghost \bool mem[Val])

// concrete representation
Val data[SIZE];
size_t len;
_(invariant len <= SIZE)
_(invariant \forall Val v;

mem[v] <==> \exists size_t j; j < len && data[j] == v)
} Set;

void setNew(Set *s)
_(requires \mutable(s))
_(writes \extent(s))
_(ensures \wrapped(s))
_(ensures \forall Val v; !s->mem[v])

{
s->len = 0;
_(ghost s->mem = \lambda Val v; \false)
_(wrap s)

}

Here, \lambda T v; e, where e is of type T’, is the map from T to T’ that maps v to
e.

_(pure) BOOL setMem(Set *s, Val v)
_(requires \wrapped(s))
_(reads s)
_(ensures \result == s->mem[v])
{
for (size_t i = 0; i < s->len; i++)

_(invariant \forall size_t j; j < i ==> s->data[j] != v)
{
if (s->data[i] == v) return TRUE;

}
return FALSE;

}

BOOL setAdd(Set *s, Val v)
_(maintains \wrapped(s))
_(writes s)
_(ensures \forall Val x;

s->mem[x] == \old(s->mem[x]) || (\result && x == v))
{
if (s->len == SIZE) return FALSE;
_(unwrapping s) {
s->data[s->len] = v;
s->len++;
_(ghost s->mem[v] = \true)

}
return TRUE;

}

Again, we could instead write the same type using model fields instead:

_(typedef \bool valSet[Val])

typedef struct Set {
Val data[SIZE];
size_t len;
_(invariant len <= SIZE)

} Set;

_(def valSet setMem(Set *s) {
return \lambda Val v;
\exists size_t i; i < s->len && s->data[i] == v;

})

8. Existential Quantification and Explicit Witnesses

The coupling invariant (or model field) for Set in the last example used existential quan-
tification. We discussed earlier some of the advantages of replacing existential quantifi-

cation with explicit witnesses. In this case, we can eliminate the existential quantification
by keeping track, for each element of the set, an index where that element appears in the
array of elements.

typedef struct Set {
_(ghost \bool mem[Val]) // abstract value of the set
Val data[SIZE];
size_t len;
_(invariant len <= SIZE)

// explicit witness
_(ghost size_t idx[Val])

_(invariant \forall size_t i; i < len ==> mem[data[i]])

// witness for each abstract member
_(invariant \forall Val v;

mem[v] ==> idx[v] < len && data[idx[v]] == v)
} Set;

BOOL setAdd(Set *s, Val v)
_(maintains \wrapped(s))
_(writes s)
_(ensures \forall Val x;

s->mem[x] == \old(s->mem[x]) || (\result && x == v))
{
if (s->len == SIZE) return FALSE;
_(unwrapping s) {
s->data[s->len] = v;
_(ghost s->mem[v] = \true)
// update the witness
_(ghost s->idx[v] = s->len)
s->len++;

}
return TRUE;

}

Here, _(unwrapping s)B is syntactic sugar for _(unwrap s)B _(wrap s).

9. Inductive types

.
Sometimes, what you really want to do is functional programming. VCC lets you

define inductive datatypes in ghost code, much like modern functional languages like
Haskell or ML (forgive the C-like syntax):

_(datatype Tree {
case Leaf(unsigned val);
case Node(Tree left, Tree right);

})

This defines a the type if binary trees with unsigneds on the leaves; for example,
Node(Node(Leaf(1),Leaf(2)), Node(Leaf(3),Leaf(4))) is a balanced binary
tree with 4 leaves. Note that inductive types are primitive ghost types.

We can write recursive functions on inductive types using pattern matching:

// functional programming
_(def Tree reverse(Tree t)
{
switch (t) {
case Leaf(val) : return t;
case Node(l, r): return Node(reverse(r),reverse(l));

}
})

Note that reverse, like all ghost functions, is implicitly checked for termination; we
won’t go into the details here.

Functional program reasoning follows a somewhat different style from imperative
program reasoning. In imperative programming, you try to abstract data to first-order
abstractions, and write function specifications in terms of first-order updates on these
abstractions. In functional programming, you normally keep things in terms of recursive
functions, exposing their recursive definitions rather than a first-order abstraction. To
reason about such functions, you reason by induction over data, rather than inducting
over time (with invariants).

You can prove theorems by induction just by writing pure functions with suitable
postconditions. For example:

_(def void revRev(Tree t)
_(ensures reverse(reverse(t)) == t)

{
switch (t) {
case Leaf(v): return;
case Node(l, r): revRev(l); revRev(r); return;

}
})

Note that in the recursive case, we make explicit calls to the lemma being proved.
These calls provide the needed inductive instances needed to prove the theorem (along
with the recursive definition of Reverse).

The main use of inductive types is for those cases where you are really doing func-
tional programming; you reason in terms of the inductive types (using induction, as
above), and show that the concrete implementation simulates the functional computation.
For example, we could implement trees as follows:

typedef _(dynamic_owns) struct Tr {
_(ghost Tree val)
BOOL isLeaf;
Tr *l,*r;

unsigned v;
_(invariant isLeaf ==> val == Leaf(v))
_(invariant !isLeaf ==> \mine(l) && \mine(r))
_(invariant !isLeaf ==> val == Node(l->val, r->val))

} Tr;

The _(dynamic_owns) annotation on the type Tr says that the owns set is managed
explicitly; this is needed because the set of objects owned by a Tr can change and must
be managed explicitly; for example,

void trCons(Tr *t, Tr *l, Tr *r)
_(requires \extent_mutable(t) && \wrapped(l) && \wrapped(r))
_(writes \full_extent(t), l, r)
_(ensures \wrapped(t) && t->val == Node(l->val, r->val))

