Verifying C Programs:
A VCC Tutorial
Working draft, version 0.2, August 25, 2012

Ernie Cohen, Mark A. Hillebrand,
Stephan Tobies

European Microsoft Innovation Center
{ecohen,mahilleb,stobies}@microsoft.com

Abstract

VCC is a verification environment for software written in C. VCC
takes a program (annotated with function contracts, state assertions,
and type invariants) and attempts to prove that these annotations are
correct, i.e. that they hold for every possible program execution.
The environment includes tools for monitoring proof attempts and
constructing partial counterexample executions for failed proofs.
VCC handles fine-grained concurrency and low-level C features,
and has been used to verify the functional correctness of tens of
thousands of lines of commercial concurrent system code.

This tutorial describes how to use VCC to verify C code. It
covers the annotation language, the verification methodology, and
the use of VCC itself.

1. Introduction

This tutorial is an introduction to verifying C code with VCC. Our
primary audience is programmers who want to write correct code.
The only prerequisite is a working knowledge of C.

To use VCC, you first annotate your code to specify what your
code does (e.g., that your sorting function sorts its input), and why
it works (e.g., suitable invariants for your loops and data structures).
VCC then tries to prove (mathematically) that your program meets
these specifications. Unlike most program analyzers, VCC doesn’t
look for bugs, or analyze an abstraction of your program; if VCC
certifies that your program is correct, then your program really is
correc

To check your program, VCC uses the deductive verification
paradigm: it generates a number of mathematical statements (called
verification conditions), the validity of which suffice to guarantee
the program’s correctness, and tries to prove these statements us-
ing an automatic theorem prover. If any of these proofs fail, VCC
reflects these failures back to you in terms of the program itself
(as opposed to the formulas seen by the theorem prover). Thus,
you normally interact with VCC entirely at the level of code and
program states; you can usually ignore the mathematical reasoning
going on “under the hood”. For example, if your program uses di-
vision somewhere, and VCC is unable to prove that the divisor is
nonzero, it will report this to you as a (potential) program error at
that point in the program. This doesn’t mean that your program is

I In reality, this isn’t necessarily true, for two reasons. First, VCC itself
might have bugs; in practice, these are unlikely to cause you to accidentally
verify an incorrect program, unless you find and intentionally exploit such
a bug. Second, there are a few checks needed for soundness that haven’t
yet been added to VCC, such as checking that ghost code terminates; these
issues are listed in section § ??.

VCC Tutorial (working draft, ver. 0.2)

Michal Moskal, Wolfram Schulte

Microsoft Research Redmond
{micmo,schulte}@microsoft.com

necessarily incorrect; most of the time, especially when verifying
code that is already well-tested, it is because you haven’t provided
enough information to allow VCC to deduce that the suspected er-
ror doesn’t occur. (For example, you might have failed to specify
that some function parameter is required to be nonzero.) Typically,
you fix this “error” by strengthening your annotations. This might
lead to other error reports, forcing you to add additional annota-
tions, so verification is in practice an iterative process. Sometimes,
this process will reveal a genuine programming error. But even if it
doesn’t, you will have not only proved your code free from such er-
rors, but you will have produced the precise specifications for your
code — a very useful form of documentation.

This tutorial covers basics of VCC annotation language. By the
time you have finished working through it, you should be able to
use VCC to verify some nontrivial programs. It doesn’t cover the
theoretical background of VCC [2], implementation details 1] or
advanced topics; information on these can be found on the VCC
homepageﬂ More information on all topics covered in the tutorial
can be found in the VCC manual.

The examples in this tutorial are currently distributed with the
VCC sources

You can use VCC either from the command line or from Vi-
sual Studio 2008/2010 (VS); the VS interface offers easy access to
different components of VCC tool chain and is thus generally rec-
ommended. VCC can be downloaded from the VCC homepage; be
sure to read the installation instructionsﬂ which provide important
information about installation prerequisites and how to set up tool
paths.

2. Verifying Simple Programs

We begin by describing how VCC verifies “simple programs” —
sequential programs without loops, function calls, or concurrency.
This might seem to be a trivial subset of C, but in fact VCC reasons
about more complex programs by reducing them to reasoning about
simple programs.

2.1 Assertions
Let’s begin with a simple example:

#include <vcc.h>

2http://vee.codeplex.com/

3 Available from http://vce.codeplex.com/SourceControl/
list/changesets| click Download on the right, get the zip file and
navigate to vec/Docs/Tutorial/c.

4http://vee.codeplex.com/wikipage?title=Install

| 2012/8/25

http://vcc.codeplex.com/
http://vcc.codeplex.com/SourceControl/list/changesets
http://vcc.codeplex.com/SourceControl/list/changesets
http://vcc.codeplex.com/wikipage?title=Install

int main()

{
int x,y,z;
if (x <=y)

Z=X;
elsez=y;
_(assert z <= x)
return 0O;

This program sets z to the minimum of x and y. In addition to
the ordinary C code, this program includes an annotation, start-
ing with _(, terminating with a closing parenthesis, with balanced
parentheses inside. The first identifier after the opening parenthesis
(in the program above it’s assert) is called an annotation tag and
identifies the type of annotation provided (and hence its function).
(The tag plays this role only at the beginning of an annotation; else-
where, it is treated as an ordinary program identifier.) Annotations
are used only by VCC, and are not seen by the C compiler. When
using the regular C compiler the <vcc.h> header file defines:

#define _(...) 4 nothing =/

VCC does not use this definition, and instead parses the inside of
_(...) annotations.

An annotation of the form _(assert E), called an assertion, asks
VCC to prove that E is guaranteed to hold (i.e., evaluate to a value
other than 0) whenever control reaches the assenionE] Thus, the
line _(assert z <= x) says that when control reaches the assertion,
z is no larger than x. If VCC successfully verifies a program, it
promises that this will hold throughout every possible execution
of the program, regardless of inputs, how concurrent threads are
scheduled, etc. More generally, VCC might verify some, but not
all of your assertions; in this case, VCC promises that the first
assertion to be violated will not be one of the verified ones.

It is instructive to compare _(assert E) with the macro assert(E)
(defined in <assert.h>), which evaluates E at runtime and
aborts execution if E doesn’t hold. First, assert(E) requires
runtime overhead (at least in builds where the check is made),
whereas _(assert E) does not. Second, assert(E) will catch fail-
ure of the assertion only when it actually fails in an execution,
whereas _(assert E) is guaranteed to catch the failure if it is
possible in any execution. Third, because _(assert E) is not ac-
tually executed, E can include unimplementable mathematical
operations, such as quantification over infinite domains.

To verify the function using VCC from the command line, save
the source in a file called (say) minimum.c and run VCC as follows:

C:\Somewhere\VCC Tutorial> vcc.exe minimum.c
Verification of main succeeded.
C:\Somewhere\VCC Tutorial>

If instead you wish to use VCC Visual Studio plugin, load the
solution tutorial.sIn in <vce source dir>\vec\vec\Docs\Tutorial, locate
the file with the example, and right-click on the program text. You
should get options to verify the file or just this function (either will
work). The solution has the examples from this tutorial arrange by
section, named so that they will appear within the project in textual
order.

If you right-click within a C source file, several VCC commands
are made available, depending on what kind of construction Intel-
liSense thinks you are in the middle of. The choice of verifying the
entire file is always available. If you click within the definition of a

5 This interpretation changes slightly if E refers to memory locations that
might be concurrently modified by other threads; seeEEI

VCC Tutorial (working draft, ver. 0.2)

struct type, VCC will offer you the choice of checking admissibil-
ity for that type (a concept explained in[§[5.3). If you click within
the body of a function, VCC should offer you the opportunity to
verify just that function. However, IntelliSense often gets confused
about the syntactic structure of VCC code, so it might not always
present these context-dependent options. However, if you select the
name of a function and then right click, it will allow you to verify
just that function.

VCC verifies this function successfully, which means that its
assertions are indeed guaranteed to hold and that the program
cannot crashE] If VCC is unable to prove an assertion, it reports
an error. Try changing the assertion in this program to something
that isn’t true and see what happens. (You might also want to try
coming up with some complex assertion that is true, just to see
whether VCC is smart enough to prove it.)

To understand how VCC works, and to use it successfully, it
is useful to think in terms of what VCC “knows” at each control
point of your program. In the current example, just before the first
conditional, VCC knows nothing about the local variables, since
they can initially hold any value. Just before the first assignment,
VCC knows that x <=y (because execution followed that branch of
the conditional), and after the assignment, VCC also knows that
z == X, so it knows that z <= x. Similarly, in the else branch, VCC
knows that y < x (because execution didn’t follow the if branch),
and after the assignment to z, it also knows that z ==y, so it also
knows z <= x. Since z <= x is known to hold at the end of each
branch of the conditional, it is known to hold at the end of the
conditional, so the assertion is known to hold when control reaches
it. In general, VCC doesn’t lose any information when reasoning
about assignments and conditionals. However, we will see that
VCC may lose some information when reasoning about loops; you
will then need to provide annotations to make sure that it doesn’t
lose “too much”.

When we talk about what VCC knows, we mean what it knows
in an ideal sense, where if it knows E, it also knows any logical
consequence of E. In such a world, adding an assertion that suc-
ceeds would have no effect on whether later assertions succeed.
VCC’s ability to deduce consequences is indeed complete for many
types of formulas (e.g. formulas that use only equalities, inequali-
ties, addition, subtraction, multiplication by constants, and boolean
connectives), but not for all formulas, so VCC will sometimes fail
to prove an assertion, even though it “knows” enough to prove it.
Conversely, an assertion that succeeds can sometimes cause later
assertions that would otherwise fail to succeed, by drawing VCC’s
attention to a crucial fact it needs to prove the later assertion.
This is relatively rare, and typically involves “nonlinear arithmetic”
(e.g. where variables are multiplied together), bitvector reasoning
(§]2.4.1) or quantifiers.

When VCC surprises you by failing to verify something that
you think it should be able to verify, it is usually because it doesn’t
know something you think it should know. An assertion provides
one way to check whether VCC knows what you think it knows.

Exercises

1. Can the assertion at the end of the example function be made
stronger? What is the strongest valid assertion one could write?
Try verifying the program with your stronger assertion.

2. Write an assertion that says that the int x is the average of the
ints y and z.

6 VCC will not check that this program terminates, because the program
hasn’t been specified as having to terminate; we will see later how to provide
such specifications. VCC also doesn’t check that the program doesn’t run
out of stack space, but this feature may be provided in some future version.

2 2012/8/25

3. Modify the example program so that it sets x and y to values
that differ by at most 1 and sum to z. Prove that your program
does this correctly.

Solutions

1. The strongest postcondition is _(assert z<=x && z<=y && (z ==
x|l z==Yy)).

2. _(assert 2 x x ==y + z). (Note that _(x == (y + z)/2) doesn’t quite
do the job; you might get a false positive because division
rounds down.)

3. int main() {
int x,y,z;
X =2/2;
y=2-X;
_(asserty—x <=1 && x-y <=1 && x+y == 2)
return 0;

2.2 Logical Operators and Quantifiers

VCC provides a number of C extensions that can be used within
VCC annotations (such as assertions):

e The Boolean operator ==> denotes logical implication; for-
mally, P ==> Q means ((!P)|| (Q)), and is usually read as “P im-
plies Q”. Because ==> has lower precedence than the C opera-
tors, it is typically not necessary to parenthesize P or Q.

The expression \forall T v; E evaluates to 1 if the expression E
evaluates to a nonzero value for every value v of type T. For
example, the assertion

_(assert x> 1 &&
\forall inti; 1 <i&& i<x==>x%i!=0)

checks that (int) x is a prime number. If b is an int array of size
N, then

_(assert \forall int i; \forall int j;
0<=i8&&i<=j&&j<N==>DbJ[i] <=Db[j])

checks that b is sorted.

Similarly, the expression \exists T v; E evaluates to 1 if there is
some value of v of type T for which E evaluates to a nonzero
value. For example, if b is an int array of size N, the assertion

_(assert \exists inti; 0 <=1 && i < N && b[i] == 0)

asserts that b contains a zero element. \forall and \exists are
jointly referred to as quantifiers.

The type \integer represents the type of mathematical integers;
the type \natural denotes the type of natural numbers.

VCC provides map types; they are declared and used like ar-
rays, but with a type instead of a size. For example, \integer
x[int] declares x to be a map from C ints to \integers, and x[-5]
is the \integer to which x maps —5. We’ll see map types used in

Expressions within VCC annotations are restricted in their use
of functions: you can only use functions that are proved to be
pure, i.e., free from side effects (§[3.4).

Exercises

1. Write an assertion that says that the int x is a perfect square (i.e.,
a number being a square of an integer).

2. Write an assertion that says that the int x occurs in the int array
b[10].

VCC Tutorial (working draft, ver. 0.2)

3. Write an assertion that says that the int array b, of length N,
contains no duplicates.

4. Write an assertion that says that all pairs of adjacent elements
of the int array b of length N differ by at most 1.

5. Write an assertion that says that an array b of length N contains
only perfect squares.

Solutions
1. _(assert \exists unsigned y; x == yxy)
2. _(assert \exists unsigned i; i < 10 && bJi] == x)

3. _(assert \forall unsigned i,j; i < j && j < N ==> b[i] != b[j])

4. _(assert \forall unsigned i,j; 0 <=i && i+1 <N
==> —1 <= b[i] — b[i+1] && b[i] — b[i+1] <= 1)

5. _(assert \forall unsigned i; i < N ==> \exists unsigned j; b[i] == |
*)
2.3 Assumptions

You can add to what VCC knows at a particular point with a
second type of annotation, called an assumption. The assumption
_(assume E) tells VCC to ignore the rest of an execution if E fails
to hold (i.e., if E evaluates to 0). Reasoning-wise, the assumption
simply adds E to what VCC knows for subsequent reasoning. For
example:

intx,y;
_(assume x = 0)
y =100/x;

Without the assumption, VCC would complain about possible divi-
sion by zero. (VCC checks for division by zero because it would
cause the program to crash.) Assuming the assumption, this er-
ror cannot happen. Since assumptions (like all annotations) are not
seen by the compiler, assumption failure won’t cause the program
to stop, and subsequent assertions might be violated. To put it an-
other way, if VCC verifies a program, it guarantees that in any pre-
fix of an execution where all (user-provided) assumptions hold, all
assertions will also hold. Thus, your verification goal should be to
eliminate as many assumptions as possible (preferably all of them).

Although assumptions are generally to be avoided, they are
nevertheless sometimes useful: (i) In an incomplete verifica-
tion, assumptions can be used to mark the knowledge that VCC
is missing, and to coordinate further verification work (possi-
bly performed by other people). If you follow a discipline of
keeping your code in a state where the whole program veri-
fies, the verification state can be judged by browsing the code
(without having to run the verifier).

(ii)) When debugging a failed verification, you can use assump-
tions to narrow down the failed verification to a more specific
failure scenario, perhaps even to a complete counterexample.

(iii) Sometimes you want to assume something even though
VCC can verify it, just to stop VCC from spending time prov-
ing it. For example, assuming \false allows VCC to easily prove
subsequent assertions, thereby focussing its attention on other
parts of the code. Temporarily adding assumptions is a com-
mon tactic when developing annotations for complex func-
tions.

(iv) Sometimes you want to make assumptions about the oper-
ating environment of a program. For example, you might want
to assume that a 64-bit counter doesn’t overflow, but don’t want
to justify it formally because it depends on extra-logical as-

3 2012/8/25

sumptions (like the speed of the hardware or the lifetime of the
software).
(v) Assumptions provide a useful tool in explaining how

VCC reasons about your program. We’ll see examples of this
throughout this tutorial.

An assertion can also change what VCC knows after the asser-
tion, if the assertion fails to verify: although VCC will report the
failure as an error, it will assume the asserted fact holds afterward.
For example, in the following VCC will report an error for the first
assumption, but not for the second:
int x;

_(assertx==1)
_(assert x > 0)

Exercises
1. In the following program fragment, which assertions will fail?

int x,y;

_(assert x > 5)

_(assertx > 3)

_(assertx<2)

_(asserty < 3)
2. Is there any difference between

_(assume p)

_(assume q)

and

_(assume q)

_(assume p)

? What if the assumptions are replaced by assertions?
3. Is there any difference between

_(assume p)

_(assert q)

and
_(assert (Ip) || (a))

?

