
Overview of Verification Hoare logic How VCC generates VC’s

Generating Verification Conditions from
Annotated Programs

Deepak D’Souza

Department of Computer Science and Automation
Indian Institute of Science, Bangalore.

13 March 2014



Overview of Verification Hoare logic How VCC generates VC’s

Outline

1 Overview of Verification

2 Hoare logic

3 How VCC generates VC’s



Overview of Verification Hoare logic How VCC generates VC’s

Basic Idea of verification technology

Given a program P with assert, assume, invariant
annotations.

P satisfies annotations if no execution of it “goes wrong”.

An execution goes wrong if it violates an assert and passes
all assume’s till then.

Translate it to an acyclic program with goto’s P ′.

P ′ satisfies property that if P ′ does not go wrong then neither
will P.

Generate Verification Conditions (VC’s) ϕP′ from P ′, such
that ϕP′ is valid iff P ′ does not go wrong.

Check validity of ϕP′ using an SMT solver like Z3.



Overview of Verification Hoare logic How VCC generates VC’s

Translating P to acyclic program P ′

int min(int a, int b)

_(requires \true)

_(ensures \result <= a &&

\result <= b) {

if (a <= b)

return a;

else

return b;

}

assume \true

int \result;

goto iftrue, iffalse;

assume a <= b

\result = a;

goto endif;

assume a > b;

\result = b;

goto endif;

assert \result <= a && \result <= b

int min(int a, int b)

iftrue:

iffalse:

endif:



Overview of Verification Hoare logic How VCC generates VC’s

Translating P to acyclic program P ′: function calls

int main() {

int x, y, z;

z = min(x, y);

_(assert z <= x)

return 0;

}

assume \true

int \result, x, y, z;

assert \true

assume res <= x && res <= y

z = res;

assert z <= x

\result = 0

int main() {

int res;

assert \true

}



Overview of Verification Hoare logic How VCC generates VC’s

Translating P to acyclic program P ′: loops with invariants

void div(unsigned x, unsigned d,

unsigned *q, unsigned *r)

_(requires d > 0 && q != r)

_(writes q, r)

_(ensures x == d * (*q) + *r && *r < d) {

unsigned lq, lr;

lq = 0;

lr = x;

while(lr >= d)

_(invariant x == d * lq + lr) {

lq++;

lr = lr - d;

}

*q = lq;

*r = lr;

return;

}

assume d > 0 && q != r

int \result, lq, lr;

assert x == lq * d + rq

unsigned fresh_lq, fresh_lr;

lq = fresh_lq; lr = fresh_lr;

assume x == lq * d + lr

unsigned div(unsigned x, d, *q, *r) {

lq = 0; lr = x;

if !(lr >= d) goto loopexit

lq++;

lr = lr − d;

assert x == lq * d + rq

assume \false

}

*q = lq; *r = lr;loopexit:

assert x == (*q) * d + *r && *r < d



Overview of Verification Hoare logic How VCC generates VC’s

Rules for Weakest Preconditions

Let WP(L,Q), where L is a statement label in program P and
Q is a post-condition on the state of P, denote the set of
states s such that if we execute P starting at label L in state
s, the execution never goes wrong, and if it terminates it does
so in a state satisfying Q.

Let M be the label of the statement following L. Below “goto
N, O” means non-deterministically branch to label N or label
O. Then

WP(L: assume A,Q) = A =⇒ WP(M,Q).
WP(L: assert A,Q) = A ∧WP(M,Q).
WP(L: x := e,Q) = WP(M,Q)[e/x ].
WP(L: goto N, O,Q) = WP(N,Q) ∧WP(O,Q).



Overview of Verification Hoare logic How VCC generates VC’s

Generating VC’s from an acyclic P ′

Label each program statement “L: ...” in P ′ by
WP(L, true):

Begin from leaf nodes and proceed upwards to label a node if
its control successors have been labelled.

Output A =⇒ ϕ0 as the verification condition for P ′, where
ϕ0 is the WP at the start node of P ′.

Clearly, P ′ has no execution that goes wrong iff ϕP′ is valid
(in other words it negation is unsatisfiable).



Overview of Verification Hoare logic How VCC generates VC’s

Generating VC’s from an acyclic P ′: min example

assume \true

int \result;

goto iftrue, iffalse;

assume a <= b

\result = a;

goto endif;

assume a > b;

\result = b;

goto endif;

assert \result <= a && \result <= b

int min(int a, int b)

iftrue:

iffalse:

endif:

\result <= a && \result <= b

\result <= a && \result <= b

b <= a && b <= b

a > b ==> (b <= a && b <= b)

\result <= a && \result <= b

a <= a && a <= b

a <= b ==> (a <= a && a <= b)

[a <= b ==> (a <= a && a <= b)]
&& [a > b ==> (b <= a && b <= b)]

[a <= b ==> (a <= a && a <= b)]

[a <= b ==> (a <= a && a <= b)]

&& [a > b ==> (b <= a && b <= b)]

&& [a > b ==> (b <= a && b <= b)]

Final formula ϕmin generated (A is axioms known, like int a):

A =⇒ [a ≤ b =⇒ (a ≤ a ∧ a ≤ b)] ∧ [a > b =⇒ (b ≤ a ∧ b ≤ b)]



Overview of Verification Hoare logic How VCC generates VC’s

Generating VC’s from an acyclic P ′: min example

assume \true

int \result;

goto iftrue, iffalse;

assume a <= b

\result = a;

goto endif;

assume a > b;

\result = b;

goto endif;

assert \result <= a && \result <= b

int min(int a, int b)

iftrue:

iffalse:

endif:

\result <= a && \result <= b

\result <= a && \result <= b

b <= a && b <= b

a > b ==> (b <= a && b <= b)

\result <= a && \result <= b

a <= a && a <= b

a <= b ==> (a <= a && a <= b)

[a <= b ==> (a <= a && a <= b)]
&& [a > b ==> (b <= a && b <= b)]

[a <= b ==> (a <= a && a <= b)]

[a <= b ==> (a <= a && a <= b)]

&& [a > b ==> (b <= a && b <= b)]

&& [a > b ==> (b <= a && b <= b)]

Final formula ϕmin generated (A is axioms known, like int a):

A =⇒ [a ≤ b =⇒ (a ≤ a ∧ a ≤ b)] ∧ [a > b =⇒ (b ≤ a ∧ b ≤ b)]


	Overview of Verification
	Hoare logic
	How VCC generates VC's