{
t->l = l;
t->r = r;
t->isLeaf = FALSE;
_(ghost t->val = Node(l->val, r->val);)
_(ghost t->\owns = {l, r})
_(wrap t)

}

The obvious concrete implementation of reverse below fails to verify; can you
find the bug?

void rev(Tr *t)
_(maintains \wrapped(t))
_(writes t)
_(ensures t->val == reverse(\old(t->val)))

{
if (t->isLeaf) return;
_(unwrapping t) {
Tr *tmp =t->l;
t->l = t->r;
t->r = tmp;
rev(t->l);
rev(t->r);
_(ghost t->val = reverse(t->val))

}
}

The bug is that if t->l and t->r happen to point to the same tree, the sole child will be
reversed twice, resulting in the original tree being returned. There are two natural ways
to fix this. First, you can add an invariant to Tr that says that children don’t alias:

_(invariant isLeaf || l != r)

Second, you can fix the code so that only one reversal is performed if l==r. These are
left as exercises.

10. Inductive Data Structures

In the last section, we saw one approach to handling inductive data structures: there is a
concrete node type for each constructor (or, in the example above, one type representing
all of the constructors), a constructor object owns the child data structures, and each in-
stance of a constructor stores the abstract value of the tree beneath it. This works fine for
sequential programs where the computation recurses down the structure (Rev is a good
example) , but it is a problem for programs that iterate down the structure, and especially
for programs that mutate in the middle of the structure. This is because the structure has
to be unwrapped from the outside-in, and rewrapped in the opposite direction. More-
over, this structure is even more problematic in the concurrent setting, where the whole
structure has to remain wrapped; updating part of the structure requires simultaneously
updating all of its ancestors.

A more flexible design is to make the constructor nodes purely structural (with es-
sentially no invariants), and to put both the abstract value and all structural invariants in
a ghost “master” object that owns all of the nodes of the particular recursive structure.
The downside of this arrangement is that the invariants of the master have to quantify
over all of the nodes, which makes the reasoning a bit more involved. The upside is that
all of the nodes can be updated with a single map update.

There are several possible options for representing the abstract value in the master.
If the structure is essentially linear, then one attractive representation is to represent the
structure as a map from naturals to nodes. For example, here is an implementation of a
linked list:

typedef struct Node Node, *PNode;

typedef struct Node {
PNode nxt;

} List;

typedef _(dynamic_owns) struct List {
PNode hd;
_(ghost \natural len)
_(ghost PNode val[\natural])
_(invariant val[0] == hd)
_(invariant val[len] == (PNode) NULL)
_(invariant \forall \natural i; {val[i]}

i < len ==> \mine(val[i]))
_(invariant \forall \natural i;

i < len ==> val[i] && val[i]->nxt == val[i+1])
} List;

(In the next-to-last invariant, {val[i]} is a hint to the deductive engine telling it when
to instantiate the universally quantified variables of the invariant; this is outside the scope
of this paper.)

With this representation, some operations are easily specified, such as finding the
n’th element of the list, reversing the list, adding or removing individual elements, ap-
pending lists, and so on. Note, however, that some functions are not so easily specified;
for example, a function that deletes all nodes satisfying some condition has to be spec-

ified with a recursive function, because there is no first-order expression that gives the
n’th element of the result.

For treelike structures, it is possible to generalize the abstract value to a map from
paths to nodes, though in practice this is not worthwhile (mainly because tools like VCC
use an SMT solver as a reasoning engine, and SMT solvers are very good at reasoning
about numbers but not more general sorts of partial orders).

A second possibility is to express the abstract value as a partial order giving the
reachability relation on its nodes. (This can be done for arbitrary acyclic data structures.)
The reason to keep the reachability relation is that it allows the statement of global struc-
tural properties, e.g. that every node of the structure can be reached by walking the list
starting from the head.

11. Admissible Invariants

Let’s step back for a moment and consider how we are reasoning about programs. Recall
that the state is partitioned into objects. (In addition to the objects we’ve talked about,
you can imagine that every function activation is also an object, with fields that give the
values of the program counter and local variables.) A state of the world is given by the
state of each of these objects. An execution is a sequence of states. A transition is an
ordered pair of states; we can think of each consecutive pair of states of an execution as
a transition from the first state to the second.

We’ve given some examples of object invariants. In fact, every object has a “2-state”
invariant, an invariant evaluated over a pair of states. (When we talk about an object
having multiple invariants, we mean they are all conjoined to form “the” invariant of
the object.) We can treat this invariant as a single-state invariant by applying it to the
stuttering transition that remains in the prestate. A state is good if it satisfies the 1-state
invariant of every object; a transition is good iff it satisfies every 2-state invariant. An
execution is good if each of its states is good and each of its transitions is good. The goal
of verification is to show that every execution of the program (starting from a good state)
is good.

A transition is legal if the prestate is not good or the transition satisfies the invariants
of all updated objects (i.e., all objects whose state differs in the prestate and poststate
of the transition). The invariant of object o is admissible iff, for every legal transition
from a good prestate, the transition and the poststate both satisfy the invariant of o. We
verify a program by showing that every transition of any of its executions is legal, and
every object invariant is admissible; it’s easy to show by induction on execution length
that these imply that every execution is good.