Solutions

1. int x,y;
_(assert x > 5) // fails
_(assert x > 3) // succeeds
_(assert x < 2) // fails
_(asserty < 3) // fails

2. No difference for assumptions. For assertions, the order does
matter, because the first assertion might allow the second to
succeed.

3. If one of the assertions succeeds, the other will also. However,
assuming and then asserting leaves the assumption in effect for
the code that follows, whereas asserting the conditional does
not.

2.4 Overflows and unchecked arithmetic

Note: this section can be skipped on first reading.

Consider the C expression a+b, when a and b are, say, unsigned
ints. This might represent one of two programmer intentions. Most
of the time, it is intended to mean ordinary arithmetic addition on
numbers; program correctness is then likely to depend on this ad-
dition not causing an overflow. However, sometimes the program

VCC Tutorial (working draft, ver. 0.2)

is designed to cope with overflow, so the programmer means (a +
b)% UINT_MAX+1. It is always sound to use this second interpreta-
tion, but VCC nevertheless assumes the first by default, for several
reasons:

e The first interpretation is much more common.

® The second interpretation introduces an implicit % operator,
turning linear arithmetic into nonlinear arithmetic and making
subsequent reasoning much more difficult.

e If the first interpretation is intended but the addition can in fact
overflow, this potential error will only manifest later in the code,
making the source of the error harder to track down.

Here is an example where the second interpretation is intended,
but VCC complains because it assumes the first:

#include <vcc.h>

unsigned hash(unsigned char xs, unsigned len)
_(requires \thread_local_array(s, len))

unsigned i, res;

for (res =0,i=0;i<len; ++i)
res = (res + s[i]) * 13;

return res;

}

Verification of hash failed.
testcase(9,11) : error VC8004: (res + s[i]) * 13 might
overflow.

VCC complains that the hash-computing operation might overflow.
To indicate that this possible overflow behavior is desired we use
_(unchecked), with syntax similar to a regular C type-cast. This
annotation applies to the following expression, and indicates that
you expect that there might be overflows in there. Thus, replacing
the body of the loop with the following makes the program verify:

res = _(unchecked)((res + s[i]) * 13);

Note that “unchecked” does not mean “unsafe”. The C standard
mandates the second interpretation for unsigned overflows, and
signed overflows are usually implementation-defined to use two-
complement. It just means that VCC will loose information about
the operation. For example consider:
int a, b;

/...
a=b+1;
_(asserta<b)

This will either complain about possible overflow of b + 1 or suc-
ceed. However, the following might complain about a < b, if VCC
does not know that b + 1 doesn’t overflow.

int a, b;

/...

a = _(unchecked)(b + 1);

_(asserta<b)

Think of _(unchecked)E as computing the expression using mathe-
matical integers, which never overflow, and then casting the result
to the desired range. VCC knows that

e if the value of E lies within the range of its type, then E ==
_(unchecked)E;

e if x and y are unsigned, then _(unchecked)(x+y)== (x+y <=
UINT_MAX ? x+y : x + y — UINT_MAX), and similarly for other
types;

e if x and y are unsigned, then _(unchecked)(x—y)== (x >=y ? x —
y : UINT_MAX -y + x + 1), and similarly for other types.

4 2012/8/25

If these aren’t enough, you will need to resort to bit-vector
reasoning (below), or use ghost code to prove what you needm

2.4.1 Bitvector Reasoning

Every now and then, you need to prove some low-level fact that
VCC can’t prove using ordinary logical reasoning. If the fact in-
volves can be expressed over a relatively small number of bits, you
can ask VCC to prove it using boolean reasoning at the level of bits,
by putting {:bv} after the assert tag. For example:

#include <vcc.h>

int min(int a, int b)
_(requires \true)
_(ensures \result <= a && \result <= b)

_(assert {:bv} forall int x; (x & (=1)) == x)

_(assert {:bv} forall int a,b; (a — (a — b)) ==

return _(unchecked)(a - ((a — b) & —(a > b)));
}

Assertions proved in this way cannot mention program vari-
ables, and can use only variables of primitive C types.

3. Function Contracts

Next we turn to the specification of functions. We’ll take the ex-
ample from the previous section, and pull the computation of the
minimum of two numbers out into a separate function:

#include <vcc.h>
int min(int a, int b)

{
if (a<=Db)
return a;
else return b;

}

int main()

{
intx,y, z;
z = min(x, y);
_(assert z <= x)
return 0;

}

Verification of min succeeded.

Verification of main failed.

testcase(15,12) : error VC9500: Assertion ’z <= x’ did
not verify.

(The listing above presents both the source code and the output
of VCC, typeset in a different fonts, and the actual file name of
the example is replaced with testcase.) VCC failed to prove our
assertion, even though it’s easy to see that it always holds. This
is because verification in VCC is modular: VCC doesn’t look
inside the body of a function (such as the definition of min()) when
understanding the effect of a call to the function (such as the call
from main()); all it knows about the effect of calling min() is that
the call satisfies the specification of min(). Since the correctness of
main() clearly depends on what min() does, we need to specify min()
in order to verify main().

The specification of a function is sometimes called its contract,
because it gives obligations on both the function and its callers. It
is provided by four types of annotations:

7 In particular, you can use iteration or recursion to prove things by induc-
tion.

VCC Tutorial (working draft, ver. 0.2)

¢ A requirement on the caller (sometimes called a precondition
of the function) takes the form _(requires E), where E is an
expression. It says that callers of the function promise that E
will hold on function entry.

e A requirement on the function (sometimes called a postcondi-
tion of the function) takes the form _(ensures E), where E is an
expression. It says that the function promises that E holds just
before control exits the function.

e The third type of contract annotation, a writes clause, is de-
scribed in the next section. In this example, the lack of writes
clauses says that min() has no side effects that are visible to its
caller.

e The last type of contract annotation, a termination clause, is
described in section [§3.3] For now, we won’t bother proving
that our functions terminate.

For example, we can provide a suitable specification for min()
as follows:

#include <vcc.h>

int min(int a, int b)
_(requires \true)
_(ensures \result <= a && \result <= b)

if (a<=Db)
return a;
else return b;

// ... definition of main() unchanged ...

Verification of min succeeded.
Verification of main succeeded.

(Note that the specification of the function comes after the header
and before the function body; you can also put specifications on
function declarations (e.g., in header files).) The precondition
_(requires \true) of min() doesn’t really say anything (since \true
holds in every state), but is included to emphasize that the func-
tion can be called from any state and with arbitrary parameter
values. The postcondition states that the value returned from min()
is no bigger than either of the inputs. Note that \true and \result are
spelled with a backslash to avoid name clashes with C identiﬁersE]

VCC uses function specifications as follows. When verifying
the body of a function, VCC implicitly assumes each precondition
of the function on function entry, and implicitly asserts each post-
condition of the function (with \result bound to the return value and
each parameter bound to its value on function entry) just before
the function returns. For every call to the function, VCC replaces
the call with an assertion of the preconditions of the function, sets
the return value to an arbitrary value, and finally assumes each post-
condition of the function. For example, VCC translates the program
above roughly as follows:

#include <vcc.h>

int min(int a, int b)
{
int \result;
// assume precondition of min(a,b)
_(assume \true)
if (@a<=Db)
\result = a;

8 All VCC keywords start with a backslash; this contrasts with annotation
tags (like requires), which are only used at the beginning of annotation and
therefore cannot be confused with C identifiers (and thus you are still free
to have, e.g., a function called requires or assert).

5 2012/8/25

else \result = b;
// assert postcondition of min(a,b)
_(assert \result <= a && \result <= b)

}

int main()
{
int \result;
// assume precondition of main()
_(assume \true)
intx,y, z;
// z = min(x,y);

int _res; // placeholder for the result of min()
// assert precondition of min(x,y)

_(assert \true)

// assume postcondition of min(x,y)
_(assume _res <= x && _res <=1Y)

z = _res; // store the result of min()

_(assert z <= x)

\result = 0;

// assert postcondition of main()
_(assert \true)

Note that the assumptions above are “harmless”, that is in a
fully verified program they will be never violated, as each follows
from the assertion that proceeds it in an executiorf’[For example,
the assumption generated by a precondition could fail only if the
assertion generated from that same precondition before it fails.

Why modular verification?

Modular verification brings several benefits. First, it allows ver-
ification to more easily scale to large programs. Second, by
providing a precise interface between caller and callee, it al-
lows you to modify the implementation of a function like min()
without having to worry about breaking the verifications of
functions that call it (as long as you don’t change the speci-
fication of min()). This is especially important because these
callers normally aren’t in scope, and the person maintaining
min() might not even know about them (e.g., if min() is in a li-
brary). Third, you can verify a function like main() even if the
implementation of min() is unavailable (e.g., if it hasn’t been
written yet).

Exercises

1. What is the effect of giving a function the specification _(requires
\false)? How does it effect verification of the function itself?
What about its callers? Can you think of a good reason to use
such a specification?

2. Can you see anything wrong with the above specification of
min()? Can you give a simpler implementation than the one
presented? Is this specification strong enough to be useful? If
not, how might it be strengthened to make it more useful?

3. Specity a function that returns the (int) square root of its (int)
argument. (You can try writing an implementation for the func-
tion, but won’t be able to verify it until you’ve learned about
loop invariants.)

4. Can you think of useful functions in a real program that might
legitimately guarantee only the trivial postcondition _(ensures
\true)?

A more detailed explanation of why this translation is sound is given in
section § ??.

VCC Tutorial (working draft, ver. 0.2)

Solutions

1. Any function with a spec that includes _(requires \false) should
verify. However, a call to such a function will only verify if the
call itself is dead code (and VCC can prove it is dead code).
Putting _(requires \false) on a function is one way to document
that nothing has been proven about it, and that it should not be
called.

2. The spec guarantees that min returns a result that is small
enough, but nothing prevents it from always returning INT_MIN.
This might be strong enough for some applications, but for
most, you probably want the additional postcondition _(ensures
\result == a || \result == b).

3. int sgrt(int x)
_(requires x >=0)
_(ensures \result * \result <= x && (result + 1) * (\result + 1)
> X)

4. Many important system functions have no nontrivial guaranteed
postcondition, save those that come from the omission of writes
clauses. For example, a system call that tries to collect garbage
might very well have an empty specification.

3.1 Reading and Writing Memory

When programming in C, it is important to distinguish two kinds of
memory access. Sequential access, which is the default, is appro-
priate when interference from other threads (or the outside world)
is not an issue, e.g., when accessing unshared memory. Sequential
accesses can be safely optimized by the compiler by breaking it
up into multiple operations, caching reads, reordering operations,
and so on. Afomic access is required when the access might race
with other threads, i.e., write to memory that is concurrently read
or written, or a read to memory that is concurrently written. Atomic
access is typically indicated in C by accessing memory through a
volatile type (or through atomic compiler intrinsics). We consider
only sequential access for now; we consider atomic access in sec-
tion [§[§]

To access a memory object pointed to by a pointer p, p must
point to a valid chunk of memorym (For example, on typical hard-
ware, its virtual address must be suitably aligned, must be mapped
to existing physical memory, and so on.) In addition, to safely ac-
cess memory sequentially, the memory must not be concurrently
written by other threads (including hardware and devices). Most of
the tim this is because the memory object is “part of”” some-
thing that is “owned” by the thread (concepts that will be discussed
later); we express this with the predicate \thread_local(pE] VCC
asserts this before any sequential memory access to (the memory
pointed to by) p.

To write sequentially through p, you need to know \thread_local(p),
and that no other thread is trying to read (sequentially or concur-
rently) through p at the same timeE] We write this as \mutable(p).
Like thread-locality, mutability makes sense only in the context of
a particular thread.

10V CC actually enforces a stronger condition, that the memory is “typed”
according to p.

T Tt is also possible to read memory sequentially if it is a nonvolatile field
of an object that is known to be closed, even if it is not owned by the
thread; this allows multiple threads to sequentially access shared read-only
memory.

12 Note that thread locality only makes sense in the context of a particular
thread, and so cannot appear, for example, in type invariants.

13 You also need to know that no object invariants depend on *p; this is
why object invariants are in effect only for closed objects, and only (parts
of) open objects are mutable.

6 2012/8/25

If VCC doesn’t know why an object is thread local, then it
has hard time proving that the object stays thread local after
an operation with side effects (e.g., a function call). Thus,
in preconditions you will sometimes want to use \mutable(p)
instead of \thread_local(p). The precise definitions of mutability
and thread locality is given in where we also describe
another form of guaranteeing thread locality through so called
ownership domains.

The NULL pointer, pointers outside bounds of arrays, the mem-
ory protected by the operating system, or outside the address space
are never thread local (and thus also never mutable nor writable).

There is one further restriction on sequential writes, motivated
by the desire to limit the possible side effects of a function call
to a specific set of mutable objects. We could do this by adding a
postcondition that all other parts of the state are unmodified, but
VCC provides some sugar to make specification (and reasoning)
about such properties more convenient and efficient. The idea is
that when you call a function, you give it permission to write certain
objects, but not others; \writable(p) expresses the condition that the
function has the right to write to p. Thus, when writing through p,
VCC asserts \mutable(p)&& \writable(p).

While mutability is a thread-level concept, writability is a prop-
erty of a particular instance of an executing function. (That is,
just because something is writable for you doesn’t mean it will be
writable for a function you call.) Therefore, you can’t express that
a function needs “permission” to write p by _(requires \writable(p)),
because preconditions are evaluated in the context of the caller. In-
stead, you specify that a function needs writability of p at func-
tion entry with the annotation _(writes p), called a “writes clause”.
When you call a function, VCC assumes that all of the objects listed
in the writes clauses are writable on function entry. Moreover, if an
object becomes mutable (for a thread) after entry to a function call,
it is considered writable within that call (as long as it remains mu-
table).

Let’s have a look at an example:

void write(int xp)
_(writes p)
{+p=42;}

void write_wrong(int *p)
_(requires \mutable(p))
{*p=42;}

int read1(int xp)
_(requires \thread_local(p))
{ return xp; }

int read2(int xp)
_(requires \mutable(p))
{ return xp; }

int read_wrong(int «p)
{ return xp;}

void test_them()

{

inta=3,b=7;

read1(&a);
_(asserta==3&&b==7) /0K
read2(&a);
_(asserta==38&&b==7) /0K
write(&a);

_(assertb==7) //OK
_(assert a == 3) // error

VCC Tutorial (working draft, ver. 0.2)

Verification of write succeeded.

Verification of write_wrong failed.

testcase(10,4) : error VC8507: Assertion ’p is
writable’ did not verify.

Verification of readl succeeded.

Verification of read2 succeeded.

Verification of read_wrong failed.

testcase(21,11) : error VC8512: Assertion ’p is thread
local’ did not verify.

Verification of test_them failed.

testcase(32,12) : error VC9500: Assertion ’a == 3’ did
not verify.

The function write_wrong fails because p is only mutable, and not
writable. In read_wrong VCC complains that it does not know
anything about p (maybe it’s NULL, who knows), in particular
it doesn’t know it’s thread-local. read2 is fine because \mutable
is stronger than \thread_local. Finally, in test_them the first three
assertions succeed because if something is not listed in the writes
clause of the called function it cannot change. The last assertion
fails, because write() listed &a in its writes clause.

Intuitively, the clause _(writes p, q) says that, of the memory ob-
jects that are thread-local to the caller before the call, the function
is going to modify only the object pointed to by p and the object
pointed to by g. In other words, it is roughly equivalent to a post-
condition that ensures that all other objects thread-local to the caller
prior to the call remain unchanged. A function can have multiple
writes clauses, and implicitly combines them into a single set. If a
function spec contains no writes clauses, it is equivalent to specify-
ing a writes clause with empty set of pointers.

Here is a simple example of a function that visibly reads and
writes memory; it simply copies data from one location to another.

#include <vcc.h>

void copy(int «from, int «to)
_(requires \thread_local(from))
_(writes to)
_(ensures xto == \old(xfrom))

{
*t0 = xfrom;

1
int z;

void main()
_(writes &z)
{
int x,y;
copy(&x,&y);
copy(&y,&z);
_(assert x==y && y==2)

Verification of copy succeeded.
Verification of main succeeded.

