Meanings of Annotations in VCC

Deepak D’'Souza

Department of Computer Science and Automation
Indian Institute of Science, Bangalore.

2 Mar 2020

Outline

© View of Heap

© Admissibility

© Ownership

View of Heap

Heap state

@ Heap state (set of objects at certain addresses in memory).

counter ParityReading
—,{—‘
n: 10— | °® < :

Addresses

View of Heap

Augmented Heap state

counter ’—“—‘ ParityReading
/Y - |
n: 10|) N :

|
|
i closed: true
|
|
'owner: —— i
B . : ® ' closed: true 1
i invariant (counter), ! |
ln>=0 | | owner: null !
[! [. . .
i invariant (parityReading): |
| ent.n % 2 = parity !
|
,,,,,,,,,,,,,,,,,,, |
Addresses

VCC also adds other auxiliary (“ghost™) fields like “\owns" (the
set of objects declared to be owned by this object, typically in its
invariants); and a boolean “\valid" (true if the object is part of
the set of “real” objects in the current state).

Admissibility

Overview of “local” verification

@ Aim is to prove that a program is safe (object invariants are
satisfied in each reachable state).

@ Standard inductive argument: show initial state is safe, and
show that each program statement leads from a safe pre-state
to a safe post-state.

@ Arguing this may not be easy due to object invariants
spanning several sub-objects.

@ Instead, first show that object invariants are admissible (an
invariant-preserving update to a sub-object does not break the
invariant of the super-object); and then argue “locally” that
each statement is legal (updates to an object preserves its
invariant).

@ In other words:
admissible invariants + legal updates = safety

Ownership

Object (ghost) fields added by VCC

e \valid: Boolean field that is true iff the object is part of the
set of “real” objects in the current heap state. In particular, p
cannot be NULL.

@ \closed: Boolean field which is true iff this object is “closed”
(is valid and satisfies its invariants).

@ \owner: pointer to the object (or thread) that currently owns
this object.

@ \owns: set of objects declared to be owned by this object,
typically in its invariants

Ownership

Meaning of annotations (predicates)

o \thread local(p): true iff (the object pointed to by) p is valid
and owned by current thread.

o \mutable(p): true iff \thread_local(p) and is not closed.

o \wrapped(p): true iff (the object pointed to by) p is closed
and owned by the current thread.

o \writeable(p): true iff (the object pointed to by) p is part of
the \writes set of the function. (i.e. the function has
permission to write to p).

Ownership

Meaning of annotations (declarations)

@ \writes p: p is part of the \writes set of the function (i.e. the
objects that the function might possibly modify). Also
requires that p— >\owner is \me.

Ownership

Meaning of annotations (expressions)

@ \span(p): the set of pointers to the members of the object
pointed to by p, unioned with {p} itself.

e \embedding(o): if o is a pointer to a primitive field (like
int) of an object p, returns p.

Ownership

Meaning of annotations (statements)

o _(unwrap p): Add all member objects to writes set of the
function. In particular, transfers ownership of sub-objects
from p to the current thread.

Important: the function does not have to (and should not)
report that it writes span(p), as this would lead to
contradictory assumptions about ownership of p's sub-objects.
Instead, the function should just say it writes p.

Ownership

Example illustrating writes p and writes span(p)

typedef struct counter {
_(ghost \natural count),
unsigned hi, lo;

} counter;

void init(counter *p) void inc(counter *p)
_(writes \span(p)) _(writes p)
_(ensures \wrapped(p)) _(requires \wrapped(p))
{ _(requires p->count < 256%255 + 255)
_(ghost p->count = 0); _(ensures \wrapped(p))
p—>hi = 0; {
p->lo = 0; _(unwrap p)
_(wrap p) _(ghost p->count = p->count + 1)
} if (p->lo < 255)
p->lot++;
else {
p—>lo = 0;
p—>hi++;
}
_(wrap p)

	View of Heap
	Admissibility
	Ownership