To bring this approach into our C verification context, when we say that object o
has the invariant p, we really mean that it has the invariant \old(o->\closed)||
o->\closed ==> p, i.e. the invariant holds if o is \closed in either the prestate
or the poststate of a transition. In addition, each object has implicit invariants that
its nonvolatile fields do not change while the object is closed, as well as invariants
related to ownership (e.g., o->\closed && o’ \in o->owns ==> o’->\closed

&& o’->\owner == o).
As an example, let’s next consider the problem of designing a suitable invariant for

a doubly-linked list. We want the invariants to say that the predecessor and successor
pointers of successive nodes match:

typedef struct Node Node, *PNode;

typedef struct Node{
volatile PNode pred;
volatile PNode succ;
_(invariant pred && succ)
_(invariant pred ==> pred->succ == \this)
_(invariant succ ==> succ->pred == \this)

} Node;

The first invariant, which says that neither the predecessor nor successor fields are NULL,
is trivially admissible, since it only mentions fields of the object itself; the only way to
break such an invariant is to change a field of the object, so a legal transition necessarily
satisfies the object’s invariant.

However, the second and third invariants are not admissible, because there is nothing
that guarantees that the neighboring nodes are closed. For example, if o->succ == o1

and o1 is not closed, then the owner of o1 can change o1->pred without checking any
invariants, which would break the second invariant of o. We can fix this problem by
adding invariants that links point to closed nodes:

_(invariant pred ==> pred->\closed)
_(invariant succ ==> succ->\closed)

However, the new invariants are inadmissible, since nothing prevents the owner of
succ from opening it up. There simplest way to prevent this is by just not allowing
closed nodes to be opened:

_(invariant \on_unwrap(\this,\false))

Of course this is rather unrealistic - well-designed objects should allow eventual graceful
destruction - but we will use this for now.

But this is still not strong enough to make the original invariants admissible. To see
why, suppose we are in a state where o and o1 are each other’s predecessor and successor,
and o2 is its own predecessor and successor. Consider an atomic action that makes o1
and o2 each other’s predecessor and successor. This action preserves the invariants of o1
and o2, which are the only objects that are updated. However, it breaks the invariant of
o, since o still lists o1 as its predecessor and successor.

What we want to say in our invariant is that any time you swing a pointer away from
a node, you must make sure to check that the invariants you used to point to. We can
write this as an invariant itself:

_(invariant \unchanged(pred) || \inv(\old(pred)))
_(invariant \unchanged(succ) || \inv(\old(succ)))

} S;

These invariants say that if pred or succ is changed, then we must check that the invari-
ant of the old predecessor/successor in the new state. Here, \inv(o) is a special built-in
function that holds in a state if the invariant of o holds in that state. Since the \inv func-
tion can be used in object invariants, we have to be careful not to introduce inconsisten-

cies; for example, we don’t want to allow a type to have an invariant like _(invariant
!\inv(\this)). The simplest way to maintain logical consistency (i.e., give a consis-
tent interpretation of the \inv function) is to allow \inv to occur only with positive
polarity in object invariants and in function contracts.

These invariant are themselves necessarily admissible. In fact, any object invariant
of the form \unchanged{f} || p, where f is a field of the object, is necessarily ad-
missible: the invariant necessarily holds for any transition that doesn’t change f, and a
legal transition that changes f must satisfy the object invariant anyway.

12. Atomic Actions

We now consider reasoning about concurrent programs. It turns out that concurrent pro-
gramming techniques are useful even if you are doing sequential programming, because
it is sometimes useful to update ghost fields “atomically”. Indeed, concurrent program-
ming is not really about atomic updates to the state, which are easy to arrange; it is about
safely sharing the state between simultaneous observers. This is just as much a problem
for large-scale sequential programming.

At its core, the concurrent programming methodology is quite simple. An atomic
action has to be explicitly marked as atomic. Within the action, in addition to sequen-
tial reads and writes, there can be reads of fields of closed objects and writes of volatile
fields of closed objects; these objects must be explicitly listed in the atomic action anno-
tation. The atomic action must be legal, i.e. it must preserve the invariants of any updated
objects.

As a simple example, consider a monotonic counter:

typedef struct Counter {
volatile unsigned val;
_(invariant \old(val) <= val)
_(invariant \on_unwrap(\this,\false))

} Counter;

A volatile field like val can change at any time while its containing object is closed,
subject to the condition that such a change preserves the invariant of the counter. (It is
useful to imagine that the such updates can be initiated not only by the program itself,
but by the environment also.) It is unsafe to access such a field sequentially; for example,
a compiler might optimize a sequential read to read the high and low order bits of the
counter separately. Thus, such a field should only be accessed using operations for which
the platform and compiler guarantee atomicity. For example:

void inc(Counter *cnt)
_(requires \wrapped(cnt))

{
_(atomic _(read_only) cnt) {
unsigned x = cnt->val;

}
if (x == UINT_MAX) return;
_(atomic cnt) {
if (cnt->val == x) cnt->val = x+1;

}
}

This function contains two atomic actions, one to read the counter, the other to up-
date it. In each case, we are accessing a field of a closed object, which must be listed
in the atomic action annotation preceding the action itself. In the first action, fields of
cnt are being read but not updated, so the _(read_only) annotation allows us to skip
checking the invariant of cnt. In the second action, we have to check that the whole
atomic action preserves the invariant of cnt.

Note that cnt is not listed in a writes clause of inc. Atomic actions in general do not
count as writes. The reason for this is that the atomic update done by this thread could
just as well have been done by another thread (or the environment), and we certainly
cannot account for their actions in a writes clause. Since the caller is doing something
that the environment is allowed to do anyway, there is no point in restricting it via writes
clauses.