In the postcondition the expression \old(E) returns the value
the expression E had on function entry. Thus, our postcondition
states that the new value of xto equals the value *from had on call
entry. VCC translates the function call copy(&x,&y) approximately
as follows:

_(assert \thread_local(&x))
_(assert \mutable(&y))

// record the value of x
int_old x=x;

// havoc the written variables

7 2012/8/25

havoc(y);
// assume the postcondition
_(assume y == _old_x)

3.1.1 Local Variables

Unlike most block-structured languages, C allows you to take the
addresses of local variables (with the & operator). If you take the
address of a local, nothing prevents you from storing that address
in a data structure, and trying to dereference the address after the
lifetime of the variable has ended. (The result is not pretty.) Even
if you are careful about its lifetime, once you take the address of
a variable, you have to worry that writing through some seemingly
unrelated pointer might change the value of the variable, which is
a pain.

Because of this, VCC distinguishes between local variables
whose addresses are never taken and those whose addresses are
taken; the former are called purely local variables. A purely local
variable is much, much easier to reason about; you know that its
value can be changed only by a an update through its name (In
particular, it cannot be modified by function calls, by assignments
to other variables, or assignments through pointers.) Purely local
variables are always considered thread-local (so there is no thread-
locality check when reading them) and writable (so you never have
to mention them in writes clauses of loops or blocks). Also, if you
have a loop that doesn’t modify a purely local variable in scope,
VCC will automatically infer that the value of that variable is not
changed in the loop. So you should definitely keep variables purely
local whenever possible.

A local variable that is not purely local is treated as if it was
allocated on the heap when its lifetime starts (but without the
possibility of allocation failure), and is freed when the lifetime
ends.

The treatment of pure locality sometimes results in the strange
phenomenon that changing some code near the end of a function
body can cause verification of someting earlier in the function body
to fail. This is because if you take the address of a local near the
bottom, it is treated as impure for the whole function body. The
simplest workaround in such cases is just to introduce a new local
for the bottom part of the functiorﬂ

3.2 Arrays

Array accesses are a kind of pointer accesses. Thus, before allowing
you to read an element of an array VCC checks if it’s thread-local.
Usually you want to specify that all elements of an array are thread-
local, which is done using the expression \thread_local_array(ar,
sz). It is essentially a syntactic sugar for \forall unsigned i; i< sz
==> \thread_local(&ar[i]). The annotation \mutable_array() is analo-
gous. To specify that an array is writable use:

_(writes \array_range(ar, sz))
which is roughly a syntactic sugar for:
_(writes &ar[0], &ar[1], ..., &ar[sz—-1])

For example, the function below is recursive implementation of
the C standard library memcpy() function:

void my_memcpy(unsigned char xdst,
unsigned char xsrc,
unsigned len)

writes \array_range(dst, len))

requires \thread_local_array(src, len))

requires \arrays_disjoint(src, len, dst, len))

ensures \forall unsigned i; i < len

_(
(
,(
_(

14 This won’t effect the final binary produced by a decent optimizing com-
piler.

VCC Tutorial (working draft, ver. 0.2)

==> dst[i] == \old(src]i]))

if (len > 0) {
dst[len — 1] = src[len — 1];
my_memcpy(dst, src, len — 1);

It requires that array src is thread-local, dst is writable, and
they do not overlap. It ensures that, at all indices, dst has the value
src. The next section presents a more conventional implementation
using a loop.

3.3 Termination

A function terminates if it is guaranteed to return to its caller. You
can specify termination for simple functions (like the ones we’ve
seen so far) by simply adding to the specification _(decreases 0);
this will do the job as long as your functions are not recursive. For
functions that are recursive (or which look potentially recursive to
VCC, because of potential callbacks from functions whose bodies
are hidden from VCC), the termination clause of a function gives
a measure that decreases for each call that might start a chain
of calls back the function. For example, to verify the termination
of my_memcpy above, you need only add to its specification the
additional annotation _(decreases len). This annotation defines a
“measure” on calls to my_memcpy (namely, the value passed as
the last parameter). VCC checks termination by checking that (1)
all loops in the body terminate @:@, and (2) for every function
call within the body of my_memcpy that is potentially the first of
a chain of calls leading to a call back to my_memcpy, the called
function has a _(decreases) specification and the measure of the
call to that function is strictly less than the measure of the calling
function instance.

It is usually a good idea to prove termination for sequential
code when you ca More details on termination measures can
be found in the VCC manual.

3.4 Pure functions

A pure function is one that has no side effects on the program state.
In VCC, pure functions are not allowed to allocate memory, and
can write only to local variables. Only pure functions can be called
within VCC annotations; such functions are required to terminatdﬂ

The function min() above example of a function that can be
declared to be pure; this is done by adding the modifier _(pure)
to the beginning of the function specification, e.g.,

_(pure) min(int x, int y) ...

Being pure is a stronger condition that simply having an empty
writes clause. This is because a writes clause has only to mention
those side effects that might cause the caller to lose information
(i.e., knowledge) about the state, and as we have seen, VCC takes
advantage of the kind of information callers maintain to limit the
kinds of side effects that have to be reported.

A pure function that you don’t want to be executed can be
defined using the _(def) tag, which is essentially a pure ghost

15 You should also consider doing it for your concurrent code, but here
VCC is much more limited in its capabilities. The reason for this is that
proving termination for a racy function (e.g., one that has to compete for
locks) typically depends on fairness assumptions (e.g., that a function trying
to grab a spinlock will eventually get lucky and get it, if the spinlock is
infinitely often free) and/or global termination measures (e.g., to make sure
that other threads will release spinlocks once they acquire them). VCC does
not currently support either of these.

16 This is to guarantee that there is indeed a mathematical function satisfy-
ing the specification of the function.

P 2012/8/25

function (one that can be used only in specifications) that is inlined,
and uses the following streamlined syntax:

_(def \bool sorted(int *arr, unsigned len) {
return \forall unsigned i, j;
i <=j&&j < len ==> arri] <= arr[j];
h

A partial spec for a sorting routine could look like the followingE]

void sort(int xarr, unsigned len)
_(writes \array_range(arr, len))
_(ensures sorted(arr, len))

3.5 Contracts on Blocks

Sometimes, a large function will contain an inner block that imple-
ments some simple functionality, but you don’t want to refactor it
into a separate function (e.g., because you don’t want to bother with
having to pass in a bunch of parameters, or because you want to ver-
ify code without rewriting it). VCC lets you conduct your verifica-
tion as if you had done so, by putting a function-like specification
on the block. This is done by simply writing function specifications
preceding the block, e.g.,

X =5;
_(requires x == 5)
_(writes &x)
_(ensures x == 6)
{

X++;

}

VCC translates this by (internally) refactoring the block into a func-
tion, the parameters of which are the variables from the surrounding
scope that are mentioned within the block (or the block specifica-
tions), so blocks with contracts cannot have statements that transfer
control outside of the block. The advantages of this translation is
that within the block, VCC can ignore what it knows about the pre-
ceding context, and following the block, VCC can “forget” what it
knew inside the block (other than what escapes through the ensures
clauses); in each case, this results in less distracting irrelevant detail
for the theorem prover.

Sometimes, you don’t care about information flowing into the
block, but only care about the information flowing out of the block.
In this case, you can use the precondition _(requires \full_context()),
which tells VCC to verify the block using all of the information
about what came before, but using the postconditions and writes
clauses to hide information about what went on inside the block to
the code that follows the block.

4. Loop invariants

For the most part, VCC computes what it knows at a control point
from what it knows at earlier control points. This works even if
there are gotos from earlier control points; VCC just takes the
disjunction of what it knows for each of the possible places it came
from. But when the control flow contains a loop, VCC faces a
chicken-egg problem, since what it knows at the top of the loop
(i.e., at the beginning of each loop iteration) depends not only on
what it knew just before the loop, but also on what it knew just
before it jumped back to the top of the loop from the loop body.
Rather than trying to guess what it should know at the top of a
loop, VCC lets you tell it what it should know, by providing loop
invariants. To make sure that loop invariants indeed hold whenever
control reaches the top of the loop, VCC asserts that the invariants

17 We will take care about input being permutation of the output in E

VCC Tutorial (working draft, ver. 0.2)

hold wherever control jumps to the top of the loop — namely, on
loop entry and at the end of the loop body.
Let’s look at an example:

#include <vcc.h>

void divide(unsigned x,
unsigned d,
unsigned xq,
unsigned xr)

_(requiresd>0&&q!=r)

_(writes q,1)

_(ensures x == dx(xq) + *r && *r < d)

{

unsigned Iq = 0;
unsigned Ir = x;
while (Ir >=d)
_(invariant x == dxIq + Ir)
{

lg++;

Ir—=d;
}
*q = lo;
*r =1Ir;

1
/x{end}x/

Verification of divide succeeded.

The divide() function computes the quotient and remainder of
integer division of x by d using the classic division algorithm. The
loop invariant says that we have a suitable answer, except with a
remainder that is possibly too big. VCC translates this example
roughly as follows:

#include <vcc.h>

void divide(unsigned X,
unsigned d,
unsigned xq,
unsigned xr)

_(writes q,1)

// assume the precondition
_(assumed>08&&q!=r)
unsigned Iq = 0;
unsigned Ir = x;

// check that the invariant holds on loop entry
_(assert x == dxlq + Ir)

// start an arbitrary iteration
// forget variables modified in the loop
{

unsigned _fresh_lq, _fresh_lIr;

lg = _fresh_lq; Ir = _fresh_lr;

// assume that the loop invariant holds
_(assume x == dxlq + Ir)
// jump out if the loop terminated
if (I(Ir >=d))
goto loopExit;
// body of the loop
{
lg++;
Ir —=d;

// check that the loop preserves the invariant
_(assert x == dxIq + Ir)

// end of the loop

_(assume \false)

9 2012/8/25

loopExit:

*q = lq;

*r=1Ir;

// assert postcondition

_(assert x == dx(xq) + *r && *r < d)

}

Note that this translation has removed all cycles from the control
flow graph of the function (even though it has gotos); this means
that VCC can use the rules of the previous sections to reason
about the program. In VCC, all program reasoning is reduced to
reasoning about acyclic chunks of code in this way.

Note that the invariant is asserted wherever control moves to
the top of the loop (here, on entry to the loop and at the end of the
loop body). On loop entry, VCC forgets the value of each variable
modified in the loop (in this case just the local variables Ir and Id),
and assumes the invariant (which places some constraints on these
variables). VCC doesn’t have to consider the actual jump from the
end of the loop iteration back to the top of the loop (since it has
already checked the loop invariant), so further consideration of that
branch is cut off with _(assume \false). Each loop exit is translated
into a goto that jumps to just beyond the loop (to loopExit). At
this control point, we know the loop invariant holds and that Ir <
d, which together imply that we have computed the quotient and
remainder.

For another, more typical example of a loop, consider the fol-
lowing function that uses linear search to determine if a value oc-
curs within an array:

#include <vcc.h>
#include <limits.h>

unsigned Isearch(int elt, int xar, unsigned sz)
_(requires \thread_local_array(ar, sz))
_(ensures \result = UINT_MAX
==> ar[\result] == elt)
_(ensures \forall unsigned i;
i< sz && i< \result ==> ar[i] |= elt)
{

unsigned i;
for (i=0;i<sz;i++)
_(invariant \forall unsigned j;
j<i==>ar[j] =elt)

if (ar[i] == elt) return i;
}
return UINT_MAX;
}
/x{end}x/

Verification of lsearch succeeded.

The postconditions say that the returned value is the minimal array
index at which elt occurs (or UINT_MAX if it does not occur). The
loop invariant says that elt does not occur in ar[0]. .. ar[i — 1].

4.1 Termination measures for loops

To prove that a loop terminates, it can be given a _(decreases)
clause, just as a function can. Before control returns from inside
the loop to the top of the loop, there is an implicit assertion that the
measure on the loop has gone down from its value at the beginning
of the iteration. (Note that if the loop body contains a function call,
its measure is checked against the measure assigned to the function,
not to the loop.)

For example, in the divide function, we could specify that the
loop terminates by adding the specification _(decreases Ir) to the
loop specification. This would then allow us to add the specification
_(decreases 0) to the divide function itself.

VCC Tutorial (working draft, ver. 0.2)

If a function with a termination measure contains a for loop
without a termination measure, VCC tries to guess one from syn-
tactic form of the loop header. Thus, most boilderplate for loops do
not require explicit termination measures.

Here’s an example, a function that sorts an array using bubble-
sort. VCC infers a termination measure for the outer loop, but cur-
rently needs to be given one for the inner loop:

_(def \bool sorted(int +buf, unsigned len) {
return \forall unsigned i, j;i < j && j <len
==> buffi] <= buf[j];
h

void sort(int xbuf, unsigned len)
_(writes \array_range(buf, len))
_(ensures sorted(buf, len))
_(decreases 0)

if (len < 2) return;
for (unsigned i =len;i> 0;i—-)
_(invariant i <= len)
_(invariant \forall unsigned u,v;
i<=v&& u<=v&&v<len
==> buffu] <= buffv])
for (unsigned j=0;)+ 1 <i; j++)

_(decreases i—j)

_(invariant j < i)

_(invariant \forall unsigned u,v;
i<=v&&u<=v&&v<len
==> buffu] <= buffv])

_(invariant \forall unsigned u; u <j
==> buf[u] <= buffj])

if (buffj] > buffj+1]) {

int tmp = buf[j];
buf[j] = buf[j+1];
buf[j+1] = tmp;

}

The specification that we use is that the output of the sorting
routine is sorted. However, it doesn’t say that the output is a per-
mutation of the input. We’ll show how to do that in[§]6.2]

4.2 Writes clauses for loops

Loops are in many ways similar to recursive functions. Invariants
work as the combination of pre- and post-conditions. Similarly to
functions loops can also have writes clauses. You can provide a
writes clause using exactly the same syntax as for functions. When
you do not write any heap location in the loop (which has been
the case in all examples so far), VCC will automatically infer an
empty writes clause. Otherwise, it will take the writes clause that
is specified on the function. So by default, the loop is allowed
to write everything that the function can. Here is an example of
such implicit writes clause, a reinterpretation of my_memcpy() from

§B2

void my_memcpy(unsigned char xdst,
unsigned char xsrc,
unsigned len)

writes \array_range(dst, len))

requires \thread_local_array(src, len))

requires \arrays_disjoint(src, len, dst, len))

ensures \forall unsigned i; i < len ==>

dst[i] == \old(src]i]))
_(decreases 0)

_(
(
,(
_(

unsigned k;
for (k = 0; k < len; ++k)
_(invariant \forall unsigned i; i < k ==>
dst[i] == \old(src[i]))

10 2012/8/25

dst[k] = src[k];

(Note that VCC also inferred an appropriate termination mea-
sure for the for loop.)

If a loop does not write everything the function can write you
will often want to provide explicit write clauses. Here’s a variation
of memcpy(), which clears (maybe for security reasons) the source
buffer after copying it.

void memcpyandclr(unsigned char «dst,
unsigned char xsrc,
unsigned len)
_(writes \array_range(src, len))
_(writes \array_range(dst, len))
_(requires \arrays_disjoint(src, len, dst, len))
_(ensures \forall unsigned i; i < len
==> dst[i] == \old(src][i]))
_(ensures \forall unsigned i; i < len
==> src[i] == 0)
_(decreases 0)

unsigned k;
for (k = 0; k < len; ++k)
_(writes \array_range(dst, len))
_(invariant \forall unsigned i; i < k
==> dst[i] == \old(src]i]))

{
dst[k] = src[k];

for (k = 0; k < len; ++k)
_(writes \array_range(src, len))
_(invariant \forall unsigned i; i < k
==> src[i] == 0)

srclk] = 0;

}

If the second loops did not provide a writes clause, we couldn’t
prove the first postcondition—VCC would think that the second
loop could have overwritten dst.

Exercises

Specify and verify iterative implementations of the following func-
tions:

1. a function that takes two arrays and checks whether the arrays
are equal (i.e., whether they contain the same sequence of
elements);

2. a function that checks whether two sorted arrays contain a
common element;

3. a function that checks whether a sorted array contains a given
value;

4. a function that takes an array and checks whether it contains
any duplicate elements;

5. afunction that takes an array and reverses it.

Solutions can be found in the file 5.7.solutions.c in the tutorial
directory.

