Floyd-Hoare Style Program Verification
(FMSE Course)

Deepak D'Souza

Department of Computer Science and Automation
Indian Institute of Science, Bangalore.

27 Feb 2024

Outline of these lectures

© Overview

e Hoare Triples

© Proving assertions
@ Inductive Annotation
© Nested Loops

@ Function Contracts

@ vcc

Overview
©00000

Checking Pre/Post Assertions in Programs

@ Moving on from reasoning about models to reasoning about
code.

@ Still a deductive style of verification.

@ Helps us to verify assertions and also refinement-based
functionality verification.

Overview
©0®0000

Example Program and Property

x := 0;
y = 0;
while (%) {
if (x <y)
X++;
else
yt++;
}
// assert y !=x - 1

How would one check that this program satisfies the given
assertion?

Overview
00000

Idea of Deductive Verification

Problem: Given a transition system . S
T = (S, So,—) and an set of unsafe o

states B C S, does an execution of \ .
T reach a state in B? % . °/

Find a set of states / such that
© So C/ (initial states belong to

1) _
@ sc/ands— s, impliess’ €/ — / Do,
(I is inductive wrt trans) \ .
@ /N B =0 (I disjoint from Bad >~
states). .
Such an [is called an adequate : "

inductive invariant.

Overview
00000

Idea of deductive verification

y
o—eo
x := 0;
y = 0;
while (x) {
if x <7y ':XSY/
X++; ®
else —o
yt+; Bad: y=x—-1
}

// assert y !'=x - 1

| is an adequate inductive invariant:
© so €/ (initial state belongs to /)
@ sc/lands— s, implies s’ €/ (I is inductive wrt trans)
© /N B =10 (I disjoint from Bad states).

Overview
0000e0

Floyd-Hoare Style of Program Verification

Robert W. Floyd: “Assigning meanings to programs” Proceedings
of the American Mathematical Society Symposia on Applied
Mathematics (1967)

C A R Hoare: "An axiomatic basis for computer programming”,
Communications of the ACM (1969).

Overview
oooo0e

Floyd-Hoare Logic

A way of asserting properties of programs.

Hoare triple: {A}P{B} asserts that “Whenever program P is
started in a state satisfying condition A, if it terminates, it will
terminate in a state satisfying condition B."

Example assertion: {n >0} P {a = n+ m}, where P is the
program:
int a := m;
int x := 0;
while (x < n) {
a :=a+ 1;
X :=x + 1;

}
Inductive Annotation (“consistent interpretation”) (due to
Floyd)
A proof system (due to Hoare) for proving such assertions.

A way of reasoning about such assertions using the notion of
“Weakest Preconditions” (due to Dijkstra).

Hoare Triples
©0000

A Simple Programming Language

skip (do nothing)

x := e (assignment)

if b then S elseT (if-then-else)
while bdo S (while loop)

S; T (sequencing)

Hoare Triples
0®000

Programs as State Transformers

@ Program state is a valuation to variables of the program:
States = Var — 7.
o View program P as a partial map [P] : States — States.

States

s: (x—2, y—10, z+— 3)

y =y + 1;
z :=x +y

t: (x—2, y— 11, z+ 13)

Hoare Triples

[ele] lele]

Predicates on States

All States

States satisfying
Predicate A
Eg. 0<xAx<y

Hoare Triples
000®0

Assertion of “Partial Correctness” {A}P{B}

{A}P{B} asserts that “Whenever program P is started in a state
satisfying condition A, either it will not terminate, or it will
terminate in a state satisfying condition B."

All States

{10 <y}
y 1=y + 1;
zZ :=x +y

{x < z}

Hoare Triples
ooooe

Mathematical meaning of a Hoare triple

@ View program P as a relation on States (allows
non-termination as well as non-determinism)

[P] C States x States.

Here (s, t) € [P] iff it is possible to start P in the state s and
terminate in state t.

@ [P] is possibly non-determinisitic, in case we also want to
model non-deterministic assignment etc.

@ Then the Hoare triple {A} P {B} is true iff for all states s
and t: whenever s = A and (s, t) € [P], then t = B.

@ In other words Postpy([A]) € [B].

Proving assertions
°

Example programs and pre/post conditions

// Pre: 0 <= n
// Pre: true

int a := m;
if (a <= b) int x := 0;
min := a; while (x < n) {
else a :=a+1;
min := b; X :=x + 1;
}

// Post: min <= a && min <= b
// Post: a=m+n

Inductive Annotation
©0000000

Floyd style proof: Inductive Annotation

nEJTANi=1A8=0
i—-1

nEJTAIEI AisSn+IAS =2 g
J=1

i~1 n

———nEJ*Ai=n+1AS= Y qjie, S=Xq
=1 Jj=1

i-1

———————— nedtAi€edtAisaAnS=Yq
j=1

i
________ nedtAi€dtAisnAS=Tg
J=1

P—i41 i-1
________ neJdtAi€d A2sisn+1AS=1Taj
Jj=1

Inductive Annotation
0®000000

Inductive annotation based proof of a pre/post specification

@ Annotate each
program point / with
a predicate A;

@ Successive
annotations must be
inductive:

[SI(IAD) € [Aial,
OR logically:
AiN[S] = Al

@ Annotation is
adequate:
Pre — A; and
A, = Post.

