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Heap state

Heap state (set of objects at certain addresses in memory).

parity: 0

cnt:

Addresses

counter ParityReading

n: 10
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Augmented Heap state

parity: 0

cnt:

Addresses

counter ParityReading

n: 10

closed: true

owner: 

invariant (counter):

n >= 0

closed: true

owner: null

invariant (parityReading):

cnt.n % 2 = parity

VCC also adds other auxiliary (“ghost”) fields like “\owns” (the
set of objects declared to be owned by this object, typically in its
invariants); and a boolean “\valid” (true if the object is part of
the set of “real” objects in the current state).
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Overview of “local” verification

Aim is to prove that a program is safe (object invariants are
satisfied in each reachable state).

Standard inductive argument: show initial state is safe, and
show that each program statement leads from a safe pre-state
to a safe post-state.

Arguing this may not be easy due to object invariants
spanning several sub-objects.

Instead, first show that object invariants are admissible (an
invariant-preserving update to a sub-object does not break the
invariant of the super-object); and then argue “locally” that
each statement is legal (updates to an object preserves its
invariant).

In other words:
admissible invariants + legal updates = safety
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Object (ghost) fields added by VCC

\valid: Boolean field that is true iff the object is part of the
set of “real” objects in the current heap state. In particular, p
cannot be NULL.

\closed: Boolean field which is true iff this object is “closed”
(is valid and satisfies its invariants).

\owner: pointer to the object (or thread) that currently owns
this object.

\owns: set of objects declared to be owned by this object,
typically in its invariants
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Meaning of annotations (predicates)

\thread local(p): true iff (the object pointed to by) p is valid
and owned by current thread.

\mutable(p): true iff \thread local(p) and is not closed.

\wrapped(p): true iff (the object pointed to by) p is closed
and owned by the current thread.

\writeable(p): true iff (the object pointed to by) p is part of
the \writes set of the function. (i.e. the function has
permission to write to p).
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Meaning of annotations (declarations)

\writes p: p is part of the \writes set of the function (i.e. the
objects that the function might possibly modify). Also
requires that p− >\owner is \me.
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Meaning of annotations (expressions)

\span(p): the set of pointers to the members of the object
pointed to by p, unioned with {p} itself.

\embedding(o): if o is a pointer to a primitive field (like
int) of an object p, returns p.
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Meaning of annotations (statements)

(unwrap p): Add all member objects to writes set of the
function. In particular, transfers ownership of sub-objects
from p to the current thread.

Important: the function does not have to (and should not)
report that it writes span(p), as this would lead to
contradictory assumptions about ownership of p’s sub-objects.
Instead, the function should just say it writes p.
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Example illustrating writes p and writes span(p)

typedef struct counter {

_(ghost \natural count),

unsigned hi, lo;

...

} counter;

void init(counter *p)

_(writes \span(p))

_(ensures \wrapped(p))

{

_(ghost p->count = 0);

p->hi = 0;

p->lo = 0;

_(wrap p)

}

void inc(counter *p)

_(writes p)

_(requires \wrapped(p))

_(requires p->count < 256*255 + 255)

_(ensures \wrapped(p))

{

_(unwrap p)

_(ghost p->count = p->count + 1)

if (p->lo < 255)

p->lo++;

else {

p->lo = 0;

p->hi++;

}

_(wrap p)

}
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