5. Object invariants

Pre- and postconditions allow specification that a function requires
or ensures that data is in a consistent state on entry to or exit from
the function. However, it is usually better practice to associate such
consistency with the data itself. This is particularly important for
data accessed concurrently by multiple threads (where data must

VCC Tutorial (working draft, ver. 0.2)

be kept in a consistent state at all times), but even for sequential
programs enforcing consistency conditions on data reduces anno-
tation clutter and allows for introduction of abstraction boundaries.

In VCC, you can associate object invariants with compound C
types (structs and unions). The invariants of a type describe how
“good” objects of that type behave. In this section and the next, we
consider only the static aspects of this behavior, namely what the
“good” states of an object are. Invariants can also constrain how
how “good” objects can change, are covered in[§[g]

As a first example, consider the following type definition of \0’-
terminated safe strings implemented with statically allocated arrays
(we’ll see dynamic allocation later).

#define SSTR_MAXLEN 100

typedef struct SafeString {
unsigned len;
char content[SSTR_MAXLEN + 1];
_(invariant \this—>len <= SSTR_MAXLEN)
_(invariant content[len] == \0’)

} SafeString;

The invariant of SafeString states that a good SafeString has length
not more than SSTR_MAXLEN and is \O’-terminated. Within a type
invariant, \this is a pointer to the current instance of the type (as in
the first invariant), but fields can also be referred to directly (as in
the second invariant).

Because memory in C is allocated without initialization, no non-
trivial object invariant is guaranteed to hold on allocation. An ob-
ject that is known to be in a good state (which implies its invariants
hold) is said to be closed, while one that is now known to be in
a good state is said to be open. A mutable object is just an open
object owned by the current thread; a wrapped object is a closed
object owned by the current thread. A function serving as a con-
structor for a type will normally establish invariant and wrap the
object:

void sstr_init(struct SafeString x*s)
_(writes \span(s))
_(ensures \wrapped(s))
_(decreases 0)

s—>len = 0;
s—>content[0] = "\0’;
_(wrap s)

For a pointer p of structured type, \span(p) returns the set of pointers
to members of p. Arrays of base types produce one pointer for each
base type component, so in this example, \span(s) abbreviates the
set

{s, &—>len, &s—>content[0], &s—>content[1], ...,
&s—>content{[SSTR_MAXLEN] }

Thus, the writes clause says that the function can write the
fields of s. The postcondition says that the function returns with
s wrapped, which implies also that the invariant of s holds; this
invariant is checked when the object is wrapped. (You can see this
check fail by commenting out any of the assignment statements.)

A function that modifies a wrapped object must first unwrap
it, make the necessary updates, and wrap the object again (which
causes another check of the object invariant); this is because VCC
does not allow (nonvolatile) fields of an object while it is closed.
Unwrapping an object adds all of its members to the writes set of
a function, so such a function has to report that it writes the object,
but does not have to report writing the fields of the object:

void sstr_append_char(struct SafeString s, char c)
_(requires \wrapped(s))
_(requires s—>len < SSTR_MAXLEN)
_(ensures \wrapped(s))

1 2012/8/25

_(writes s)
_(decreases 0)

{

_(unwrap s)
s—>content[s—>len++] = c;
s—>content[s—>len] = "\0’;
_(wrap s)

}

Finally, a function that only reads an object need not unwrap, and
so need not list it in its writes clause. For example:

int sstr_index_of(struct SafeString xs, char c)
_(requires \wrapped(s))
_(ensures \result >= 0 ==> s—>content[\result] == c)
_(decreases 0)

unsigned i;
for (i = 0; i < s—>len; ++i)
_(decreases s—>len — i)
if (s—>content[i] == c) return (int)i;
return —-1;

}

VCC keeps track of whether an object is closed with the \bool
field \closed (which is a field of every object). It keeps track of the
owner of an object with the field \owner. This field is a pointer to
an object, which might be a thread.

_(def \bool \wrapped(\object o) {
return \non_primitive_ptr(o) && o—>\closed && o—>\owner ==
\me;

)

_(def \bool \mutable(\object 0) {
if (\non_primitive_ptr(o)) return \mutable(\embedding(0));
return lo—>\closed && o—>\owner == \me;

These definitions use several new features:

® When verifying a body of a function VCC assumes that it is
being executed by some particular thread. The \thread object
representing it is referred to as \me.

The type \object is much like voidx, in the sense that it is a
wildcard for any pointer type. However, while casting a pointer
to void = causes information about its type to be lost, casting
to \object does not. Note that (sadly) \object includes not just
pointers to objects, but also pointers to primitive types like
int that can be fields of objects but are not first-class objects.
What we call “objects” are \objects for which the function
\non_primitive_ptr returns \true.

When applied to a pointer that is not an object, \embedding(o)
returns the object of which o is a field. Unlike pointers in C,
VCC pointers include information about the object of which
they are a field.

5.1 Wrap/unwrap protocol

‘We now consider wrapping and unwrapping in more detail.

If an object is owned by a thread, only that thread can change
its (nonvolatile) fields (and then only if the object is open), wrap
or unwrap it, or change its owner to another object. Objects are
guaranteed to be closed when they are owned by objects other than
threads, and only closed objects can own other objects. Finally,
threads are always closed, and own themselves.

The call _(unwrap o) translates essentially to the following:

1. _(assert \wrapped(0));

2. _(assert \writable(0)), i.e., that o was either listed in the writes
clause of the function, or became \wrapped after the current
function activation started;

VCC Tutorial (working draft, ver. 0.2)

. assume the invariant of o
. set o—>\closed = \false;
. add the span of the object (i.e., all its fields) to the writes set;

. set \me to be the owner of any objects owned by o;

~N O L AW

. assert that the transition did not violate any invariants of o of
the form _(invariant _(on_unwrap(\this,p))).

The operation _(wrap o) does the reverse:
1. assert that o is mutable;

2. assert that all objects whose ownership is to be transfered to o
(to be defined later) are \wrapped and \writable;

3. set o—>\closed = \true;
VCC also provides the syntax
_(unwrapping o) { ... }
which is equivalent to:
_(unwrap o) { ...} _(wrap 0)

The assert/assume desugaring of the sstr_append_char() func-
tion is roughly as follows:

void sstr_append_char(struct SafeString *s, char c)
_(requires \wrapped(s))
_(requires s—>len < SSTR_MAXLEN)
_(ensures \wrapped(s))

{
//_(unwrap s), steps 1-5
_(assert \writable(s))
_(assert \wrapped(s))
_(assume s—>len <= SSTR_MAXLEN &&
s—>content[s—>len] == "\0’)
_(ghost s—>\closed = \false)
_(assume \writable(\span(s)))

s—>content[s—>len++] = c;
s—>content[s—>len] = \0’;

// _(wrap s), steps 1-3

_(assert \mutable(s))

_(assert s—>len <= SSTR_MAXLEN &&
s—>content[s—>len] == "\0’)

_(ghost s—>\closed = \true)

5.2 Ownership trees

Objects often stand for abstractions that are implemented with more
than just one physical object. As a simple example, consider our
SafeString, changed to have a dynamically allocated buffer. The
logical string object consists of the control object holding the length
and the array of bytes holding the content:

struct SafeString {
unsigned capacity, len;
char xcontent;
_(invariant len < capacity)
_(invariant content[len] == "\0’)
_(invariant \mine((char[capacity])content))

|2

In C the type char{10] denotes an array with exactly 10 elements.
VCC extends that location to allow the type char[capacity] denoting
an array with capacity elements (where capacity is an expression).
Such types can be only used in casts (in annotations). For example,
(char[capacity])content means to take the pointer content and inter-
pret it as an array object consisting of capacity elements of type
char.

12 2012/8/25

The invariant of SafeString specifies that it owns the array ob-
ject. (The use of an array object is necessary; chars are not first class
objects (they can only be fields of other objects) and so cannot have
owners.) The syntax \mine(o1, ..., oN) is roughly equivalent to

o1->\owner == \this && ... && oN—>\owner == \this

Conceptually there isn’t much difference between content being an
actual field of the SafeString (as it was in the previous definition)
and it being an array object owned by the SafeString. In particular,
in neither case does a function operating on a \wrapped SafeString
s have to list s—>content (or any other objects owned by s) in their
writes clauses. This is because modifying s—>content requires first
unwrapping s, and doing so adds s—>content to the writes set. For
example:

void sstr_append_char(struct SafeString xs, char c)
_(requires \wrapped(s))
_(requires s—>len < s—>capacity — 1)
_(ensures \wrapped(s))
_(writes s)
_(decreases 0)

{

_(unwrapping s) {
_(unwrapping (char[s—>capacity])(s—>content)) {
s—>content[s—>len] = c;
s—>len++;
s—>content[s—>len] = \0’;
}
}
}

Let cont = (char[s—>capacity])s—>content. At the beginning of the
function, s is owned by the current thread (\me) and closed (i.e.,
\wrapped), whereas (by the string invariant) cont is owned by s
(and therefore closed). Unwrapping s transfers ownership of cont to
\me, but cont remains closed. Thus, unwrapping s makes the string
mutable, and cont wrapped. Then we unwrap cont (which doesn’t
own anything, so the thread gets no new wrapped objects), perform
the changes, and wrap cont. Finally, we wrap s. This transfers
ownership of cont from the current thread to s, so cont is no longer
wrapped (but still closed). Here is the assert/assume translation:

void sstr_append_char(struct SafeString s, char c)
_(requires \wrapped(s))
_(requires s—>len < s—>capacity — 1)
_(ensures \wrapped(s))
_(writes s)

_(ghost \object cont = (char[s—>capacity]) s—>content;)
// _(unwrap s) steps 1-5

_(assert \writable(s) && \wrapped(s))
_(assume \writable(\span(s)) &&\inv(s))
_(ghost s—>\closed = \false;)

// and the transfer:

_(ghost cont—>\owner = \me;)

_(assume \writable(cont))

// _(unwrap cont) steps 1-5

_(assert \writable(cont) && \wrapped(cont))
_(ghost cont—>\closed = \false;)

_(assume \writable(\span(cont)) && \inv(cont))
// no transfer here

s—>content[s—>len++] = ¢;
s—>content[s—>len] = \0’;

// _(wrap cont) steps 1-3

_(assert \mutable(cont) && \inv(cont))

_(ghost cont—>\closed = \true;)

// _(wrap s) steps 1-3, with transfer in the middle
_(assert \mutable(s))

_(ghost cont—>\owner = s;)

VCC Tutorial (working draft, ver. 0.2)

_(assert\inv(s))
_(ghost s—>\closed = \true;)

}

Here, \inv(p) means the (user-defined) invariant of object p. There
are two ownership transfers of cont to and from \me because s owns
cont beforehand, as specified in its invariant. However, suppose we
had an invariant like the following:

struct S {
struct T *a, *b;
_(invariant \mine(a) || \mine(b))

b

‘When wrapping an instance of struct S, VCC wouldn’t know which
object to transfer ownership of to the instance. Therefore, VCC
rejects such invariants, and only allow \mine(...) as a top-level
conjunct in an invariant, unless further annotation is given; see

§E.3

5.3 Dynamic ownership

When a struct is annotated with _(dynamic_owns) the owner-
ship transfers during wrapping need to performed explicitly, but
\mine(...) can be freely used in its invariant, including using it under
a universal quantifier.

_(dynamic_owns) struct SafeContainer {
struct SafeString xxstrings;
unsigned len;

_(invariant \mine((struct SafeString *[len])strings))
_(invariant \forall unsigned i; i < len ==>
\mine(stringsi]))
_(invariant \forall unsigned i, j; i < len && j < len ==>
i 1= j ==> strings]i] != stringsl[j])
13

The invariant of struct SafeContainer states that it owns its underly-
ing array, as well as all elements pointed to from it. It also says that
there are no duplicates in that array. Suppose o is a SafeContainer
and we want to change o—>strings[idx], from x to y. After such an
operation, the container should own whatever it used to own, mi-
nus x, plus y. To facilitate this, VCC provides a field \owns for each
object with the implicit invariant

_(invariant \this—>\closed ==> \forall \object g;
(g9\in \this—>\owns <==> g—>\owner == \this)

That is, for closed p, the set p—>\owns contains exactly the
objects that have p as their owner. The opertions _(wrap p) and
_(unwrap p) do not change p->\owns, so _(wrap p) attempts to
transfer to p ownership of all object in p—>\owns, which (as de-
scribed previously) causes an assertion that all of these objects are
\wrapped and \writable.

Thus, the usual pattern is to unwrap o, potentially modify fields
of o and o—>\owns, and wrap o. Note that when no ownership
transfers are needed, one can just unwrap and wrap O, without
worrying about what o owns. Here is an example with an ownership
transfer:

void sc_set(struct SafeContainer xc,
struct SafeString s, unsigned idx)

_(requires \wrapped(c) && \wrapped(s))
_(requires idx < c—>len)
_(ensures \wrapped(c))
_(ensures c—>strings[idx] == s)
_(ensures \wrapped(\old(c—>strings[idx])))
_(ensures \fresh(\old(c—>strings[idx])))
_(ensures c—>len == \old(c—>len))
_(writes ¢, s)
_(decreases 0)

{

13 2012/8/25

_(assert I(s \in c—>\owns))
_(unwrapping c) {
_(unwrapping (struct SafeString x[c—>len])(c—>strings)) {
c—>strings[idx] = s;

_(ghost {
c—>\owns —= \old(c—>strings[idx]);
c—>\owns +=s;
)
}
}

The sc_set() function transfers ownership of s to ¢, and addition-
ally leaves object initially pointed to by s—>strings[idx] wrapped.
Moreover, it promises that this object is fresh, i.e., the thread did
not own it directly before. This can be used at a call site:

void use_case(struct SafeContainer xc, struct SafeString xs)
_(requires \wrapped(c) && \wrapped(s))
_(requires c—>len > 10)
_(writes ¢, s)
{
struct SafeString x0;
0 = c—>strings[5];
_(assert \wrapped(c)) 7/ OK
assert \wrapped(s)) 7/ OK
(assert o \in c—>\owns) // OK
(assert \wrapped(0)) // error
c_set(c, s, 5);
_(asserto !=s) /OK
_(assert \wrapped(c)) 7/ OK
_(assert \wrapped(s)) // error
_(assert \wrapped(0)) / OK
1

In the contract of sc_add the string s is mentioned in the writes
clause, but in the postcondition we do not say it’s wrapped. Thus,
asserting \wrapped(s) after the call fails. On the other hand, assert-
ing \wrapped(o) fails before the call, but succeeds afterwards. Ad-
ditionally, \wrapped(c) holds before and after as expected.

[72]

5.4 Ownership domains

The sequential ownersl‘lﬁ: domain of an object o (written \domain(0))

consists of 0 along withj'°|the union of the ownership domains of all
objects owned by o. In other words, it’s the set of objects that are
transitively owned by o. For most purposes, it is useful to think of o
as “containing” all of \domain(o); indeed, if 01 != 02 and neither o1
nor o2 are in the other’s \domain, their \domains are necessarily dis-
joint. In particular, if o1 and 02 are owned by threads then (because
threads own themselves) o1 and 02 are necessarily disjoint.

Writability of o gives a thread potential access to all of \domain(o):

writability allows the thread to unwrap o, which makes writable
both the fields of o and any objects that were owned by o. Con-
versely, a call to a function that does not list a wrapped object
o in its writes clause is guaranteed to leave all of \domain(o) un-
change: However, VCC will only reason about the unchanged-
ness of \domain(o) if it is explicitly brought to its attention, as in
the following example:

void f(T *p)
_(writesp){ ... }

;I-'-*p, *Q, *I
_(assert \wrapped(q) && q !=p)
_(assert g \in \domain(q))

18 The domains of the objects owned by 0 are included only if 0 is not
declared as _(volatile_owns); see

19 This applies to nonvolatile fields of objects in the domain; volatile fields
might change silently (see section|§[8).

VCC Tutorial (working draft, ver. 0.2)

_(assert r\in \domain(q))
f(p);

The second and third assertions bring to VCC’s attention that as
long as q is not explicitly unwrapped or included in the writes
clause of a function call, r and its fields will not change.