@ Adequate annotation
constitutes a proof of
{Pre} Prog {Post}.

Inductive Annotation
[e]eX Yololelele]

Example of inductive annotation
To prove: {y > 10} y := y+1; z := x+y {z > x}

y>10

y =0

y =y +

y>21lAhz=x+y

z>x

Inductive Annotation
[e]eX Yololelele]

Example of inductive annotation
To prove: {y > 10} y := y+1; z := x+y {z > x}

y>10

y =0

y =y +

y>21lAhz=x+y

T~

z>x
Logical proof obligations (VCs):
(y>10 = y>0)A((y>1Az=x+y) = z>x) A
((y>0ny =y+1AX =xnZ=2) = y'>1) A
((y>1AZ =x+yAX =xAy =y) = Yy >1AZ =x"+y)

Inductive Annotation
[e1eTeY Tolelele]

Exercise

Prove using Floyd-style annotation:

Pre: true
e
x :=0
Az
// Pre: true —Q
int x := 0;
while (x < 10) A Az
5 |
x i=x+ 1 Ag Post: x =10
// Post: x = 10 assume .
x < 10
Aq
x = x+1

Also write out the proof obligations (verification conditions).

Inductive Annotation
0000®000

Adequate loop invariant

An adequate loop invariant needs to satisfy:

@ {n>0}a :=m; x :=0
h>0Aa—m {a=m+xAx<n}
@ {a=m+xAx<nAx<n}a :=atl;
x =0 x 1= x+1 {a=m+xAx<n}.
@ {a=m+xAx<nAx>n} skip
a=m+xAx<n
= {a=m+n}.
while (x < n) { Verification conditions are generated
accordingly.
a = a 1)
L Note that a = m + x is not an adequate loop
xi=x 41 invariant.
~

(a=m+n

Inductive Annotation
00000@00

Generating Verification Conditions for a program

assume Pre

S1 The following VCs are generated:

: . @ Pre A[Si] = InV/
<—— invariant |Inv Or: Pre — WP(Sl,InV)

@ InvAbA[S)] = Inv/
Or: (Inv A b) = WP(Sz, Inv)

@ Inv A—-bA[S3] = Post’
Or: Inv A —-b = WRP(S3, Post)

while (b) {

S

S3

assert Post

Inductive Annotation
000000e0

Adequate loop invariant

What is a “good” loop invariant for this program?

x := 0;
while (x < 10) {
if (x >= 0)

x = x + 1;
else
x :=x - 1;

}

assert (x <= 11);

Inductive Annotation
0000000Oe

Adequate loop invariant

Canonical Not—inv Inv,not—ind Inv,ind,not—adeq Inv,ind,adeq
Invariant
x := 0;
while (x < 10) { 0=<x=<10 5<x -1<x 0<x<12 0< x<11

if (x >= 0)
x :=x + 1;
else
X = x - 1;
}

assert (x <= 11);

v

10 5 10 5 10 5 10

Nested Loops
°

Handling nested loops

Verification conditions generated

assume Pre

St
while (b) { invl
S
while (c) { invi
S3
}
Sy
}
Ss

assert Post

Function Contracts
[1]

Contracts for Recursive Functions

main() {
result = fib(5);
assert (result > 2);

}

// requires x >= 0
// ensures (result >= x) && (result > 0)
int fib(int x) {

if (x < 2)
return 1;
else

return fib(x-1) + fib(x-2);

For conjectured contract: x > 0 A result > x, counterexample may
be:

IF pre of fib contains a configuration with x=2 AND post contains a
configuration with (x=0, result=0) and another with (x=1, result=1),
THEN post must contain the configuration (x=2, result=1).

Function Contracts
oce

Soundness of Function Contracts

main fib fib

program with valid contract

@ Consider an execution of a ti----- \
annotation

How VCC Works (in Principle)

Valid
Program / (Assertion proved)
+ Spec —=|
+ Annotation
Invalid/Unkown

(Unable to prove assertion)

Conclusion

o Features of this Floyd-Hoare style of verification:

o Tries to find a proof in the form of an inductive annotation.

@ A Floyd-style proof can be used to obtain a Hoare-style proof;
and vice-versa.

o Reduces verification (given key annotations) to checking
satisfiability of a logical formula (VCs).

o Is flexible about predicates, logic used (for example can add
quantifiers to reason about arrays).

@ Main challenge is the need for user annotation (adequate loop
invariants).

@ Can be increasingly automated (using learning techniques).

	Overview
	Hoare Triples
	Proving assertions
	Inductive Annotation
	Nested Loops
	Function Contracts
	VCC

