Overview	Hoare Triples	Proving assertions	Inductive Annotation	Nested Loops	Function Contracts	VCC

Floyd-Hoare Style Program Verification (FMSE Course)

Deepak D'Souza

Department of Computer Science and Automation Indian Institute of Science, Bangalore.

27 Feb 2024

			0000000	0	00	00			
Outline of these lectures									

- **2** Hoare Triples
- **3** Proving assertions
- **4** Inductive Annotation
- **5** Nested Loops
- **6** Function Contracts

00000						
Overview	Hoare Triples	Proving assertions	Inductive Annotation	Nested Loops	Function Contracts	VCC

Checking Pre/Post Assertions in Programs

- Moving on from reasoning about models to reasoning about code.
- Still a deductive style of verification.
- Helps us to verify assertions and also refinement-based functionality verification.

Overview	Hoare Triples	Proving assertions	Inductive Annotation	Nested Loops	Function Contracts	VCC
00000						
Exam	le Progra	m and Prone	ortv			

How would one check that this program satisfies the given assertion?

 Overview cooco
 Hoare Triples cococo
 Proving assertions cocococo
 Inductive Annotation cocococo
 Nested Loops cocococo
 Function Contracts cocococo
 VCC cocococo

 Idea of Deductive Verification
 Verification

Problem: Given a transition system $\mathcal{T} = (S, S_0, \rightarrow)$ and an set of unsafe states $B \subseteq S$, does an execution of \mathcal{T} reach a state in B?

Find a set of states I such that

- $S_0 \subseteq I$ (initial states belong to I)
- ② $s \in I$ and $s \to s'$, implies $s' \in I$ (*I* is inductive wrt trans)
- I ∩ B = Ø (I disjoint from Bad states).

Such an *I* is called an adequate inductive invariant.

Idea of deductive verification

I is an adequate inductive invariant:

①
$$s_0 \in I$$
 (initial state belongs to I)

- 2 $s \in I$ and $s \to s'$, implies $s' \in I$ (I is inductive wrt trans)
- **()** $I \cap B = \emptyset$ (*I* disjoint from Bad states).

Eloud	Hooro Stu	la of Duaguau	··· Monification			
000000	00000		0000000		00	00
Overview	Hoare Triples	Proving assertions	Inductive Annotation	Nested Loops	Function Contracts	VCC

Floyd-Hoare Style of Program Verification

Robert W. Floyd: "Assigning meanings to programs" *Proceedings* of the American Mathematical Society Symposia on Applied Mathematics (1967)

C A R Hoare: "An axiomatic basis for computer programming", *Communications of the ACM* (1969).

Floyd-I	Hoare Log	gic				
Overview 00000●	Hoare Triples 00000	Proving assertions O	Inductive Annotation	Nested Loops O	Function Contracts	VCC 00

- A way of asserting properties of programs.
- Hoare triple: {A}P{B} asserts that "Whenever program P is started in a state satisfying condition A, if it terminates, it will terminate in a state satisfying condition B."
- Example assertion: $\{n \ge 0\} P \{a = n + m\}$, where P is the program:

```
int a := m;
int x := 0;
while (x < n) {
    a := a + 1;
    x := x + 1;
}
```

- Inductive Annotation ("consistent interpretation") (due to Floyd)
- A proof system (due to Hoare) for proving such assertions.
- A way of reasoning about such assertions using the notion of "Weakest Preconditions" (due to Dijkstra).

A Sim	A Simple Programming Language										
Overview 000000	Hoare Triples ●0000	Proving assertions 0	Inductive Annotation	Nested Loops O	Function Contracts	VCC 00					

- skip (do nothing)
- x := e (assignment)
- if b then S else T (if-then-else)
- while b do S (while loop)
- *S* ; *T* (sequencing)

Frograms as State Transformers

- Program state is a valuation to variables of the program: States = Var $\rightarrow \mathbb{Z}$.
- View program P as a partial map $\llbracket P \rrbracket$: States \rightarrow States.

$$s: \langle x \mapsto 2, y \mapsto 10, z \mapsto 3 \rangle$$

y := y + 1; z := x + y

 $t: \langle x \mapsto 2, y \mapsto 11, z \mapsto 13 \rangle$

Overview 000000	Hoare Triples 00●00	Proving assertions 0	Inductive Annotation	Nested Loops O	Function Contracts	VCC 00
Predic	ates on St	ates				

 $\{A\}P\{B\}$ asserts that "Whenever program *P* is started in a state satisfying condition *A*, either it will not terminate, or it will terminate in a state satisfying condition *B*."

• View program *P* as a relation on States (allows non-termination as well as non-determinism)

 $\llbracket P \rrbracket \subseteq \text{States} \times \text{States}.$

Here $(s, t) \in \llbracket P \rrbracket$ iff it is possible to start P in the state s and terminate in state t.

- [[P]] is possibly non-determinisitic, in case we also want to model non-deterministic assignment etc.
- Then the Hoare triple {A} P {B} is true iff for all states s and t: whenever s ⊨ A and (s, t) ∈ [P], then t ⊨ B.
- In other words $Post_{\llbracket P \rrbracket}(\llbracket A \rrbracket) \subseteq \llbracket B \rrbracket$.