5.5 Simple sequential admissibility

Until now we’ve ignored the issue of constraints on the form of
object invariants. When VCC checks an atomic update to the state,
it checks only the invariants of those objects that are actually
updated. Constraints on the invariants of other objects are needed
to guarantee that invariants of closed unupdated objects are also
preserved.

Fortunately, the most common case is trivial: if an invariant
of o mentions only (nonvolatile) fields of objects in \domain(o),
the invariant is necessarily admissible. More sophisticated kinds
of invariants are discussed in[§[8.3]

5.6 Type safety

In modern languages like Java, C#, and ML, where memory con-
sists of a collection of typed objects. Programs in these languages
allocate objects (as opposed to memory), and the type of an object
remains fixed until the object is destroyed. Moreover, a non-null
reference to an object is guaranteed to point to a “valid” object. But
in C, a type simply provides a way to interpret a sequence of bytes;
nothing prevents a program from having multiple pointers of dif-
ferent types pointing into the same physical memory, or having a
non-null pointer point into an invalid region of memory.

That said, most C programs really do access memory using a
strict type discipline and tacitly assume that their callers do so
also. For example, if the parameters of a function are a pointer to
an int and a pointer to a char, we shouldn’t have to worry about
crazy possibilities like the char aliasing with the second half of the
int. (Without such assumptions, we would have to provide explicit
preconditions to this effect.) On the other hand, if the second
parameter is a pointer to an int, we do consider the possibility of
aliasing (as we would in a strongly typed language). Moreover,
since in C objects of structured types literally contain fields of other
types, if the second argument were a struct that had a member
of type int, we would have to consider the possibility of the first
parameter aliasing that member.

To support this kind of antialiasing by default, VCC essentially
maintains a typed view of memory, as follows. Each object has a
\bool field \valid. Each object requires a (possibly empty) set of real
memory addresses for its representation; this set of addresses con-
stitutes the “footprint” of an objecct. VCC maintains the invariant
that in any state, the footprints of distinct valid objects do not over-
lap. It maintains this in a very simple way: it only makes an object
valid by simultaneously making invalid a set of objects, the union
of whose footprints include the footprint of the newly valid object.
This invariant allows us to reason completely in terms of objects,
without every having to worry about aliasing between one object
and another™’| Only valid fields (and purely local variables) can be
accessed by a program.

There are rare situations where a program needs to change the
type of memory, i.e., make one object invalid while making valid
an object that aliases with it. The most common example is in the
memory allocator, which needs to create and destroy objects of ar-
bitrary types from arrays of bytes in its memory pool. Therefore,
VCC includes annotations (explained in[§[7) that explicitly change

20 This does not completely remove the need to occasionally reason about
address arithmetic, since VCC sometimes has to reason about the relation-
ships between the address of, say, and object 0 and an object 0—f nested
within 0.

14 2012/8/25

object validity (and are in fact the only means to do so). Thus, while
your program can access memory using pretty much arbitrary types
and typecasting, doing so is likely to require additional annotations.
But for most programs, checking type safety is completely trans-
parent, so you don’t have to worry about it.

6. Ghosts

VCC methodology makes heavy use of ghost data and code - data
and code that are not seen by the C compiler (and therefore are not
part of the executable), but are included to aid reasoning about the
program. Part of the VCC philosophy is that programmers would
rather writing extra code than have to drive interactive theorem
provers, so ghosts are the preferred way to explain to VCC why
your program works.

We have already seen some ghost fields of ordinary data struc-
tures (e.g. \closed, \owner, \ownsm \valid, etc.) as well as built-in
pieces of ghost code (e.g. _(wrap ...) and _(unwrap ...)). This sec-
tion is about how to write your own ghost code.

Our first tyical use of ghost data is to express data abstaction.
If you implement an abstract set as a list, it is good practice to
expose to the client only the set abstraction, while keeping the
list implementation private to the implementation of the data type.
One way to do this is to store the abstract value in a ghost field
and update it explicitly in ghost code when operating on the data
structureEl Functions operating on the data structure are specified
in terms of their effect on the abstract value only; the connection
between the abstract and concrete values is written as an invariant
of the data structure.

VCC’s mathematical types are usually better suited to represent-
ing these abstract values than C’s built-in types. Here, we will use
VCC maps. Recal that a declaration int m[T«] defines a map m from
T« to int; for any pointer p of type T+ m[p] gives the int to which
m maps p. A map bool s[int] can be thought of as a set of ints: the
operation s[k] will return true if and only if the element k is in the
set s.

For example, here is a simple example of a set of ints imple-
mented with an array:

#define SIZE 1000
typedef struct ArraySet {
_(ghost \bool mem(int]) // abstract value

The map mem gives the abstract value of the set. The map idx
says where to find each abstract member of the set. We could have
eliminated idx and instead used existential quantification to say that
every member of the abstract set occurs somewhere in the list. The
disadvantage of using an explicit witness like idx is that we have
to update it appropriately. The advantage is that the prover doesn’t
have to guess how to instantiate such existential quantifiers, which
makes the verification more robust.
Here is the initializer for these sets:

void arraySetlInit(ArraySet *s)
_(requires \extent_mutable(s))
_(writes \extent(s))
_(ensures \wrapped(s) && s—>mem == \lambda int i; \false)

s—>len=0;
_(ghost s—>mem = \lambda int i; \false)
_(wrap s)

2l An alternative approach is to write a pure ghost function that takes
a concrete data structure and returns its abstract value. The disadvantage
of this approach is that for recursive structures like lists, the abstraction
function is likewise recursive, and so reasoning with it requires substantial
guidance from the user.

VCC Tutorial (working draft, ver. 0.2)

The standard form of a constructor is to take some raw memory@
and wrap it, while establishing some condition on its abstract value.
Values of maps are constructed using lambda expressions. The
expression \lambda T x; E returns a map, which for any x returns
the value of expression E (which can mention x). If S is the type of
E, then this map is of type S[T].

Here is the membership test:

_(pure) BOOL arraySetMem(ArraySet xs, int v)
_(reads &s—>mem)
_(requires \wrapped(s))
_(ensures \result == s—>mem[v])

for (unsigned i = 0; i < s—>len; i++)
_(invariant \forall unsigned j; j < i
==> s—>data[j] I=v)

if (s—>data[i] == v) return TRUE;

}
return FALSE;
}

As usual, an accessor is marked as _(pure), and reads only the
abstract value of the set. Finally, here is a function that adds a new
element to the set:

BOOL ArraySetAdd(ArraySet s, int v)
_(requires \wrapped(s))

_(writes s)
_(ensures \result ==> s—>mem ==
\lambda int i; \old(s—>mem([i]) || i == v)

_(ensures N\result ==> \unchanged(s—>mem))

if (s—>len == SIZE) return FALSE;
_(unwrapping s) {
s—>data[s—>len] = v;
_(ghost s—>mem][v] = \true)
_(ghost s—>idx[v] = s—>len)
s—>len++;

1
return TRUE;
}

Note that in addition to updating the concrete representation, we
also update the abstract value and the witness. This example shows
another way to update a map, using array syntax; if m is a variable
of type S[T], e is of type T, and e2 is of type S, then the statement
m[e1] = e2 abbreviates the statement m = \lambda T v; v ==e1 ? €2
> mv].

Exercises

1. Extend ArraySet with a function that deletes a value from the
set.

2. Modify ArraySet to keep the set without duplication.

3. Modify ArraySet to keep the elements ordered. Use binary
search to check for membership and for insertion of a new
element.

4. Extend ArraySet with a function that adds the contents of one
set into another. (Try to calculate the size of the combined list
before modifying the target, so that you can fail gracefully.)

6.1 Linked Data Structures

As an example of a more typical dynamic data structure, consider
the following alternative implementation of int sets as lists:

typedef struct Node {

22 In C, it is normal for constructors to take a pointer to raw memory, to that
they can be used to make objects that are embedded within data structures.

15 2012/8/25

struct Node *nxt;
int data;
} Node;

typedef _(dynamic_owns) struct List {
Node xhead;
_(ghost \bool val[int];)
_(ghost Node «find[int];)
_(invariant head != NULL ==> \mine(head))
_(invariant \forall Node «n; \mine(n) && n—>nxt
==> \mine(n—>nxt))
_(invariant \forall Node xn; \mine(n)
==> val[n—>data])
_(invariant \forall int v; val[v]
==> \mine(find[v]) && find[v]->data == v)
} List;

The invariant states that:

o the list owns the head node (if it’s non-null)

e if the list owns a node, it also owns the next node (provided it’s
non-null)

if the list owns a node n then n—>data is in val,

if v is in val, then it is the data for some node (find[v]) owned by
the list.

Note that we have chosen to put all of the list invariants in
the List data structure, rather than in the nodes themselves (which
would also work). A disadvantage of putting all of the invariants in
the List type is that when you modify one of the nodes, you have to
check these invariants for all of the nodes (although the invariants
are easy to discharge for nodes that are not immediate neighbors).
Some advantages of this choice is that it is easier to modify all of
the nodes as a group, and that the same Node type can be used for
data structures with different invariants (e.g., cyclic lists).

Here is the implementation of the add function:

Node *n = malloc(sizeof(xn));
if (n == NULL) return —1;
_(unwrapping I) {
n->nxt = |[->head;
n—>data = k;
_(wrap n)
|->head = n;
_(ghost {
|->\owns +=n;
|->val = (\lambda int z; z == k || I->val[z]);
|->find = (\lambda int z; z == k ? n : I->find[z]);

}

return 0;
1
/x{out}x/

Verification of List#adm succeeded.
Verification of mklist succeeded.
Verification of add succeeded.

We allocate the node, unwrap the list, initialize the new node and
wrap it, and prepend the node at the beginning of the list. Then we
update the owns set to include the new node, update the abstract
value val and the witness find, and finally wrap the list up again
(when exiting the _(unwrapping) block).

The invariants of our list say that the abstract value contains
exactly the data fields of nodes owned by the list. It also said that
pointers from list nodes take you to list nodes. But it doesn’t say
that every node of the list can be reached from the first node;
the invariants would hold if, in addition to those nodes, the list

VCC Tutorial (working draft, ver. 0.2)

also owned some unrelated cycle of nodes. As a result, the natural
algorithm for checking if a value is in the set (by walking down the
list) won’t verify; if it finds a value, its data is guaranteed to be in
the set, but not vice-versa. Moreover, the invariants aren’t strong
enough to guarantee that the list itself is acyclic.

Thus, we need to strengthen the invariant of the list to guarantee
that every node of the list is reachable from the head. This cannot be
expressed directly with first-order logic, but there are several ways
to express this using VCC using ghost data:

® you can keep track of the “depth” of each list node (i.e., how far
down the list it appears);

e you can maintain the abstract sequence of list nodes (i.e., a map
from \natural to nodes, along with a \natural giving the length of
the sequence);

e you can maintain the “reachability” relationship between or-
dered pairs of nodes.

For this example, we’ll use the first approach. We add the
following to the definition of the List type:

_(ghost \natural idx[Node x])
_(invariant head ==> idx[head] == 0)
_(invariant \forall Node «n, *m; \mine(n) && \mine(m) ==>
head
&& (idx[n] == 0 ==> n==head)
&& (n—>nxt ==> idx[n—>nxt] == idx[n] + 1)
&& (idx[m] == idx[n] + 1 ==> m == n—>nxt)
&& (idx[m] > idx[n] ==> n—>nxt)

The new invariants say that the head (if it exists) is at depth O
(and is the only node at depth 0), that depth increases by 1 when
following list pointers, and that you can never “miss” a node by
following the list. (These are similar to the invariants you would
use if each node had a key and you were maintaining an ordered
list.)

The only change to the code we’ve previously seen is that when
adding a node to the list, we have to also update the node indices:

|I->idx = (\lambda Node *m; m ==n ? 0 : |I->idx[m] + 1);
We can now write and verify the membership test:

int member(List «I, int k)
_(requires \wrapped(l))
// partial specification, ==> instead of <==>
_(ensures \result == |->val[k])

Node xn;
_(assert \inv(l))
for (n = |I->head; n; n = n—>nxt)
_(invariant n ==> n \in I->\owns && n \in \domain(l))
_(invariant \forall Node *m; m \in |->\owns && m—>data == k
==> m==n || (n && |I->idx[m] > |->idx[n]))

if (n—>data == k) return 1;

_(assert |->val[k] ==> |->find[k] \in |->\owns)
return 0O;

}

Note that the second invariant of the loop is analogous to the
invariant we would use for linear search in an array.

The _(assert) is an example of a situation where VCC needs a
little bit to see why what you think is true really is true. The loop
invariant says that there are no nodes in the list with key k, but VCC
on its own will fail to make the appropriate connection to |->val[k]
via |->find[k] without this hint (which is just giving an instantiation
for the last list invariant).

16 2012/8/25

Exercises

1. Modify the list implementation so that on a successful member-
ship test, the node that is found is moved to the front of the list.
(Note that the resulting function is no longer pure.)

2. Implement sets using sorted lists.

3. Implement sets using binary search trees.

6.2 Sorting revisited

In [§2] we verified that bubblesort returns a sorted array. But we
didn’t prove that it returned a permutation of the input arraﬂ To
express this postcondition, we return a ghost map, which states the
exact permutation that the sorting algorithm produced:

_(typedef _(record) struct Perm {
\natural fwd[\natural];
\natural bwd[\natural];

} Perm;)

_(def \bool isPerm(Perm p, \natural len) {
return (Mforall \natural i; i < len ==> p.fwd[i] < len &&
p.bwd[i] < len)
&& (\forall \natural i; i < len ==> p.fwd[p.bwd[i]] == i
&& p.bwd[p.fwd[i]] == i);
)

_(def Perm permld() {
Perm p;
p.fwd = (\lambda \natural i; i);
p.bwd = (\lambda \natural i; i);
return p;

N

_(def Perm permSwap(\natural i, \natural j) {
Perm p;
p.fwd = (\lambda \natural k; k ==i ?j: (k==j ?i:K));
p.bwd = p.fwd;
return p;

b

_(def Perm permCompose(Perm p, Perm q) {
Permr;
r.fwd = (\lambda \natural k; p.fwd[q.fwd[k]]);
r.owd = (\lambda \natural k; g.owd[p.bwd[K]]);
returnr;

]

void sort(int xbuf, unsigned len _(out Perm p))
_(requires \mutable_array(buf,len))
_(writes \array_range(buf, len))
_(ensures sorted(buf, len))
_(ensures isPerm(p,len))
_(ensures \forall unsigned i; i < len ==> buf[i] ==
\old(buf[p.fwd]i]]))
_(decreases 0)

_(ghost int av[\natural] = \lambda \natural i; buf[i])
_(ghost p = permld())

if (len < 2) return;

for (unsigned i =len;i> 0;i—-)
_(invariant i <= len)
_(invariant \forall unsigned u,v;i<=v && u<=v && v <len
==> buf[u] <= buf[v])
_(invariant isPerm(p,len))

23 For arrays in which no value occurs more than once, this property can be
expressed that every value in the output array is in the input array. But with
multiple occurrances, this would require stating that the multiplicity of each
value is the same, a property that isn’t first-order.

VCC Tutorial (working draft, ver. 0.2)

_(invariant \forall unsigned i; i < len ==> buf[i] == av[p.fwd[i]])
for (unsigned j=0;j + 1 <i; j++)
_(decreases i—j)
_(invariant j < i)
_(invariant \forall unsigned u,v;i<=v && u <=v && v <len
==> buffu] <= buffv])
_(invariant \forall unsigned u; u < j ==> buf[u] <= buf[j])
_(invariant isPerm(p,len))
_(invariant \forall unsigned i; i < len ==> buf[i] ==
av[p.fwd[il])
if (buffj] > buffj+1]) {
int tmp = buf[j];
buf[j] = buf[j+1];
buffj+1] = tmp;
_(ghost p = permCompose(p,permSwap(j,j+1)))

Verification of sorted succeeded.
Verification of isPerm succeeded.
Verification of permld succeeded.
Verification of permSwap succeeded.
Verification of permCompose succeeded.
Verification of sort succeeded.

This sample introduces two new features. The first is the output
ghost parameter _(out Perm p). An out parameter is used to return
data from the function to the caller. (One could also do it with a
pointer to ghost memory, but using an out parameter is simpler and
more efficient.)

To call sort() you need to supply a local variable to hold the
permutation when the function exits, as in:

void f(int «buf, unsigned len)

/.