While this function verifies, VCC will also issue a warning that the atomic action
contains more than one access to volatile physical fields. (In fact, such an action is un-
likely to be atomic on most platforms.) It is good programming practice to isolate any
operation on physical memory that is implemented atomically as a separate function (and
indeed, most compilers would require the explicit use of a compiler intrinsic function for
any atomic beyond a single volatile access that fits within a machine word). In VCC, you
can break out the physically atomic action into a separate inline function, as follows:

_(atomic_inline) unsigned cmpXchg(unsigned *loc, unsigned cmp,
unsigned xchg)

{
if (*loc == cmp) {

*loc = xchg;
return cmp;

}
else return *loc;

}

void inc(Counter *cnt)
_(requires \wrapped(cnt))

{
_(atomic _(read_only) cnt) {
unsigned x = cnt->val;

}
if (x == UINT_MAX) return;
_(atomic cnt) {
cmpXchg(&cnt->val, x, x+1);

}
}

This eliminates the warning.
Finally, we note in passing that the first atomic action can be written using some

friendly syntactic sugar:

unsigned x = _(atomic_read cnt) cnt->val;

13. Collecting Volatile Information

Suppose we did two consecutive reads of cnt->val (in separate atomic actions), return-
ing values x and y, respectively. We would expect to be able to prove afterwards that
x <= y, thanks to the invariant of cnt. However, in general such reasoning is much like
guessing a loop invariant. Thus, just as with loop invariants, VCC makes you spell this
reasoning out. To understand how, we have to look at how VCC deals with interference
from other threads.

In the presence of interference, a thread knows that a field of an object cannot change
if the object is mutable, or if it is a nonvolatile field of an object that is known to remain
closed. Moreover, actions of other threads are guaranteed to keep the state good, so all
object invariants continue to hold. We can use these properties to capture what we need
to know about the two consecutive reads. Suppose we define the following “helper” type:

_(typedef struct O {
Counter *c;
unsigned x;
_(invariant c->\closed && x <= c->val)

} O;)

The key thing to note is that the invariant of O is admissible, thanks to the invariants
of Counter. We can now use one of these objects as follows:

void test(Counter *cnt)
_(requires \wrapped(cnt))

{
unsigned x = _(atomic_read cnt) cnt->val;
_(ghost O o)
_(ghost o.c = cnt)
_(ghost o.x = x)
_(wrap &o)

unsigned y = _(atomic_read cnt) cnt->val;
_(assert \inv(&o))
_(assert x <= y)

_(unwrap &o)
}

To understand why this works, it’s important to realize that VCC pretends that a
thread takes a scheduler boundary only just before performing an atomic action. (This
pretense is justified, but we won’t discuss why here.) Thus, other threads (or the environ-
ment) can only change the state just before the two atomic_reads. Thus, between the
first read and just before the second read, cnt->val isn’t changing; this is why we can
safely wrap &o (since at that point we know that o.x == cnt->x.

Just before the second read, we forget everything we knew about cnt->val.
However, since &o is wrapped, we know that its invariant still holds, and that o.x
and x haven’t changed. Thus, after the second read, we know that x==o.x, o.x <=

cnt->val, and cnt->val == y, from which we can deduce the asserted x <= y. Af-
terwards, o has served its purpose, so we can destroy it.

13.1. Claims

Ghost objects like o are so useful that VCC provides syntactic sugar for constructing
ghost objects like o in the example above, without having to explicitly declare types like
O. These special ghost objects are called claims.

void test(Counter *cnt)
_(requires \wrapped(cnt))

{
unsigned x = _(atomic_read cnt) cnt->val;
_(ghost \claim c =

\make_claim({}, cnt->\closed && x <= cnt->val))

unsigned y = _(atomic_read c) cnt->val;
_(assert x <= y)

}

The claim c can be thought of as an object whose invariant is given in the second ar-
gument of \make_claim. The claim object has a local variable recording a copy of the
state at the time the claim was created, and free variables in the claim invariant (like x

and cnt) are interpreted in that saved state.
Of course, to have sharing, threads must be able to operate on objects that they don’t

own. This is okay, because concurrent access only requires the object to be closed, not
wrapped. The easiest way to do this is for the thread to have a claim that claims that the
object is closed. We could modify the function to take such a claim as an argument as
follows:

void test(Counter *cnt _(ghost \claim cl))
_(always cl, cnt->\closed)

{
unsigned x = _(atomic_read c, cnt) cnt->val;
_(ghost c = \make_claim({}, cnt->\closed && x <= cnt->val))
...

The precondition _(always cl, p) is a macro that translates to requiring and ensuring
that c is wrapped, and that cl claims p (i.e., that in any state where cl is closed and the
invariant of cl holds, p also holds). Note that the atomic read now lists two objects: the
first, c is included because its invariant is used to prove that the second object, cnt, is
closed.

Of course the invariant that counters cannot ever be unwrapped is rather unrealistic
for real objects that must be cleaned up (eventually). In that case, the invariant of claim
c is no longer admissible. However, we can keep cnt closed by keeping cl closed, so it
would suffice for c to keep cl closed. To implement this idea, each claim has an addi-
tional field, a set of “claimed objects” that are guaranteed to remain closed as long as the
claim is closed; the first argument to \make_claim gives the set of claimed objects for
the claim being created. Claimed objects must be of types declared as _(claimable);
objects of such types have an additional field \claim_count that keeps track of how
many claims claim the object, and unwrapping such an object requires proving that its
claim count is 0. In particular, claims are themselves claimable.

