
Overview Hoare Triples Proving assertions Inductive Annotation Nested Loops Function Contracts VCC

Floyd-Hoare Style Program Verification
(FMSE Course)

Deepak D’Souza

Department of Computer Science and Automation
Indian Institute of Science, Bangalore.

27 Feb 2024



Overview Hoare Triples Proving assertions Inductive Annotation Nested Loops Function Contracts VCC

Outline of these lectures

1 Overview

2 Hoare Triples

3 Proving assertions

4 Inductive Annotation

5 Nested Loops

6 Function Contracts

7 VCC



Overview Hoare Triples Proving assertions Inductive Annotation Nested Loops Function Contracts VCC

Checking Pre/Post Assertions in Programs

Moving on from reasoning about models to reasoning about
code.

Still a deductive style of verification.

Helps us to verify assertions and also refinement-based
functionality verification.



Overview Hoare Triples Proving assertions Inductive Annotation Nested Loops Function Contracts VCC

Example Program and Property

x := 0;

y := 0;

while (*) {

if (x < y)

x++;

else

y++;

}

// assert y != x - 1

y

x

How would one check that this program satisfies the given
assertion?



Overview Hoare Triples Proving assertions Inductive Annotation Nested Loops Function Contracts VCC

Idea of Deductive Verification

Problem: Given a transition system
T = (S ,S0,→) and an set of unsafe
states B ⊆ S , does an execution of
T reach a state in B?

B

S0

Find a set of states I such that

1 S0 ⊆ I (initial states belong to
I )

2 s ∈ I and s → s ′, implies s ′ ∈ I
(I is inductive wrt trans)

3 I ∩ B = ∅ (I disjoint from Bad
states).

Such an I is called an adequate
inductive invariant.

B

S0

I



Overview Hoare Triples Proving assertions Inductive Annotation Nested Loops Function Contracts VCC

Idea of deductive verification

x := 0;

y := 0;

while (*) {

if (x < y)

x++;

else

y++;

}

// assert y != x - 1

y

x

I : x ≤ y

Bad : y = x − 1

I is an adequate inductive invariant:

1 s0 ∈ I (initial state belongs to I )

2 s ∈ I and s → s ′, implies s ′ ∈ I (I is inductive wrt trans)

3 I ∩ B = ∅ (I disjoint from Bad states).



Overview Hoare Triples Proving assertions Inductive Annotation Nested Loops Function Contracts VCC

Floyd-Hoare Style of Program Verification

Robert W. Floyd: “Assigning meanings to programs” Proceedings
of the American Mathematical Society Symposia on Applied
Mathematics (1967)

C A R Hoare: “An axiomatic basis for computer programming”,
Communications of the ACM (1969).



Overview Hoare Triples Proving assertions Inductive Annotation Nested Loops Function Contracts VCC

Floyd-Hoare Logic

A way of asserting properties of programs.

Hoare triple: {A}P{B} asserts that “Whenever program P is
started in a state satisfying condition A, if it terminates, it will
terminate in a state satisfying condition B.”

Example assertion: {n ≥ 0} P {a = n + m}, where P is the
program:

int a := m;

int x := 0;

while (x < n) {

a := a + 1;

x := x + 1;

}

Inductive Annotation (“consistent interpretation”) (due to
Floyd)

A proof system (due to Hoare) for proving such assertions.

A way of reasoning about such assertions using the notion of
“Weakest Preconditions” (due to Dijkstra).



Overview Hoare Triples Proving assertions Inductive Annotation Nested Loops Function Contracts VCC

A Simple Programming Language

skip (do nothing)

x := e (assignment)

if b then S elseT (if-then-else)

while b do S (while loop)

S ;T (sequencing)



Overview Hoare Triples Proving assertions Inductive Annotation Nested Loops Function Contracts VCC

Programs as State Transformers

Program state is a valuation to variables of the program:
States = Var → Z.

View program P as a partial map JPK : States → States.

States

state t

P

state s

s : 〈x 7→ 2, y 7→ 10, z 7→ 3〉

y := y + 1;

z := x + y

t : 〈x 7→ 2, y 7→ 11, z 7→ 13〉



Overview Hoare Triples Proving assertions Inductive Annotation Nested Loops Function Contracts VCC

Predicates on States

All States

States satisfying

PredicateA
Eg. 0 ≤ x ∧ x < y

A



Overview Hoare Triples Proving assertions Inductive Annotation Nested Loops Function Contracts VCC

Assertion of “Partial Correctness” {A}P{B}

{A}P{B} asserts that “Whenever program P is started in a state
satisfying condition A, either it will not terminate, or it will
terminate in a state satisfying condition B.”