_(ghost Perm myperm;)
/.

sort(buf, len _(out myperm));

}

The effect is to copy the value of the local variable p of the function
to the variable myperm on exit from the function.

The second feature is the use of record types. A record type
is introduced by putting _(record) before the definition of a like a
struct type. They are mathematically cleaner than structs, in several
ways:

e A record is a single, indivisible value (like a map), so you don’t
have to worry about aliasing individual fields of a record.

® Two records are equal iff their corresponding fields are equal.
Conversely, C doesn’t allow == on struct values (primarily
because padding makes the meaning problematic).

® Because == makes sense on records, a record type can be used
as the domain of a map, whereas a struct type cannot.
However, records also have some limitations relative to structs:
® Records are values, not objects, so records cannot have invari-
ants.

e Record fields can be of record type, but cannot be of compound
(struct or union) type.

® You can’t take the address of a field of a record (and so cannot
pass it to a function that updates it). However, you can use
record fields as _(out) parameters.

17 2012/8/25

6.3 Inductive Proofs

Sometimes, you will want to verify programs that depend on math-
ematics that is too hard for VCC to do on its own, typically be-
cause they require guidance. In VCC, you do this by writing ghost
code. In particular, you can do inductive proofs by writing loops or
by writing recursive functions, with the loop invariant or function
spec serving as the inductive hypothesis. Because C doesn’t allow
the definition of anonymous recursive functions, loops are usually
more convenient.

Here is a small example of using ghost code to prove the for-
mula for triangular numbers:

_(void triangle()
_(decreases 0)
{

\natural x[\natural];
\natural n;
_(assume x[0] == 0 && \forall \natural i; x[i+1] == x[i] +i + 1)
_(ghost

for (\natural i = 0; i < n; i=i+1)

_(invariant i <=n && x[i]==i* (i+1)/2)

b

_(assertx[n]==nx*(n+1)/2)

]

Sometimes, you might want to use inductively defined types
other than \natural or \integer. VCC lets you define your own (ghost)
inductive types, much like modern functional languages, but using
the following C-like syntax:

_(datatype List {
case nil();
case cons(int v, List I);

N

This defines an inductive datatype of lists, where a list is either
of the empty list nil() or an int followed by a list. Values of abstract
types are deconstructed using the following switch construct (cor-
responding to matching expressions in functional languages):

_(def List app(List x, List y) {
switch(x) {
case nil(): return y;
case cons(v,l): return cons(v, app(l,y));
}
D

Note that unlike the usual C switch statement, fallthrough from
one case to the next is not allowed (since the scope of variables like
v and | introduced by the case construct only go to the end of the
case). Note that VCC automatically chooses the termination mea-
sure _(decreases size(x), size(y)), which suffices for typical func-
tions where termination follows by structural induction.

We can now prove something about the function we defined:

_(def void appAssoc(List x, List y, List z)
{_(ensures app(x,app(y,z)) == app(app(x.y),z))
switch (x) {
case nil(): return;
case cons(v,l): appAssoc(l,y,z); return;
}
)

Note that the recursive call provides the needed inductive case
of the theorem we’re trying to prove. We can similarly use the
resulting function as a lemma in proving other theorems.
Exercises

1. Verify your favorite sorting functions (quicksort, heapsort,
mergesort, etc.).

VCC Tutorial (working draft, ver. 0.2)

2. Using app, define a recursive function that reverses a List. Prove
that reversing a list twice gives you the same list back. (Hint:
you will need some additional lemmas along the way; one
solution can be found in 7.5.lists.c.)

7. Objects and Memory

In VCC, the state of the world is given by the state of a set of com-
pletely independent objects, each with a set of fields and a value for
each of these fields. (That’s right, the objects are completely sep-
arate.) For a given program, the set of objects is fixed. Each field
of each object is either ghost or concrete; each concrete field of
each object has a fixed address and size. Each object has a (volatile,
ghost) Boolean field \valid that says whether the object is currently
“active”; a basic invariant guaranteed by succesful verification is
that concrete fields of valid objects do not overlap. Moreover, an-
other basic invariant guarantees that threads read and write only
through valid objects. These invariants guarantee that reads and
writes of concrete fields can be implemented by reads and writes
in the concrete address space.

The objects mostly correspond to instances of user-defined com-
pound (i.e., struct or union) types. In addition, there are a few spe-
cial objects; the most important of these are the following:

e For every variable of primitive type, there is a dummy object of
which the variable is the only field.

e Each thread is an object. The thread running the current func-
tion activation is called \me, and it owns all of the \wrapped and
\mutable variables.

In particular, there are no objects of primitive types (integral
types or pointer types); a C “object” of primitive type is always
a field of a a VCC object. If p is a pointer to a primitive lvalue,
the object of which p is a field is denoted \embedding(p). The
embedding of a field is considered part of its type, so pointers to
two fields of different objects that happen to have the same address
are not considered equal to VCC, even though they “test” as equal
in C. For example,

void test(int xx, int xy) {

if (x ==y) {
_(assert \addr(x) == \addr(y)) // succeeds
_(assert x ==y) // fails

}
}

Note that for pointers to fields of valid objects, this discrepency
disappears (since such fields cannot alias), so the discrepency in
the interpreation of pointer equality rarely comes up in practice.
Note also that this discrepency doesn’t effect the soundness of
verification, just how assertions are interpreted. If for some reason
you really need to talk about raw addresses, you can always use the
\addr operator.

7.1 Unions

A C union defines a group of objects that share memory addresses.
Thus, the members of a union cannot in general all be valid at the
same time. When VCC allocates a union, it chooses an arbitrary
member to be the valid one. You can invalidate the active one
and validate another using the operator union_reinterpret, as in the
following example:

typedef struct S {

int x;
1S;
typedef struct T {
inty,z;
1T
18 2012/8/25

typedef union U {
Ss;
Tt;

JASk

void test() {
Uu;
/.s.x = 1; // fails
_(union_reinterpret &u.s)
usx=1;
Nu.ty == 1;// fails
_(union_reinterpret &u.t)
uty=2;

}

7.2 Blobs

In addition to unions, on rare occasions one needs a chunk of
memory that can be used to make objects of more arbitrary types.
In practice, this arises primarily when you are implementing your
own memory manager (typically to more efficiently manage the
allocation of small objects within a page of raw memory).

In VCC, a chunk of truly “raw” memory is called a blob. A
blob of appropriate size and alignment can be turned into an object
(along with its extent), making the blob invalid and the objects
valid (and mutable). The top object of such a hierarchy is said
to be blobifiable, and can be later turned back into a blob (again,
this requires that its extent is mutable). Contiguous blobs can be
combined into a single blob or vice versa.

When a typed object is allocated (on the heap of the stack),
what is actually allocated is a blob, and this blob is unblobified into
an object of the appropriate type. This means that you can blobify
top-level local objects, as well as an object created from malloc’d
memory. On the other hand, you cannot blobify a field of a struct.

8. Atomics

Writing concurrent programs is generally considered harder than
writing sequential programs. Similar opinions are held about veri-
fication. However, in VCC the leap from verifying sequential pro-
grams to verifying fancy lock-free code is not that big. This is be-
cause verification in VCC is inherently based on object invariants.

Coarse-grained concurrency - where objects are protected by
locks - is really no different from sequential programming. Each
lock protects a single (typically fixed) object; when you acquire
an exclusive lock, you obtain ownership of the object protected
by the lock. You are then free to operate on tht object just as you
would in sequential programming; you can unwrap it, play with it,
and eventually wrap it up (checking that you restored the object
invariant) and release the lock, giving ownership of the protected
object back to the lock.

Fine-grained concurrency - where memory is accessed using
atomic actions - is not very different from coarse-grained concur-
rency (except that one is obviously restricted to operations that are
implemented atomically on the hardware platform). The main dif-
ference is that you do not get ownership of the object you oper-
ate on; instead, you operate on the objct by reading or writing its
volatile fields while leaving the object closed.

We begin with what is probably the most important lock free
algorith: the humble spin-lock. The spin-lock data-structure is very
simple — it contains just a single boolean field, meant to indicate
whether the spin-lock is currently acquired. However, like most
concurrent objects, the important thing about a spinlock is forcing
its users to “play by the rules”. For example, the most important
characteristic of a spinlock is that once you acquire a spinlock,
you know that nobody else can acquire it until you release it; this

VCC Tutorial (working draft, ver. 0.2)

would be broken if somebody else could release the lock. But what
does it mean for “you” to release it? Does that mean your thread?
How then would you cope with protocols where you intentionally
transfer your right to release the spinlock to another thread?

Fortunately, we have the means at hand to represent an unfor-
gable right: since each object has a unique owner, we can represent
aunique right with ownership of an object. When a lock is acquired,
the caller receives ownership of an object associated with the lock
(not the lock itself, which will ultimately remain shared). To re-
lease the lock, the caller has to give this object back. This approach
prevents other threads from competing for the lock, yet allows the
thread to “give” his right to release the lock to another thread (or to
store it in a data structure) by simply transfering ownership.

The protected object need not serve as a simple token; being an
object, it can own data and have an invariant. These correspond to
the data “protected” by the lock and the notion of “consistency” of
this data.

_(volatile_owns) struct Lock {
volatile int locked;
_(ghost \object protected_obj;)
_(invariant locked == 0 ==> \mine(protected_obj))

|3

We use a ghost field to hold a reference to the object meant to be
protected by this lock. If you wish to protect multiple objects with
a single lock, you can make the object referenced by protected_obj
own them all. The locked field is annotated with volatile. It has the
usual meaning ascribed to the modifier in C (i.e., it makes the com-
piler assume that the environment might write to that field, out-
side the knowledge of the compiler). However, in practice C com-
pilers also provide the stronger guarantee that volatile operations
performed by a single thread are guaranteed to happen in program
order.

VCC treats volatile fields differently from nonvolatile fields in
two specific ways. First, a volatile field of an object can be modified
while the object is closed, as long as the update occurs inside an
explicit atomic action that preserves the object invariant. Second,
volatile fields are not in sequential domains, so a thread forgets the
values of these fields when it makes an impure function call (and,
as we will see soon, just before an atomic action).

The attribute _(volatile_owns) means that we want the \owns set
to be treated as a volatile field (i.e., we want to be able to write it
while the object is closed); without this declaration, \owns sets can
only be update when the object is open.

Here is the constructor for the lock:

void InitializeLock(struct Lock «| _(ghost \object obj))
_(writes \span(l), obj)
_(requires \wrapped(obj))
_(ensures \wrapped(l) && |I->protected_obj == obj)

|I->locked = 0;

_(ghost {
|I->protected_obj = obj;
|I->\owns = {obj};
_(wrap |)

)

}

The parameter ob is passed as a ghost parameter. The regular lock
initialization function prototype does not say which object the lock
is supposed to protect, but the lock invariant requires it. Thus, we
introduce additional parameter for the purpose of verification. A
call to the initialization will look like InitializeLock(& _(ghost 0)).
Note that in order to allow VCC annotations to be erased by the
preprocessor, ghost arguments are not separated with commas. The
transfer of ownership of ob into the lock is exactly as in adding an
object to a container data-structure, like sc_add() from[§[5.3}

19 2012/8/25

Now we can see how we operate on volatile fields. We will start
with the simpler of the two lock operations, the release:

void Release(struct Lock «l)
_(requires \wrapped(l))
_(requires \wrapped(l->protected_obj))
_(writes |->protected_obj)

_(atomic) {
|->locked = 0;
_(ghost |->\owns += |->protected_obj)

}

First, let’s look at the contract. The contract above requires the lock
to be wrapped, which is hardly realistic for a lock (which of course
must be shared). We will fix this problem later, but for now, we note
that what we really need is a reliable way to make sure that the lock
remains closed.

The preconditions on the protected object are very similar to the
preconditions on the InitializeLock(). Note that the Release() does
not need to mention the lock in its writes clause, this is because
the write it performs is volatile. This is because the lock is not in
the sequential domain of \me (since it is a volatile field), and so
the thread forgets whatever it knew about the field when it calls a
function.

The atomic block is similar in spirit to the unwrapping block
— it allows for modifications of listed objects and checks if their
invariants are preserved. The difference is that the entire update
happens instantaneously from the point of view of other threads.
We needed the unwrapping operation because we wanted to mark
that we temporarily break the object invariants. Here, there is no
point in time where other threads can observe that the invariants
are broken. Invariants hold before the beginning of the atomic block
(by our principal reasoning rule, [§5.1)), and we check the invariant
at the end of the atomic block.

For the use of an atomic action construct to be sound, VCC
requires that the actions on volatile concrete data of closed objects
performed by the action must appear atomic to other threads. VCC
issues a warning if there is more than one volatile physical memory
operation inside of an atomic block (since this is unlikely to be
atomic on most architectures), but is otherwise silent, assuming that
a single volatile memory access is implemented in an atomic way
by the host compiler (even though this is not true for all data types
on all platforms). Ultimately, it is up to the user to guarantee that
the access performed is indeed atomic.

Here, the physically atomic operation is writing to the |->locked;
Other possibilities include reading from a volatile field, or a per-
forming a primitive operation supported by the hardware, like in-
terlocked compare-and-exchange, on such a field. The block may
also include any number of accesses to mutable variables, reads of
thread-local variables, reads of nonvolatile fields of objects named
in the atomic, reads of volatile ghost variables (in any object), and
writes of volatile ghost variables of objects named in the atomic.
The additional operations on concrete fields are allowed because
these accesses are not racing with other threads, and the ghost op-
erations are allowed because we can pretend that ghost updates
happen immediately (without scheduler boundary).

It is not hard to see that this atomic operation preserves the in-
variant of the lock. However, VCC must also make the usual checks
on the sequential data. To transfer ownership of I->protected_obj to
the lock, we also need write permission to the object being trans-
ferred, and we need to know it is closed. For example, had we
forgotten to mention |->protected_obj in the writes clause, VCC
would have complained:

Verification of Lock#adm succeeded.

VCC Tutorial (working draft, ver. 0.2)

Verification of Release failed.

testcase(16,13) : error VC8510: Assertion
’1->protected_obj is writable in call to 1—>\owns
+= 1->protected_obj’ did not verify.

And had we forgotten to perform the ownership transfer inside of
Release(), VCC would have complained about the invariant of the
lock:

Verification of Lock#adm succeeded.

Verification of Release failed.

testcase(15,12) : error VC8524: Assertion ’chunk locked
== 0 ==> \mine(protected_obj) of invariant of 1
holds after atomic’ did not verify.

Now we’ll look at Acquire(). The specification is not very sur-
prising. It requires the lock to be wrapped (again, unrealistic for a
shared lock, but we will fix this later). It ensures that the calling
thread will own the protected object, and moreover, that the thread
didn’t directly own it before. This is much like the postcondition
on sc_set() function from[§[5.3]

void Acquire(struct Lock xl)
_(requires \wrapped(l))
_(ensures \wrapped(l->protected_obj) &&
\fresh(I—>protected_obj))

int stop = 0;
do {
_(atomic I) {
stop = InterlockedCompareExchange(&l—>locked, 1, 0) == 0;
_(ghost if (stop) I->\owns —= |->protected_obj)

}
} while (!stop);
}

The InterlockedCompareAndExchange() function is a compiler in-
strinsic, which on the x86/x64 hardware translates to the cmpxchg
assembly instruction. It takes a memory location and two values.
If the memory location contains the first value, then it is replaced
with the second. It returns the old value. The entire operation is
performed atomically (and is also a write barrier).

VCC doesn’t have all the primitives of all the C compilers
predefined. You define such intrinsics for VCC by providing a body.
It is seen only by VCC (it is enclosed in _(atomic_inline ...)) so that
the normal compiler doesn’t get confused about it.

_(atomic_inline)
int InterlockedCompareExchange(volatile int «xDestination, int
Exchange, int Comparand) {
if («+Destination == Comparand) {
«Destination = Exchange;
return Comparand;
} else {
return «Destination;
1
}

It is up to you to make sure that any such functions you provide
indeed match the semantics provided by your compiler and plat-
form. Such definitions may in future be provided in header files for
certain compiler/platform combinations.