The claim count of an object o obviously has to be volatile (since it can change
while o is closed). Because o can be unwrapped only when o->\claim_count ==

0, o->\owner must somehow control this count in order to ever be able to safely un-
wrap the object. This means that the o->\claim_count behaves much like the field
o->\owner, in that it can be changed only with the “approval” of o->\owner. We will
see how this is done in general a bit later, but the important thing for now is that to change
the claim count of a wrapped object, the object must be writable.

Using dependent claims, we can rewrite the counter update example to make the
new claim depend on the old one:

typedef struct Counter {
volatile unsigned x;
_(invariant \old(x) <= x)

} Counter;

void test(Counter *cnt _(ghost \claim cl))
_(always cl, cnt->\closed)
_(writes cl)
_(ensures \unchanged(cl->\claim_count))

{
unsigned x = _(atomic_read cl,cnt) cnt->x;
_(ghost \claim c =

\make_claim({cl}, cnt->\closed && x <= cnt->x))
unsigned y = _(atomic_read c,cnt) cnt->x;
_(assert x <= y)
_(ghost \destroy_claim(c,{cl}))

}

The first argument of \make_claim lists the claimed objects of the new claim (i.e.,
the set of objects whose claim count is being incremented), while the second argument
to \destroy_claim lists the same set (i.e., the set of objects whose counts are being
decremented). Note that we have to report cl in the writes clause because the function
changes cl->\claim_count.

14. Approval

Consider an object o with a nonvolatile field f. Invariants of o can freely talk about o.f
since o.f doesn’t change while o is closed. If we then replace the field f with an object
fOb with a nonvolatile field val that gives its value, and add to o an invariant that it
owns fOb, we have seen that we can still use val freely in the invariant of o. Moreover,
unwrapping o transfers to the owner of o similar control over f and val.

Now consider the situation where f is a volatile field. Invariants of o can still freely
talk about f, because any change to f requires a check of the invariant of o. However,
if we replace f with an object fOb with a volatile field val, where o owns fOb, we
cannot in general freely use fOb.val in invariants of o because such invariants might be
inadmissible. This is because ownership of an object does not convey any special rights
over its volatile fields. If we want the invariants of the owner of fOb to be checked on
every update to val, we can make this an explicit invariant of fOb of the form

_(invariant \unchanged(val} || \inv2(\this->\owner))

Here, \inv2(o) means the two-state invariant of object o. (There is similarly a function
\inv(o) that gives the single-state invariant of o.) \inv2 (and \inv) can be used in
assertions and object invariants, but can appear only with positive logical polarity (to
avoid introducing logical inconsistency). The invariant above says that on any change
to val, the invariant of the owner must be checked. Note that this invariant is trivially
admissible.

Now, suppose the owner of fOb happens to be a thread. What does it mean to check
the invariant of a thread? When reasoning about a function, VCC implicitly constructs
from the annotations on the program a suitable invariant capturing what a thread execut-
ing the function should “know” at each control point; we can think of the invariant of a
thread as being the conjunction of the corresponding invariants for each of its active func-
tion activations. As long as modifications to val do not break these invariants, they won’t
affect the ability to verify the functions. Thus, we would expect that it should appear to
the owner of fOb that no other thread is concurrently modifying val. This amounts to
saying that val is just like a mutable variable, except that (1) it has to be modified using
atomic actions, and (2) other threads can concurrently read it (with atomic actions).

Unfortunately, we have forgotten about one further important aspect of mutable vari-
ables, namely framing. A sequential field of a mutable object can only be modified in
a function call only if it (or the object) is explicitly mentioned in a writes clause. But
this restriction doesn’t hold for volatile fields of closed objects. Thus, to allow the proper
framing of volatile fields, we have to somehow force the owner of fOb to treat the update
of val as a sequential write. To enable this behavior, VCC provides a special annotation:

_(invariant \approves(\this->\owner, val))

If \this->\owner is not a thread, \approves(\this->\owner, val) is equiv-
alent to \unchanged(val)|| \inv2(\this->\owner). However, if the object is
owned by a thread, an update to val is allowed only by the owning thread, and only if
the object is writable. We say that val is “owner-approved”.

Lock-free data structures designed for general use in other data structures typically
are defined with a ghost abstract value that is owner-approved. A function that updates
the abstract value then needs to know that the object is wrapped, or needs to know the
type of its owner.

15. A Lock-Free Set

To bring together most of the ideas we’ve seen so far, let’s consider a monotonically
growing set of unsigneds, implemented using an array:

typedef unsigned Val, volatile VVal;

typedef struct Set {
_(ghost volatile \bool mem[Val]) // abstract value of the set

// abstract behavior of the set: the set only grows

_(invariant \forall Val v;
\old(mem[v]) && \this->\closed ==> mem[v])

// concrete representation
VVal data[SIZE];
volatile size_t len;

// explicit witness: idx[v] gives an index at which v appears
_(ghost volatile size_t idx[Val])

_(invariant len <= SIZE)
_(invariant \forall size_t i; i < len ==> mem[data[i]])
_(invariant \forall Val v;

mem[v] <==> idx[v] < len && data[idx[v]] == v)
_(invariant \old(len) <= len)
_(invariant \forall size_t i; {data[i]}

i < \old(len) ==> \unchanged(data[i]))
} Set;

The invariants say that the length of the used part of the array grows monotonically, and
that values in the used part of the array never change. The constructor for the set looks
just like it does in the sequential case:

void setNew(Set *s)
_(requires \mutable(s))
_(writes \extent(s))
_(ensures \wrapped(s))
_(ensures \forall Val v; !s->mem[v])

{
s->len = 0;
_(ghost s->mem = \lambda Val v; \false)
_(wrap s)

}

Adding an element to the set has a different specification than in the sequential case,
because other threads might be concurrently adding elements to the set. What we can
guarantee is that the element we are adding to the set is in the set afterwards (unless we
run out of room). Note that a caller of the function could use a claim to show that other
elements that were in the set before the function call are in the set afterward.

