
View of Heap Admissibility Ownership

Meanings of Annotations in VCC

Deepak D’Souza

Department of Computer Science and Automation
Indian Institute of Science, Bangalore.

2 Mar 2020



View of Heap Admissibility Ownership

Outline

1 View of Heap

2 Admissibility

3 Ownership



View of Heap Admissibility Ownership

Heap state

Heap state (set of objects at certain addresses in memory).

parity: 0

cnt:

Addresses

counter ParityReading

n: 10



View of Heap Admissibility Ownership

Augmented Heap state

parity: 0

cnt:

Addresses

counter ParityReading

n: 10

closed: true

owner: 

invariant (counter):

n >= 0

closed: true

owner: null

invariant (parityReading):

cnt.n % 2 = parity

VCC also adds other auxiliary (“ghost”) fields like “\owns” (the
set of objects declared to be owned by this object, typically in its
invariants); and a boolean “\valid” (true if the object is part of
the set of “real” objects in the current state).



View of Heap Admissibility Ownership

Overview of “local” verification

Aim is to prove that a program is safe (object invariants are
satisfied in each reachable state).

Standard inductive argument: show initial state is safe, and
show that each program statement leads from a safe pre-state
to a safe post-state.

Arguing this may not be easy due to object invariants
spanning several sub-objects.

Instead, first show that object invariants are admissible (an
invariant-preserving update to a sub-object does not break the
invariant of the super-object); and then argue “locally” that
each statement is legal (updates to an object preserves its
invariant).

In other words:
admissible invariants + legal updates = safety



View of Heap Admissibility Ownership

Object (ghost) fields added by VCC

\valid: Boolean field that is true iff the object is part of the
set of “real” objects in the current heap state. In particular, p
cannot be NULL.

\closed: Boolean field which is true iff this object is “closed”
(is valid and satisfies its invariants).

\owner: pointer to the object (or thread) that currently owns
this object.

\owns: set of objects declared to be owned by this object,
typically in its invariants



View of Heap Admissibility Ownership

Meaning of annotations (predicates)

\thread local(p): true iff (the object pointed to by) p is valid
and owned by current thread.

\mutable(p): true iff \thread local(p) and is not closed.

\wrapped(p): true iff (the object pointed to by) p is closed
and owned by the current thread.

\writeable(p): true iff (the object pointed to by) p is part of
the \writes set of the function. (i.e. the function has
permission to write to p).



View of Heap Admissibility Ownership

Meaning of annotations (declarations)

\writes p: p is part of the \writes set of the function (i.e. the
objects that the function might possibly modify). Also
requires that p− >\owner is \me.



View of Heap Admissibility Ownership

Meaning of annotations (expressions)

\span(p): the set of pointers to the members of the object
pointed to by p, unioned with {p} itself.

\embedding(o): if o is a pointer to a primitive field (like
int) of an object p, returns p.



View of Heap Admissibility Ownership

Meaning of annotations (statements)

(unwrap p): Add all member objects to writes set of the
function. In particular, transfers ownership of sub-objects
from p to the current thread.

Important: the function does not have to (and should not)
report that it writes span(p), as this would lead to
contradictory assumptions about ownership of p’s sub-objects.
Instead, the function should just say it writes p.



View of Heap Admissibility Ownership

Example illustrating writes p and writes span(p)

typedef struct counter {

_(ghost \natural count),

unsigned hi, lo;

...

} counter;

void init(counter *p)

_(writes \span(p))

_(ensures \wrapped(p))

{

_(ghost p->count = 0);

p->hi = 0;

p->lo = 0;

_(wrap p)

}

void inc(counter *p)

_(writes p)

_(requires \wrapped(p))

_(requires p->count < 256*255 + 255)

_(ensures \wrapped(p))

{

_(unwrap p)

_(ghost p->count = p->count + 1)

if (p->lo < 255)

p->lo++;

else {

p->lo = 0;

p->hi++;

}

_(wrap p)

}


	View of Heap
	Admissibility
	Ownership