All States

P

A

B

{10 ≤ y}

y := y + 1;

z := x + y

{x < z}



Overview Hoare Triples Proving assertions Inductive Annotation Nested Loops Function Contracts VCC

Mathematical meaning of a Hoare triple

View program P as a relation on States (allows
non-termination as well as non-determinism)

JPK ⊆ States× States.

Here (s, t) ∈ JPK iff it is possible to start P in the state s and
terminate in state t.

JPK is possibly non-determinisitic, in case we also want to
model non-deterministic assignment etc.

Then the Hoare triple {A} P {B} is true iff for all states s
and t: whenever s |= A and (s, t) ∈ JPK, then t |= B.

In other words PostJPK(JAK) ⊆ JBK.



Overview Hoare Triples Proving assertions Inductive Annotation Nested Loops Function Contracts VCC

Example programs and pre/post conditions

// Pre: true

if (a <= b)

min := a;

else

min := b;

// Post: min <= a && min <= b

// Pre: 0 <= n

int a := m;

int x := 0;

while (x < n) {

a := a + 1;

x := x + 1;

}

// Post: a = m + n



Overview Hoare Triples Proving assertions Inductive Annotation Nested Loops Function Contracts VCC

Floyd style proof: Inductive Annotation



Overview Hoare Triples Proving assertions Inductive Annotation Nested Loops Function Contracts VCC

Inductive annotation based proof of a pre/post specification

Annotate each
program point i with
a predicate Ai

Successive
annotations must be
inductive:
JSiK(JAiK) ⊆ JAi+1K,
OR logically:
Ai ∧ [Si ] =⇒ A′i+1.

Annotation is
adequate:
Pre =⇒ A1 and
An =⇒ Post.

Adequate annotation
constitutes a proof of
{Pre} Prog {Post}.

a := m;

x := 0

while (x < n) {

x := x + 1

a := a + 1

n ≥ 0 ∧ a = m

n ≥ 0

n ≥ 0

a = m + x ∧ x ≤ n

a = m + n



Overview Hoare Triples Proving assertions Inductive Annotation Nested Loops Function Contracts VCC

Example of inductive annotation

To prove: {y > 10} y := y+1; z := x+y {z > x}

y := y + 1

z := x + y

y ≥ 1

y ≥ 0

y ≥ 1 ∧ z = x + y

z > x

y > 10

Logical proof obligations (VCs):

(y > 10 =⇒ y ≥ 0) ∧ ((y ≥ 1 ∧ z = x + y) =⇒ z > x) ∧
((y ≥ 0 ∧ y ′ = y + 1 ∧ x ′ = x ∧ z ′ = z) =⇒ y ′ ≥ 1) ∧

((y ≥ 1 ∧ z ′ = x + y ∧ x ′ = x ∧ y ′ = y) =⇒ y ′ ≥ 1 ∧ z ′ = x ′ + y ′)



Overview Hoare Triples Proving assertions Inductive Annotation Nested Loops Function Contracts VCC

Example of inductive annotation

To prove: {y > 10} y := y+1; z := x+y {z > x}

y := y + 1

z := x + y

y ≥ 1

y ≥ 0

y ≥ 1 ∧ z = x + y

z > x

y > 10

Logical proof obligations (VCs):

(y > 10 =⇒ y ≥ 0) ∧ ((y ≥ 1 ∧ z = x + y) =⇒ z > x) ∧
((y ≥ 0 ∧ y ′ = y + 1 ∧ x ′ = x ∧ z ′ = z) =⇒ y ′ ≥ 1) ∧

((y ≥ 1 ∧ z ′ = x + y ∧ x ′ = x ∧ y ′ = y) =⇒ y ′ ≥ 1 ∧ z ′ = x ′ + y ′)



Overview Hoare Triples Proving assertions Inductive Annotation Nested Loops Function Contracts VCC

Exercise

Prove using Floyd-style annotation:

// Pre: true

int x := 0;

while (x < 10)

x := x + 1;

// Post: x = 10

x := 0

x := x+1

assume

x < 10

A2

A3

A4

A5
Post: x = 10

A1

Pre: true

A6

Also write out the proof obligations (verification conditions).