BOOL setAdd(Set *s, Val v _(ghost \claim c))
_(always c, s->\closed)
_(writes c)
_(ensures \unchanged(c->\claim_count))
_(ensures \result ==> s->mem[v])

{
BOOL result;
_(atomic c,s) {
result = (s->len != SIZE);
if (result) {
s->data[s->len] = v;

_(ghost s->idx[v] = s->len)
s->len++;
_(ghost s->mem[v] = \true)

}
}
return result;

}

Note that the updates to the set all have to happen within the atomic action. Note also
that our atomic action contains several physical memory accesses, which will produce
warnings (for good reason). We will just ignore these for now.

When testing membership in the set, we have a similar problem in taking into ac-
count the actions of other threads. If the function says the element is in the set, we can
trust that it is in the set afterward (thanks to monotonicity); if it is not in the set, we can
only be sure that it wasn’t in the set when the call started (but might be in the set now).

BOOL setMem(Set *s, Val v
_(ghost \claim c))
_(requires v)
_(maintains \wrapped0(c))
_(always c, s->\closed)
_(writes c)
_(ensures \result ==> s->mem[v])
_(ensures !\result ==> !\old(s->mem[v]))

{
_(ghost size_t idx = s->idx[v])
_(ghost \bool isMem = s->mem[v])
_(ghost \claim cl = \make_claim({c}, s->\closed &&

(isMem ==> idx < s->len && s->data[idx] == v)))

size_t len = _(atomic_read cl,s) s->len;
_(ghost \destroy_claim(cl,{c}))
_(ghost cl = \make_claim({c}, s->\closed && len <= s->len &&

(isMem ==> idx < len && s->data[idx] == v)))

for (size_t i = 0; i < len; i++)
_(writes cl,c)
_(invariant \wrapped0(cl))
_(invariant idx < i ==> !isMem)
_(invariant \wrapped(c) && c->\claim_count == 1)

{
if (_(atomic_read cl,s) s->data[i] == v) {
_(ghost \destroy_claim(cl,{c}))
return TRUE;

}
}
_(ghost \destroy_claim(cl,{c}))
return FALSE;

}

This function first records (in ghost state) an index at which v occurs in the array (if any),
and whether it occurs in the array. It then claims that if v was in the set when the call
was made, then it is still in the set (at the recorded index). After we read the length of the
line, we strengthen this claim so that it also claims that if v was in the set, then its index
is less than the read length. Since this hypothetical index is remaining fixed, the loop is
doing what amounts to a linear search for it.

16. Locks

We now dive a bit deeper, and consider how typical synchronization primitives are con-
structed. We consider here the most basic one, a spinlock.

There are various ways one might try to formalize what a spinlock provides to the
client. For example, one might imagine adding to threads a ghost variable that tracks
whether they hold the lock, and maintaining a global invariant that at most one of these
is true at any time. But we already have a mechanism that does essentially this, namely
ownership of some "protected object" associated with the lock. Moreover, ownership
provides a nice way to package up exactly what you are allowed to do when you hold a
lock: you are allowed to enjoy precisely those privileges that come with ownership, such
as the ability to unwrap the object. Moreover, by defining a lock that takes an arbitrary
protected object, we effectively make locks polymorphic in the data and its invariant.
(This is a common idiom for capturing polymorphism.)

typedef _(volatile_owns) struct Lock {
volatile BOOL locked;
_(ghost \object ob)
_(invariant locked || \mine(ob))

} Lock;

Note that \object is the ghost type of (typed) pointers, so ob is really a pointer to a
(real or ghost) object. The invariant of the lock says that whenever the lock is free (i.e.,
whenever it is not locked), the lock owns the protected object ob. Note that while the
field locked is volatile, the field ob is not, so changing the object protected by the lock
requires opening up the lock. The _(volatile_owns) annotation says that the set of
objects owned by a Lock can change while the Lock is closed; this means that we have
to manage the owns set of locks explicitly (just like we had to do for objects of types
marked _(dynamic_owns)).

void lockCreate(Lock *l _(ghost \object ob))
_(requires \extent_mutable(l))
_(requires \wrapped(ob))
_(writes ob, \extent(l))
_(ensures \wrapped(l) && l->ob == ob)

{
l->locked = FALSE;
_(ghost l->ob = ob)
_(ghost l->\owns = {ob})
_(wrap l)

}

Creating a lock requires that the protected object is already wrapped (we can’t expect
this function to do it because we can’t wrap an object without knowing its specific type).
Lock destruction is routine (it just unwraps the lock).

void lockAcquire(Lock *l _(ghost \claim c))
_(always c, l->\closed)
_(ensures \wrapped(l->ob) && \fresh(l->ob))
{
BOOL done;
do
{
_(atomic c,l) {
done = !cmpxchg(&l->locked, 0, 1);
_(ghost if (done) l->\owns -= l->ob)

}
} while (!done);

}

Acquiring the lock is more interesting. Within an atomic action, we try to change the
lock state from unlocked to locked. If this succeeds, we transfer ownership of the pro-
tected object from the lock to the caller. Note that if the change succeeds, the object was
unlocked in the prestate, so we are actually guaranteed to get ownership of the protected
object when the update succeeds.

void lockRelease(Lock *l _(ghost \claim c))
_(always c, l->\closed)
_(requires c != l->ob)
_(requires \wrapped(l->ob))
_(writes l->ob)

{
_(atomic c,l) {
l->locked = FALSE;
_(ghost l->\owns += l->ob)

}
}

Releasing the lock involves transferring ownership of the protected object back to the
lock. Note that the thread releasing the lock need not be the thread that acquired the
lock; the protected object might have been transferred through some other means (such
as another lock). The requirement that the protected object be wrapped prevents a thread
from double-freeing. On the other hand, there is nothing to prevent us from double-
locking; this will simply deadlock.