8.1 Using claims

The contracts of functions operating on the lock require that the
lock is wrapped. This is because one can only perform atomic
operations on objects that are closed. If an object is open, then the
owning thread is in full control of it. However, wrapped means not

20 2012/8/25

only closed, but also owned by the current thread, which defeats the
purpose of the lock — it should be possible for multiple threads to
compete for the lock. Let’s then say, there is a thread which owns
the lock. Assume some other thread t got to know that the lock is
closed. How would t know that the owning thread won’t unwrap
(or worse yet, deallocate) the lock, just before t tries an atomic
operation on the lock? The owning thread thus needs to somehow
promise t that lock will stay closed. In VCC such a promise takes
the form of a claim. Later we’ll see that claims are more powerful,
but for now consider the following to be the definition of a claim:

_(ghost
typedef struct {

\ptrset claimed;

_(invariant \forall \object o; 0 \in claimed ==> o—>\closed)
} \claim_struct, *\claim;

)

Thus, a claim is an object, with an invariant stating that a number of
other objects (we call them claimed objects) are closed. As this is
stated in the invariant of the claim, it only needs to be true as long
as the claim itself stays closed.

Recall that what can be written in invariants is subject to the
admissibility condition, which we have seen partially explained in
[E5-3] There we said that an invariant should talk only about things
the object owns. But here the claim doesn’t own the claimed ob-
jects, so how should the claim know the object will stay closed?
In general, an admissible invariant can depend on other objects
invariants always being preserved (we’ll see the precise rule in
EB3). So VCC adds an implicit invariant to all types marked
with _(claimable) attribute. This invariant states that the object can-
not be unwrapped when there are closed claims on it. More pre-
cisely, each claimable object keeps track of the count of outstand-
ing claims. The number of outstanding claims on an object is stored
in \claim_count field.

Now, getting back to our lock example, the trick is that there can
be multiple claims claiming the lock (note that this is orthogonal
to the fact that a single claim can claim multiple objects). The
thread that owns the lock will need to keep track of who’s using the
lock. The owner won’t be able to destroy the lock (which requires
unwrapping it), before it makes sure there is no one using the lock.
Thus, we need to add _(claimable) attribute to our lock definition,
and change the contract on the functions operating on the lock. As
the changes are very similar we’ll only show Release().

void Release(struct Lock | _(ghost \claim c))
_(requires \wrapped(c) && \claims_object(c,))

requires |->protected_obj != ¢)

requires \wrapped(l—>protected_obj))

ensures \wrapped(c))

writes |->protected_obj)

_(
B
_(
_(

{
_(atomicc,) {
_(assert \by_claim(c, I->protected_obj) |= c) // why do we
need it?
|—>locked = 0;
_(ghost |->\owns += |->protected_obj)

}

We pass a ghost parameter holding a claim. The claim should
be wrapped. The function \claims_obj(c, I) is defined to be I\in

c—>claimed, i.e., that the claim claims the lock. We also need
to know that the claim is not the protected object, otherwise we
couldn’t ensure that the claim is wrapped after the call. This is the
kind of weird corner case that VCC is very good catching (even if
it’s bogus in this context). Other than the contract, the only change
is that we list the claim as parameter to the atomic block. Listing a
normal object as parameter to the atomic makes VCC know you’re

VCC Tutorial (working draft, ver. 0.2)

going to modify the object. For claims, it is just a hint, that it should
use this claim when trying to prove that the object is closed.

Additionally, the InitializeLock() needs to ensure |->\claim_count
==0 (i.e., no claims on freshly initialized lock). VCC even pro-
vides a syntax to say something is wrapped and has no claims:
\wrappedO(l).

8.2 Creating claims

When creating (or destroying) a claim one needs to list the claimed
objects. Let’s have a look at an example.

void create_claim(struct Data xd)
_(requires \wrapped(d))
_(writes d)

_(ghost \claim c;)

struct Lock |;

InitializeLock(&I _(ghost d));

_(ghost c = \make_claim({&l}, \true);)
Acquire(&l _(ghost c));

Release(&l _(ghost c));

_(ghost \destroy_claim(c, {&l}));
_(unwrap &l)

This function tests that we can actually create a lock, create a
claim on it, use the lock, and then destroy it. The InitializeLock()
leaves the lock wrapped and writable by the current thread. This
allows for the creation of an appropriate claim, which is then passed
to Acquire() and Release(). Finally, we destroy the claim, which
allows for unwrapping of the lock, and subsequently deallocating it
when the function activation record is popped off the stack.

The \make_claim(...) function takes the set of objects to be
claimed and a property (an invariant of the claim, we’ll get to that
in the next section). Let us give desugaring of \make_claim(...) for
a single object in terms of the \claim_struct defined in the previous
section.

// ¢ = \make_claim({o}, \true) expands to
o—>\claim_count += 1;

¢ = malloc(sizeof(\claim_struct));
c—>claimed = {o};

_(wrap c);

// \destroy_claim(c, {0}) expands to
assert(o \in c—>claimed);
o—>\claim_count —= 1;
_(unwrap c);

free(c);

Because creating or destroying a claim on ¢ assigns to c—>\claim_count,

it requires write access to that memory location. One way to ob-
tain such access is getting sequential write access to c itself: in
our example the lock is created on the stack and thus sequentially
writable. We can thus create a claim and immediately use it. A
more realistic claim management scenario is described in

The \true in \make_claim(...) is the claimed property (an invari-
ant of the claim), which will be explained in the next section.

The destruction can possibly leak claim counts, i.e., one could
say:

\destroy_claim(c, {});
and it would verify just fine. This avoids the need to have write

access to p, but on the other hand prevents p from unwrapping
forever (which might be actually fine if p is a ghost object).

21 2012/8/25

8.3 Two-state invariants

Sometimes it is not only important what are the valid states of
objects, but also what are the allowed changes to objects. For
example, let’s take a counter keeping track of certain operations
since the beginning of the program.

_(claimable) struct Counter {
volatile unsigned v;
_(invariant v > 0)
_(invariant v ==\old(v) || v == \old(v) + 1)

|3

Its first invariant is a plain single-state invariant — for some reason
we decided to exclude zero as the valid count. The second invariant
says that for any atomic update of (closed) counter, v can either
stay unchanged or increment by exactly one. The syntax \old(v) is
used to refer to value of v before an atomic update, and plain v is
used for the value of v after the update. (Note that the argument to
\old(...) can be an arbitrary expression.) That is, when checking that
an atomic update preserves the invariant of a counter, we will take
the state of the program right before the update, the state right after
the update, and check that the invariant holds for that pair of states.

In fact, it would be easy to prevent any changes to some field f,
by saying _(invariant \old(f)== f). This is roughly what happens
under the hood when a field is declared without the volatile
modifier.

As we can see the single- and two-state invariants are both
defined using the _(invariant ...) syntax. The single-state invariants
are just two-state invariants, which do not use \old(...). However,
we often need an interpretation of an object invariant in a single
state S. For that we use the stuttering transition from S to S itself.
VCC enforces that all invariants are reflexive that is if they hold
over a transition S0, S1, then they should hold in just S1 (i.e., over
S1, S1). In practice, this means that \old(...) should be only used to
describe how objects change, and not what are their proper values.
In particular, all invariants which do not use \old(...) are reflexive,
and so are all invariants of the form \old(E)== (E)|| (P), for any
expression E and condition P. On the other hand, the invariants
\old(f)< 7 and x == \old(x)+ 1 are not reflexive.

Let’s now discuss where can you actually rely on invariants
being preserved.

void foo(struct Counter n)
_(requires \wrapped(n))

t
intx,y;
atomic(n) { x = n—>v;
atomic(n) { y = n—>v;

}

The question is what do we know about x and y at the end of foo().
If we knew that nobody is updating n—>v while foo() is running we
would know x ==y. This would be the case if n was unwrapped,
but it is wrapped. In our case, because n is closed, other threads
can update it, while foo() is running, but they will need to adhere
to n’s invariant. So we might guess that at end of foo() we know y
==X || y == x + 1. But this is incorrect: n—>v might get incremented
by more than one, in several steps. The correct answer is thus x
<=y. Unfortunately, in general, such properties are very difficult to
deduce automatically, which is why we use plain object invariants
and admissibility check to express such properties in VCC.

}
}

An invariant is fransitive if it holds over states SO, S2, provided
that it holds over SO, S1 and S1, S2. Transitive invariants could
be assumed over arbitrary pairs of states, provided that the
object stays closed in between them. VCC does not require
invariants to be transitive, though.

VCC Tutorial (working draft, ver. 0.2)

Some invariants are naturally transitive (e.g., we could say
_(invariant \old(x)<= x) in struct Counter, and it would be almost
as good our current invariant). Some other invariants, espe-
cially the more complicated ones, are more difficult to make
transitive. For example, an invariant on a reader-writer lock
might say

_(invariant writer_waiting ==> old(readers) >= readers)
To make it transitive one needs to introduce version numbers.

Some invariants describing hardware (e.g., a step of physical
CPU) are impossible to make transitive.

Consider the following structure definition:

struct Reading {

struct Counter *n;

volatile unsigned r;

_(ghost \claim c;)

_(invariant \mine(c) && \claims_obiject(c, n))

_(invariant n—>v >=1r)
I
It is meant to represent a reading from a counter. Let’s consider
its admissibility. It has a pointer to the counter, and a owns a
claim, which claims the counter. So far, so good. It also states
that the current value of the counter is no less than r. Clearly, the
Reading doesn’t own the counter, so our previous rule from[§[5.5
which states that you can mention in your invariant everything
that you own, doesn’t apply. It would be tempting to extend that
rule to say “everything that you own or have a claim on”, but
VCC actually uses a more general rule. In a nutshell, the rule says
that every invariant should be preserved under changes to other
objects, provided that these other objects change according to their
invariants. When we look at our struct Reading, its invariant cannot
be broken when its counter increments, which is the only change
allowed by counters invariant. On the other hand, an invariant like
r ==n->v or r >= n—>v could be broken by such a change. But let
us proceed with somewhat more precise definitions.

First, assume that every object invariant holds when the object is
not closed. This might sound counter-intuitive, but remember that
closedness is controlled by a field. When that field is set to false,
we want to effectively disable the invariant, which is the same as
just forcing it to be true in that case. Alternatively, you might try to
think of all objects as being closed for a while.

An atomic action, which updates state SO into S1, is legal if
and only if the invariants of objects that have changed between SO
and S1 hold over S0, S1. In other words, a legal action preservers
invariants of updated objects. This should not come as a surprise:
this is exactly what VCC checks for in atomic blocks.

An invariant is stable if and only if it cannot be broken by legal
updates. More precisely, to prove that an invariant of p is stable,
VCC needs to “simulate” an arbitrary legal update:

o Take two arbitrary states SO and S1.
e Assume that all invariants (including p’s) hold over S0, SO.

® Assume that for all objects, some fields of which are not the
same in SO and S1, their invariants hold over SO0, S1.

e Assume that all fields of p are the same in SO and S1.
e Check that invariant of p holds over S0, S1.

The first assumption comes from the fact that all invariants are re-
flexive. The second assumption is legality. The third assumption
follows from the second (if p did change, its invariant would auto-
matically hold).
An invariant is admissible if and only if it is stable and reflexive.
Let’s see how our previous notion of admissibility relates to this
one. If p owns g, then g\in p—>\owns. By the third admissibility

2 2012/8/25

assumption, after the simulated action p still owns qg. By the rules
of ownership §5.1), only threads can own open objects, so we
know that q is closed in both SO and S1. Therefore non-volatile
fields of q do not change between S0 and S1, and thus the invariant
of p can freely talk about their values: whatever property of them
was true in SO, will also be true in S1. Additionally, if q owned r
before the atomic action, and the g—>\owns is non-volatile, it will
keep owning r, and thus non-volatile fields of r will stay unchanged.
Thus our previous notion of admissibility is a special case of this
one.

Getting back to our foo() example, to deduce that x <=y, after
the first read we could create a ghost Reading object, and use its
invariant in the second action. While we need to say that x <=
y is what’s required, using a full-fledged object might seem like
an overkill. Luckily, definitions of claims themselves can specify
additional invariants.

The admissibility condition above is semantic: it will be
checked by the theorem prover. This allows construction of the
derived concepts like claims and ownership, and also escaping
their limitations if needed. It is therefore the most central con-
cept of VCC verification methodology, even if it doesn’t look
like much at the first sight.

8.4 Guaranteed properties in claims

When constructing a claim, you can specity additional invariants to
put on the imaginary definition of the claim structure. Let’s have a
look at annotated version of our previous foo() function.

void readtwice(struct Counter xn)
_(requires \wrapped(n))
_(writes n)

unsigned int x, y;
_(ghost \claim r;)

_(atomic n) {
X = N—>V;
_(ghost r = \make_claim({n}, x <= n—>v);)

}

_(atomic n) {
y =n—>v;
_(assert \active_claim(r))
_(assert x <=y)

}
}

Let’s give a high-level description of what’s going on. Just after
reading n—>v we create a claim r, which guarantees that in every
state, where r is closed, the current value of n—>v is no less than the
value of x at the time when r was created. Then, after reading n—>v
for the second time, we tell VCC to make use of r’s guaranteed
property, by asserting that it is “active”. This makes VCC know x
<= n—>V in the current state, where also y == n—>v. From these two
facts VCC can conclude that x <=y.
The general syntax for constructing a claim is:

_(ghost c = \make_claim(S, P))

We already explained, that this requires that s—>\claim_count is
writable for s \in S. As for the property P, we pretend it forms the
invariant of the claim. Because we’re just constructing the claim,
just like during regular object initialization, the invariant has to
hold initially (i.e., at the moment when the claim is created, that
is wrapped). Moreover, the invariant has to be admissible, under
the condition that all objects in S stay closed as long as the claim
itself stays closed. The claimed property cannot use \old(...), and

VCC Tutorial (working draft, ver. 0.2)

therefore it’s automatically reflexive, thus it only needs to be stable
to guarantee admissibility.

But what about locals? Normally, object invariants are not al-
lowed to reference locals. The idea is that when the claim is con-
structed, all the locals that the claim references are copied into
imaginary fields of the claim. The fields of the claim never change,
once it is created. Therefore an assignment x = UINT_MAX; in be-
tween the atomic blocks would not invalidate the claim — the claim
would still refer to the old value of x. Of course, it would invalidate
the final x <=y assert.

For any expression E you can use \at(\now(), E) in P in order to
have the value of E be evaluated in the state when the claim is
created, and stored in the field of the claim.

This copying business doesn’t affect initial checking of the P,
P should just hold at the point when the claim is created. It does
however affect the admissibility check for P:

¢ Consider an arbitrary legal action, from SO to S1.

e Assume that all invariants hold over S0, SO0, including assuming
P in SO.

® Assume that fields of ¢ didn’t change between SO and S1 (in
particular locals referenced by the claim are the same as at the
moment of its creation).

® Assume all objects in S are closed in both S0 and S1.

e Assume that for all objects, fields of which are not the same in
S0 and S1, their invariants hold over SO0, S1.

e Check that P holds in S1.

To prove \active_claim(c) one needs to prove c—>\closed and that
the current state is a full-stop state, i.e., state where all invariants are
guaranteed to hold. Any execution state outside of an atomic block
is full-stop. The state right at the beginning of an atomic block is
also full-stop. The states in the middle of it (i.e., after some state
updates) might not be.

Such middle-of-the-atomic states are not observable by other
threads, and therefore the fact that the invariants don’t hold
there does not create soundness problems.

The fact that P follows from ¢’s invariant after the construction
is expressed using \claims(c, P). It is roughly equivalent to saying:

\forall \state s {\at(s, \active_claim(c))};
\at(s, \active_claim(c)) ==> \at(s, P)

Thus, after asserting \active_claim(c) in some state s, \at(s, P) will
be assumed, which means VCC will assume P, where all heap
references are replaced by their values in s, and all locals are
replaced by the values at the point when the claim was created.