Overview Hoare Triples Proving assertions Inductive Annotation Nested Loops Function Contracts VCC

Adequate loop invariant

a := m;

x := 0

while (x < n) {

x := x + 1

a := a + 1

n ≥ 0 ∧ a = m

n ≥ 0

a = m + x ∧ x ≤ n

n ≥ 0

a = m + n

An adequate loop invariant needs to satisfy:

{n ≥ 0} a := m; x := 0

{a = m + x ∧ x ≤ n}.
{a = m + x ∧ x ≤ n ∧ x < n} a := a+1;

x := x+1 {a = m + x ∧ x ≤ n}.
{a = m + x ∧ x ≤ n ∧ x ≥ n} skip
{a = m + n}.

Verification conditions are generated
accordingly.

Note that a = m + x is not an adequate loop

invariant.



Overview Hoare Triples Proving assertions Inductive Annotation Nested Loops Function Contracts VCC

Generating Verification Conditions for a program

while (b) {

assume Pre

}

assert Post

invariant Inv

S2

S1

S3

The following VCs are generated:

Pre ∧ [S1] =⇒ Inv ′

Or: Pre =⇒ WP(S1, Inv)

Inv ∧ b ∧ [S2] =⇒ Inv ′

Or: (Inv ∧ b) =⇒ WP(S2, Inv)

Inv ∧ ¬b ∧ [S3] =⇒ Post′

Or: Inv ∧ ¬b =⇒ WP(S3,Post)



Overview Hoare Triples Proving assertions Inductive Annotation Nested Loops Function Contracts VCC

Adequate loop invariant

What is a “good” loop invariant for this program?

if (x >= 0)

while (x < 10) {

x := 0;

x := x + 1;

else

x := x − 1;

}

assert(x <= 11);



Overview Hoare Triples Proving assertions Inductive Annotation Nested Loops Function Contracts VCC

Adequate loop invariant

if (x >= 0)

while (x < 10) {

x := 0;

x := x + 1;

else

x := x − 1;

}

assert(x <= 11);

Not−inv
Invariant

Inv,not−ind Inv,ind,not−adeq Inv,ind,adeq

5 10 5 10 5 10

Canonical

5 10

5 10

0 ≤ x ≤ 10 5 ≤ x −1 ≤ x 0 ≤ x ≤ 12 0 ≤ x ≤ 11



Overview Hoare Triples Proving assertions Inductive Annotation Nested Loops Function Contracts VCC

Handling nested loops

while (b) { inv1

while (c) {

}

}

assert Post

inv1

assume Pre

S2

S3

S5

S4

S1

Verification conditions generated



Overview Hoare Triples Proving assertions Inductive Annotation Nested Loops Function Contracts VCC

Contracts for Recursive Functions

main() {

result = fib(5);

assert (result > 2);

}

// requires x >= 0

// ensures (result >= x) && (result > 0)

int fib(int x) {

if (x < 2)

return 1;

else

return fib(x-1) + fib(x-2);

}

For conjectured contract: x ≥ 0 ∧ result ≥ x , counterexample may
be:

IF pre of fib contains a configuration with x=2 AND post contains a

configuration with (x=0, result=0) and another with (x=1, result=1),

THEN post must contain the configuration (x=2, result=1).



Overview Hoare Triples Proving assertions Inductive Annotation Nested Loops Function Contracts VCC

Soundness of Function Contracts

Consider an execution of a
program with valid contract
annotation

main fibfib fib



Overview Hoare Triples Proving assertions Inductive Annotation Nested Loops Function Contracts VCC

How VCC Works (in Principle)

Program

+ Spec

+ Annotation
Engine

Verification

(VCC/Boogie)

Solver

(Z3)

VCs

Invalid/Unkown

(Unable to prove assertion)

Valid

(Assertion proved)



Overview Hoare Triples Proving assertions Inductive Annotation Nested Loops Function Contracts VCC

Conclusion

Features of this Floyd-Hoare style of verification:

Tries to find a proof in the form of an inductive annotation.
A Floyd-style proof can be used to obtain a Hoare-style proof;
and vice-versa.
Reduces verification (given key annotations) to checking
satisfiability of a logical formula (VCs).
Is flexible about predicates, logic used (for example can add
quantifiers to reason about arrays).

Main challenge is the need for user annotation (adequate loop
invariants).

Can be increasingly automated (using learning techniques).


	Overview
	Hoare Triples
	Proving assertions
	Inductive Annotation
	Nested Loops
	Function Contracts
	VCC