A typical use of a lock is to allow threads to share a piece of data where consistency-
preserving updates to the data cannot be done atomically in hardware. We make a lock-
protected object using a raw object and a lock; the lock-protected object owns the lock,
of which the lock-protected object is the raw object:

// a type requiring lock protection
typedef struct Counter {
unsigned val;

} Counter;

// a lock-protected S
typedef struct AtomicCounter {
Lock l;
Counter c;
_(invariant \mine(&l) && l.ob == &c)

} AtomicCounter;

To do an atomic operation on the lock protected data, we first acquire the lock, which
gives ownership of the raw data. We can then unwrap the data and update it sequentially;
after restoring its consistency, we wrap it up again and unlock the lock:

// do a locked update on ac
void inc(AtomicCounter *ac _(ghost \claim c))
_(always c, ac->\closed)

{
lockAcquire(&ac->l _(ghost c));
_(unwrapping &ac->c) {
if (ac->c.val < UINT_MAX)
ac->c.val++;

}
lockRelease(&ac->l _(ghost c));

}

17. Locked Atomics

While this presentation of the last data sufficed to show concurrency safety (e.g., it guar-
antees that you lock shared data before using it), it is not quite sufficient for reasoning
about the programs that use the data. For example, we cannot talk about a counter imple-
mented this way as monotonically increasing; because it is being unwrapped all the time,
a thread knows nothing about what other threads might do to the data (other than being
sure that its invariant is restored). In order to do such reasoning, we need to represent the
abstract value as the field of an object that stays closed; this will allow a thread to hold a
claim that claims that the containing object is closed and the abstract value is increasing.
But at the same time, we want the holder of a lock on the object to control updates to this
abstract value.

A natural way to do this is to replace the abstract value field with an abstract value
object that always stays closed, with the abstract value stored as an owner-approved field.
This abstract value object is owned by the concrete object when it is closed, and is owned
by the thread modifying the concrete object when the concrete object is open.

We begin with an abstract value type, which can be constrained with invariants, and
whose components are owner-approved:

_(typedef _(claimable) struct AbsCounter {
_(ghost volatile unsigned val)
_(invariant val >= \old(val))

_(invariant \approves(\this->\owner,val))
} AbsCounter)

Note that the abstract counter is claimable. The reason for this is that clients who want to
reason about the counter are going to reason about the abstract counter (which will stay
closed), and doing this requires forming a claim that guarantees that the abstract counter
stays closed. Since we are heading toward a solution in which the thread updating the
counter will own the abstract counter, the only way for another thread to keep the abstract
counter closed is to have a claim on it.

A concrete value contains an abstract value object (which it owns), and a coupling
invariant linking the abstract and concrete values:

typedef struct Counter {
unsigned val;
_(ghost AbsCounter abs)
_(invariant \mine(&abs) && abs.val == val)

} Counter;

An atomic counter consists of a concrete counter and a lock protecting the counter:

typedef struct AtomicCounter {
Counter c;
Lock l;
_(invariant \mine(&l) && (&l)->ob == &c)

} AtomicCounter;

void counterNew(AtomicCounter *s)
_(requires \extent_mutable(s))
_(writes \extent(s))
_(ensures \wrapped(s))

{
s->c.val = 0;
_(ghost s->c.abs.val = 0;)
_(wrap &s->c.abs)
_(wrap &s->c)
lockNew(&s->l _(ghost &s->c));
_(wrap s)

}

Now, to update the counter, we acquire the lock, unwrap the counter, update the concrete
data, and update the abstract counter atomically while the counter is open. (We need to
do this to restore the coupling invariant, which is required to rewrap the counter.)

void counterUpdate(AtomicCounter *s _(ghost \claim cl))
_(always cl, s->\closed)

{
lockAcquire(&s->l _(ghost cl));
Counter *c = &s->c;
_(ghost AbsCounter ^abs = &c->abs;)
_(unwrapping c) {

if (c->val < UINT_MAX) {
c->val++;
_(ghost_atomic abs {
abs->val++;
_(bump_volatile_version abs)

})
}

}
lockRelease(&s->l _(ghost cl));

}

(The _(bump_volatile_version abs) is needed for implementation reasons that go
beyond the scope of this article.)

Finally, we can replicate the example of using claims to link two successive obser-
vations of the counter. We are doing just what we did before, but forming the claim on
the abstract counter rather than on the counter

18. Transactions

We often want lock-free data structures that provide linearizability - the illusion that an
operation (such as a read of or update to the abstract value of a data structure) appears
to happen atomically sometime between the invocation and return. It’s easy to validate
visually that the code for a function body behaves this way - we can simply look for
where the abstract value is updated, and prove that the update happens exactly once.
However, it’s not so easy to write a specification for the function that does this update.

One way to capture the intuition of what we want is to introduce a ghost object repre-
senting each ghost operation. This operation object has a boolean, owner-approved field
done that goes from \false to \true exactly when the operation appears to “happen”.
The operation object has an invariant that says that when the operation happens, the ab-
stract value changes according to the semantics of the operation. The function “perform-
ing” such an operation takes as precondition that the operation is wrapped but not done,
and ensures that the operation is done when it returns.