F									
000000	00000	•	0000000		00	00			
Overview	Hoare Triples	Proving assertions	Inductive Annotation	Nested Loops	Function Contracts	VCC			

Example programs and pre/post conditions

	// Pre: 0 <= n
// Pre: true	
	int a := m;
if (a <= b)	int x := 0;
min := a;	while (x < n) {
else	a := a + 1;
<pre>min := b;</pre>	x := x + 1;
	}
// Post: min <= a && min <= b	
	// Post: a = m + n

Floyd style proof: Inductive Annotation

 Overview
 Hoare Triples
 Proving assertions
 Inductive Annotation
 Nested Loops
 Function Contracts
 VCC

 000000
 000000
 0
 0
 0
 0
 0
 0

Inductive annotation based proof of a pre/post specification

- Annotate each program point *i* with a predicate A_i
- Successive annotations must be inductive: $[S_i]]([A_i]]) \subseteq [A_{i+1}],$ OR logically: $A_i \land [S_i] \Longrightarrow A'_{i+1}.$
- Annotation is adequate: $Pre \implies A_1$ and $A_n \implies Post.$
- Adequate annotation constitutes a proof of {*Pre*} Prog {*Post*}.

Example of inductive annotation

To prove: $\{y > 10\}$ y := y+1; z := x+y $\{z > x\}$

 Overview
 Hoare Triples
 Proving assertions
 Inductive Annotation
 Nested Loops
 Function Contracts
 VCC

 000000
 000000
 0
 00
 00
 00
 00
 00

Example of inductive annotation

To prove: $\{y > 10\}$ y := y+1; z := x+y $\{z > x\}$

Logical proof obligations (VCs):

$$(y > 10 \implies y \ge 0) \land ((y \ge 1 \land z = x + y) \implies z > x) \land$$
$$((y \ge 0 \land y' = y + 1 \land x' = x \land z' = z) \implies y' \ge 1) \land$$
$$((y \ge 1 \land z' = x + y \land x' = x \land y' = y) \implies y' \ge 1 \land z' = x' + y')$$

Overview 000000	Hoare Triples 00000	Proving assertions 0	Inductive Annotation	Nested Loops O	Function Contracts	VCC oo
Exercis	se					

Adeau	Adequate loop invariant									
			00000000							
Overview	Hoare Triples	Proving assertions	Inductive Annotation	Nested Loops	Function Contracts	VCC				

Generating Verification Conditions for a program

The following VCs are generated:

- $Pre \wedge [S_1] \implies Inv'$ Or: $Pre \implies WP(S_1, Inv)$
- $Inv \wedge b \wedge [S_2] \implies Inv'$ Or: $(Inv \land b) \implies WP(S_2, Inv)$
- $Inv \land \neg b \land [S_3] \implies Post'$ Or: $Inv \land \neg b \implies WP(S_3, Post)$

Adagur	ooooo	o	00000000	0	00	00			
Adequate loop invariant									

What is a "good" loop invariant for this program?

```
x := 0;
while (x < 10) {
    if (x >= 0)
        x := x + 1;
    else
        x := x - 1;
}
assert(x <= 11);</pre>
```

Adequate loon invariant									
			0000000						
Overview	Hoare Triples	Proving assertions	Inductive Annotation	Nested Loops	Function Contracts	VCC			

Handli	ng nested	loops				
Overview 000000	Hoare Triples 00000	Proving assertions 0	Inductive Annotation	Nested Loops	Function Contracts	VCC 00

Verification conditions generated

Contro	oto for De			U		00
Overview	Hoare Triples	Proving assertions	Inductive Annotation	Nested Loops	Function Contracts	VCC

```
main() {
    result = fib(5);
    assert (result > 2);
}
// requires x >= 0
// ensures (result >= x) && (result > 0)
int fib(int x) {
    if (x < 2)
        return 1;
    else
        return fib(x-1) + fib(x-2);
}</pre>
```

For conjectured contract: $x \ge 0 \land result \ge x$, counterexample may be:

IF pre of fib contains a configuration with x=2 AND post contains a configuration with (x=0, result=0) and another with (x=1, result=1), THEN post must contain the configuration (x=2, result=1).

Overview	Hoare Triples	Proving assertions	Inductive Annotation	Nested Loops	Function Contracts	VCC			
000000	00000	O		0	○●	oo			
Sound	Soundness of Function Contracts								

 Consider an execution of a program with valid contract annotation

Overview 000000	Hoare Triples 00000	Proving assertions 0	Inductive Annotation	Nested Loops O	Function Contracts	VCC ⊙●
Conclu	sion					

- Features of this Floyd-Hoare style of verification:
 - Tries to find a proof in the form of an inductive annotation.
 - A Floyd-style proof can be used to obtain a Hoare-style proof; and vice-versa.
 - Reduces verification (given key annotations) to checking satisfiability of a logical formula (VCs).
 - Is flexible about predicates, logic used (for example can add quantifiers to reason about arrays).
- Main challenge is the need for user annotation (adequate loop invariants).
- Can be increasingly automated (using learning techniques).