[TODO: I think we need more examples about that at() busi-
ness, claim admissibility checks and so forth]

8.5 Dynamic claim management

So far we have only considered the case of creating claims to
wrapped objects. In real systems some resources are managed dy-
namically: threads ask for “handles” to resources, operate on them,
and give the handles back. These handles are usually purely vir-
tual — asking for a handle amounts to incrementing some counter.
Only after all handles are given back the resource can be disposed.
This is pretty much how claims work in VCC, and indeed they were
modeled after this real-world scenario. Below we have an example
of prototypical reference counter.

struct RefCnt {
volatile unsigned cnt;

23 2012/8/25

_(ghost \object resource;)

_(invariant \mine(resource))

_(invariant \claimable(resource))

_(invariant resource—>\claim_count == cnt >> 1)
_(invariant \old(cnt & 1) ==> \old(cnt) >= cnt)

I

Thus, a struct RefCnt owns a resource, and makes sure that the
number of outstanding claims on the resource matches the physical
counter stored in it. \claimable(p) means that the type of object
pointed to by p was marked with _(claimable). The lowest bit is
used to disable giving out of new references (this is expressed in
the last invariant).

void init(struct RefCnt xr _(ghost \object rsc))
_(writes \span(r), rsc)
_(requires \wrapped0(rsc) && \claimable(rsc))
_(ensures \wrapped(r) && r—>resource == rsc)

r—>cnt = 0;
_(ghost r—>resource = rsc;)
_(wrap)

Initialization shouldn’t be very surprising: \wrappedO(o) means
\wrapped(0)&& o—>\claim_count == 0, and thus on initialization we
require a resource without any outstanding claims.

int try_incr(struct RefCnt «r _(ghost \claim c)
_(out\claim ret))
_(always c, r—>\closed)
_(ensures \result == 0 ==>
\claims_object(ret, r—>resource) && \wrappedO(ret) &&
\fresh(ret))

unsigned v, n;

for () {
_(atomicc, r) {v=r—>cnt;}
if (v & 1) return —1;

_(assume v <= UINT_MAX - 2)
_(atomicc, 1) {
n = InterlockedCompareExchange(&r—>cnt, v + 2, v);
_(ghost
if (v == n) ret = \make_claim({r—>resource}, \true);)
}

if (v ==n) return O;
}
}

First, let’s have a look at the function contract. The syntax _(always
¢, P) is equivalent to:

_(requires \wrapped(c) && \claims(c, P))
_(ensures \wrapped(c))

Thus, instead of requiring \claims_obj(c, r), we require that the
claim guarantees r—>\closed. One way of doing this is claiming r,
but another is claiming the owner of r, as we will see shortly.

As for the body, we assume our reference counter will never
overflow. This clearly depends on the running time of the system
and usage patterns, but in general it would be difficult to specify
this, and thus we just hand-wave it.

The new thing about the body is that we make a claim on the
resource, even though it’s not wrapped. There are two ways of ob-
taining write access to p—>\claim_count: either having p writable
sequentially and wrapped, or in case p—>\owner is a non-thread ob-
ject, checking invariant of p—>\owner. Thus, inside an atomic up-
date on p—>\owner (which will check the invariant of p—>\owner)
one can create claims on p. The same rule applies to claim destruc-
tion:

VCC Tutorial (working draft, ver. 0.2)

void decr(struct RefCnt «r _(ghost \claim c) _(ghost \claim
handle))
_(always c, r—>\closed)
_(requires \claims_object(handle, r—>resource) &&
\wrapped0(handle))
_(requires c != handle)
_(writes handle)

unsigned v, n;

for ()
_(invariant \wrapped(c) && \wrapped0(handle))
{
_(atomic c, 1) {
V = r—>cnt;
_(assert \active_claim(handle))
_(assertv >=2)

}

_(atomicc, 1) {
n = InterlockedCompareExchange(&r—>cnt, v — 2, v);
_(ghost
if (v==n){
_(ghost \destroy_claim(handle, {r—>resource}));
)
}

if (v == n) break;
}
}

A little tricky thing here, is that we need to make use of the handle
claim right after reading r—>cnt. Because this claim is valid, we
know that the claim count on the resource is positive and therefore
(by reference counter invariant) v >= 2. Without using the handle
claim to deduce it we would get a complaint about overflow in v —
2 in the second atomic block.

Finally, let’s have a look at a possible use scenario of our
reference counter.

_(claimable) struct A {
volatile int x;

b

struct B {
struct RefCnt rc;
struct A a;
_(invariant \mine(&rc))
_(invariant rc.resource == &a)

b

void useb(struct B xb _(ghost \claim c))
_(always c, b—>\closed)

_(ghost \claim ac;)
if (try_incr(&b—>rc _(ghost c) _(out ac)) == 0) {
_(atomic &b—>a, ac) {
b->a.x =10;

}
decr(&b—>rc _(ghost c) _(ghost ac));

}
}

void initb(struct B xb)
_(writes \extent(b))
_(ensures \wrapped(b))

b->ax=7;

_(wrap &b—>a)

init(&b—>rc _(ghost &b—>a));
_(wrap b)

24 2012/8/25

The struct B contains a struct A governed by a reference counter. It
owns the reference counter, but not struct A (which is owned by the
reference counter). A claim guaranteeing that struct B is closed also
guarantees that its counter is closed, so we can pass it to try_incr(),
which gives us a handle on struct A.

Of course a question arises where one does get a claim on struct
B from? In real systems the top-level claims come either from
global objects that are always closed, or from data passed when
the thread is created.

9. Triggers

The triggers are likely the most difficult part of this tutorial. VCC
tries to infer appropriate triggers automatically, so trigger annota-
tions were not needed for the examples in the tutorial. However,
you may need them to deal with more complex VCC verification
tasks.

This appendix gives some background on the usage of triggers
in the SMT solvers, the underlying VCC theorem proving technol-
ogy.

SMT solvers prove that the program is correct by looking for
possible counterexamples, or models, where your program goes
wrong (e.g., by violating an assertion). Once the solver goes
through all possible counterexamples, and finds them all to be
inconsistent (i.e., impossible), it considers the program to be cor-
rect. Normally, it would take virtually forever, for there is very
large number of possible counterexamples, one per every input to
the function (values stored in the heap also count as input). To
workaround this problem, the SMT solver considers partial mod-
els, i.e., sets of statements about the state of the program. For
example, the model description may say x == 7,y > x and #p == 12,
which describes all the concrete models, where these statements
hold. There is great many such models, for example one for each
different value of y and other program variables, not even men-
tioned in the model.

It is thus useful to think of the SMT solver as sitting there
with a possible model, and trying to find out whether the model is
consistent or not. For example, if the description of the model says
that x > 7 and x < 3, then the solver can apply rules of arithmetic,
conclude this is impossible, and move on to a next model. The SMT
solvers are usually very good in finding inconsistencies in models
where the statements describing them do not involve universal
quantifiers. With quantifiers things tend to get a bit tricky.

For example, let’s say the model description states that the two
following facts are true:

\forall unsigned i; i< 10 ==> a[i] > 7
af4] ==

The meaning of the universal quantifier is that it should hold not
matter what we substitute for i, for example the universal quantifier
above implies the following facts (which are called instances of the
quantifier):

4<10==>a[4]>7 //fori==4

which happens to be the one needed to refute our model,

11 <10 ==>a[11]>7 //fori==11

which is trivially true, because false implies everything, and
k<10==>alk] > 7 /fori==k

where k is some program variable of type unsigned.

However, there is potentially infinitely many such instances, and
certainly too many to enumerate them all. Still, to prove that our
model candidate is indeed contradictory we only need the first one,
not the other two. Once the solver adds it to the model description,

VCC Tutorial (working draft, ver. 0.2)

it will simplify 4 < 10 to true, and then see that a[4] > 7 and a[4] ==
3 cannot hold at the same time.

The question remains: how does the SMT solver decide that
the first instance is useful, and the other two are not? This is done
through so called triggers. Triggers are either specified by the user
or inferred automatically by the SMT solver or the verification
tool. In all the examples before we relied on the automatic trigger
inference, but as we go to more complex examples, we’ll need to
consider explicit trigger specification.

A trigger for a quantified formula is usually some subexpression
of that formula, which contains all the variables that the formula
quantifies over. For example, in the following formula:

\forall int i; int p[int]; is_pos(p, i) ==> f(i, p[i]) && g(i)

possible triggers include the following expressions is_pos(p, i), p[i],
and also f(i, p[i]), whereas g(i) would not be a valid trigger, because
it does not contain p.

Let’s assume that is_pos(p, i) is the trigger. The basic idea is
that when the SMT solvers considers a model, which mentions
is_pos(q, 7) (where q is, e.g., a local variable), then the formula
should be instantiated with q and 7 substituted for p and i respec-
tively.

Note that the trigger f(i, p[i]) is more restrictive than p[i]: if the
model contains f(k, g[k]) it also contains g[k]. Thus, a “bigger” trig-
ger will cause the formula to be instantiated less often, generally
leading to better proof performance (because the solver has less
formulas to work on), but also possibly preventing the proof alto-
gether (when the solver does not get the instantiation needed for
the proof).

Triggers cannot contain boolean operators or the equality oper-
ator. As of the current release, arithmetic operators are allowed, but
cause warnings and work unreliably, so you should avoid them.

A formula can have more than one trigger. It is enough for one
trigger to match in order for the formula to be instantiated.

Multi-triggers: Consider the following formula:
\forall int a, b, c; P(a, b) && Q(b, c) ==> R(a, ¢)

There is no subexpression here, which would contain all the
variables and not contain boolean operators. In such case we
need to use a multi-trigger, which is a set of expressions which
together cover all variables. An example trigger here would
be {P(a, b), Q(b, c)}. It means that for any model, which has
both P(a, b) and Q(b, c¢) (for the same b!), the quantifier will be
instantiated. In case a formula has multiple multi-triggers, all
expressions in at least one of multi-triggers must match for the
formula to be instantiated.

If it is impossible to select any single-triggers in the formula,
and none are specified explicitly, Z3 will select some multi-
trigger, which is usually not something that you want.

9.1 Matching loops
Consider a model description

\forall struct Node *n; {\mine(n)} \mine(n) ==> \mine(n—>next)
\mine(a)

Let’s assume the SMT solver will instantiate the quantifier with a,
yielding:

\mine(a) ==> \mine(a—>next)

It will now add \mine(a—>next) to the set of facts describing the
model. This however will lead to instantiating the quantifier again,

this time with a—>next, and in turn again with a—>next—>next and
so forth. Such situation is called a matching loop. The SMT solver

25 2012/8/25

would usually cut such loop at a certain depth, but it might make
the solver run out of time, memory, or both.

Matching loops can involve more than one quantified formula.
For example consider the following, where f is a user-defined func-
tion.

\forall struct Node *n; {\mine(n)} \mine(n) ==> f(n)
\forall struct Node x*n; {f(n)} f(n) ==> \mine(n—>next)
\mine(a)

9.2 Trigger selection

The explicit triggers are listed in {...}, after the quantified vari-
ables. They don’t have to be subexpressions of the formula. We’ll
see some examples of that later. When there are no triggers speci-
fied explicitly, VCC selects the triggers for you. These are always
subexpressions of the quantified formula body. To select default
triggers VCC first considers all subexpressions which contain all
the quantified variables, and then it splits them into four categories:

e level O triggers, which are mostly ownership-related. These are
\mine(E), E1\in \owns(E2), and also E1\in0 E2 (which, except
for triggering, is the same as E1\in E2).

e level 1 triggers: set membership and maps, that is expressions
of the form E1 \in E2 and E1[E2].

e level 2 triggers: default, i.e., everything not mentioned else-
where. It is mostly heap dereferences, like xp, &ali] or a[i], as
well as bitwise arithmetic operators.

® level 3 triggers: certain “bad triggers”, which use internal VCC
encoding functions.

e level 4 triggers: which use interpreted arithmetic operations (+,
—, and * on integers).

Expressions, which contain <=, >=, <, >, ==, I=, ||, &&, ==>,
<==>, and ! are not allowed in triggers.

Each of these expressions is then tested for immediate matching
loop, that is VCC checks if instantiating the formula with that trig-
ger will create a bigger instance of that very trigger. Such looping
triggers are removed from their respective categories. This protects
against matching loops consisting of a single quantified formula,
but matching loops with multiple formulas are still possible.

To select the triggers, VCC iterates over levels, starting with
0. If there are some triggers at the current level, these triggers
are selected and iteration stops. This means that, e.g., if there are
set-membership triggers then heap dereference triggers will not be
selected.

If there are no triggers in levels lower than 4, VCC tries to select
a multi-trigger. It will only select one, with possibly low level,
and some overlap between variables of the subexpressions of the
trigger. Only if no multi-trigger can be found, VCC will try to use
level 4 trigger. Finally, if no triggers can be inferred VCC will print
a warning.

As a post-processing step, VCC looks at the set of selected
triggers, and if any there are two triggers X and Y, such that X is a
subexpression of Y, then Y is removed, as it would be completely
redundant.

You can place a {:level N} annotation in place of a trigger. It
causes VCC to use all triggers from levels O to N inclusive. If this
results in empty trigger set, the annotation is silently ignored.

The flag /dumptriggers:XK (or /dt :K) can be used to dis-
play inferred triggers. /dt : 1 prints the inferred triggers, /dt:2
prints what triggers would be inferred if {:level ...} annotation was
supplied. /dt : 3 prints the inferred triggers even when there are
explicit triggers specified. It does not override the explicit triggers,
it just print what would happen if you removed the explicit trigger.

Let’s consider an example:

VCC Tutorial (working draft, ver. 0.2)

int xbuf;
unsigned perm[unsigned];
\forall unsigned i; i < len ==> perm[i] == i ==> buf[i] < 0

The default algorithm will infer {perm([i]}, and with {:level 1} it will
additionally select {&buf[i]}. Note the ampersand. This is because in
C buffi] is equivalent to x(&buf[i]), and thus the one with ampersand
is simpler. You can also equivalently write it as {buf + i}. Note that
the plus is not integer arithmetic addition, and can thus be safely
used in triggers.

Another example would be:

\forall struct Node *n; n \in g—>\owns ==> perm[n—>idx] == 0

By default we get level 0 {n\in g—>\owns}, with level 1 we also get
{perm[n—>idx]} and with level 2 additionally {&n—>idx}.

9.3 Hints

Consider a quantified formula \forall T x; {:hint H} E. Intuitively the
hint annotation states that the expression H (which can refer to x)
might have something to do with proving E. A typical example,
where you might need it is the following:

\forall struct Node *n; \mine(n) ==> \mine(n—>next) &&
n—>next—>prev ==n

The default trigger selection will pick {\mine(n—>next)}, which is
also the “proper” trigger here. However, when proving admissibil-
ity, to know that n—>next—>prev did not change in the legal action,
we need to know \mine(n—>next). This is all good, it’s stated just
before, but the SMT solver might try to prove n—>next—>prev ==
n first, and thus miss the fact that \mine(n—>next). Therefore, we
will need to add {:hint \mine(n—>next)}. For inferred level O triggers,
these are added automatically.

References

[1] Ernie Cohen, Markus Dahlweid, Mark Hillebrand, Dirk Leinenbach,
Michat Moskal, Thomas Santen, Wolfram Schulte, and Stephan Tobies.
VCC: A practical system for verifying concurrent C. In Theorem
Proving in Higher Order Logics (TPHOLs 2009), volume 5674 of
LNCS, pages 23—42. Springer, 2009. Invited paper.

[2] Ernie Cohen, Michat Moskal, Wolfram Schulte, and Stephan Tobies.
Local verification of global invariants in concurrent programs. In
Byron Cook, Paul Jackson, and Tayssir Touili, editors, Computer Aided
Verification (CAV 2010), volume 6174 of Lecture Notes in Computer
Science, pages 480494, Edinburgh, UK, July 2010. Springer.

2% 2012/8/25

	Introduction
	Verifying Simple Programs
	Assertions
	Logical Operators and Quantifiers
	Assumptions
	Overflows and unchecked arithmetic
	Bitvector Reasoning

	Function Contracts
	Reading and Writing Memory
	Local Variables

	Arrays
	Termination
	Pure functions
	Contracts on Blocks

	Loop invariants
	Termination measures for loops
	Writes clauses for loops

	Object invariants
	Wrap/unwrap protocol
	Ownership trees
	Dynamic ownership
	Ownership domains
	Simple sequential admissibility
	Type safety

	Ghosts
	Linked Data Structures
	Sorting revisited
	Inductive Proofs

	Objects and Memory
	Unions
	Blobs

	Atomics
	Using claims
	Creating claims
	Two-state invariants
	Guaranteed properties in claims
	Dynamic claim management

	Triggers
	Matching loops
	Trigger selection
	Hints