This sounds good, but is not quite good enough, for several reasons. First, this spec-
ification allows the function to do other updates to the data structure that do not cor-
respond to the operation. Second, it allows multiple operations to be marked done in a
single atomic step, with the corresponding update to the data structure “satisfying” all of
these operations. We can prevent these problems by requiring that exactly one operation
is marked done on any update to the abstract value. (Note that it would be safe to allow
multiple atomic reading operations to be marked done simultaneously, but we won’t treat
read operations separately here.) Third, nothing prevents anyone from making new op-
erations, which can then be used to operate on the object. We can prevent this by having
the object owner approve all new operation creation.

This last point might seem counterintuitive. Why have the object owner approve the
creation of operations, rather than their execution? The reason is that we want to write
the code that implements operations without knowing anything about the owner of the
data (and hence, what his invariant might be). All the operation implementation needs to
know is that it has a suitable operation object available. Thus, the operation object serves
as a one-time “permission” to perform the specific operation on the data.

Let’s look at some concrete code. We’ll do a toy example of a counter, with a single
type of operation that increments the counter.

typedef struct Counter Counter, *PCounter;
_(typedef struct Op Op, ^POp)

typedef struct Counter {
volatile unsigned val;
_(ghost volatile POp turn)
_(invariant \on_unwrap(\this,\false))
_(invariant \unchanged(val) ||

(turn && turn->\closed && turn->c == \this && \inv2(turn)))
} Counter;

(^T means a pointer to a ghost object of type T; we have to keep these separate from
ordinary pointers because we have to make sure to not accidentally update a concrete
object from ghost code by dereferencing a ghost pointer that happens to point to it.) The
field turn witnesses the (unique) choice of operation that is being “executed” whenever
the value of the counter changes. Note that this type definition is generic with respect to
what the particular operations are.

The invariants of an operation are somewhat more complex:

_(typedef struct Op {
_(invariant \on_unwrap(\this, \false))

PCounter c;
_(invariant c->\closed)
_(invariant \old(!\this->\closed) ==> \inv2(c->\owner))

To keep things simple, operations are never destroyed. (This is not a problem, because
we don’t necessarily have to clean up ghost objects.) Each operation is specific to a
particular counter. The last invariant says that the owner of the counter has to approve
creation of new operations on the counter.

volatile \bool done;
_(invariant \old(done) ==> done)
_(invariant \approves(\this->\owner, done))
_(invariant \unchanged(done) && c->turn == \this

==> \unchanged(c->val))

The owner-approved field done identifies when the operation has completed. The last
invariant says that if this operation is the selected one, but it’s not happening, then the
abstract data value doesn’t change.

\claim cl;
_(invariant \mine(cl))
_(invariant \claims(cl, !done ==> c->val < UINT_MAX))

_(invariant \unchanged(done) ||
(c->turn == \this && c->val == \old(c->val) + 1))

} Op, ^POp)

In order to safely increment the counter, we need to know that it’s not going to over-
flow. However, we cannot simply make this an invariant, since the invariant would not
be admissible. This is because the justification for its invariance is specific to how the
counter is being used, i.e., it depends on the owner of the counter. Therefore, we need
an object of some unknown type whose invariant implies the necessary safety property.
The natural object to use for this is a claim. The actual claimed property of the claim is
hidden at this level of the code.

We can now write a function to perform the increment operation on the counter:

void counterInc(PCounter c _(ghost POp op))
_(requires \wrapped(op) && !op->done && op->c == c)
_(writes op)
_(ensures op->done)

{
_(atomic op, c, _(read_only) op->cl) {
c->val++;
_(ghost op->done = 1)
_(ghost c->turn = op)
_(bump_volatile_version op)

}
}

Note that we don’t need a separate claim that c is closed, because this is already part of
the invariant of the operation op.

What we have given so far can be viewed as the implementation of a linearizable
counter. Here is an example of a toy protocol using the counter, that increases the counter
by 2:

#define rem(op) ((!op || !op->done) ? 1 : 0)
_(typedef struct Inc2 {
PCounter c;
volatile POp op1, op2;
_(invariant \mine(c))
_(invariant op1 ==> op1 != op2)
_(invariant op1 ==> op1->\closed && op1->c == c)
_(invariant op2 ==> op2->\closed && op2->c == c)
_(invariant \forall POp op;

op->\closed && op->c == c ==> op == op1 || op == op2)
_(invariant \inv2(c) && c->val + rem(op1) + rem(op2) == 2)

} Inc2;)

This protocol allows the construction of two (possibly concurrent) operations on the
counter. Note that the protocol must own the counter, since it must control the creation of
new operations (in order for the next-to-last invariant to be admissible). The last invariant
says that the number of pending operations plus the current count is 2. Thus, when all
operations have completed, the counter is necessarily 2.

While we have focussed on linearizability, this approach works for arbitrarily com-
plex operation automata. For example, we could write an operation automata describing
an abstract algorithm or protocol, and require a function to follow that protocol (returning
in a state where the protocol object is in a final state).

19. Conclusion

We have described an approach to the verification C programs, and in particular, hierar-
chical data structures built as abstract data types, that allows modular verification while
respecting the scoping found in real implementations. In contrast to some alternative ap-
proaches, the reasoning was based completely on ordinary program invariants, without
the need for extra-logical constructions like separating conjunction or permissions.

While this wasn’t difficult for sequential code, doing this for concurrent code was
rather complicated. It’s quite possible that there are much more economical verification
constructions for linearizable data objects than the ones we have presented.

