Generating Verification Conditions from
Annotated Programs

Deepak D'Souza

Department of Computer Science and Automation
Indian Institute of Science, Bangalore.

13 March 2014

Outline

o Overview of Verification

© Hoare logic

© How VCC generates VC’s

Overview of Verification

Basic Idea of verification technology

@ Given a program P with assert, assume, invariant
annotations.

@ P satisfies annotations if no execution of it “goes wrong”.

o An execution goes wrong if it violates an assert and passes
all assume’s till then.

@ Translate it to an acyclic program with goto’s P’.

@ P’ satisfies property that if P/ does not go wrong then neither
will P.

@ Generate Verification Conditions (VC's) ¢ps from P’, such
that pp/ is valid iff P’ does not go wrong.

@ Check validity of wpr using an SMT solver like Z3.

How VCC generates VC's

Translating P to acyclic program P’

int min(int a, int b)
assume \true
int min(int a, int b) int \result;

_(requires \true)

(ensures \result <= a && goto iftrue, iffalse;

\result <= b) { iftrue: assume a <= b
if (a <= b) \result = a;
return a;
else goto endif;
return b;
} iffalse: assume a > b;

\result = b;
goto endif;

endif: assert \result <= a && \result <= b

How VCC generates VC's

Translating P to acyclic program P’: function calls

int main() {
assume \true
int \result, x, y, z;

int res;
int main() {
int x, y, z;
z = min(x, y);
_(assert z <= x)
return O; z = res;

assert \true

assume res <= X && res

assert z <= x
\result = 0

assert \true

How VCC generates VC's

Translating P to acyclic program P’: loops with invariants

unsigned div(unsigned x, d, *q, *r) {

assume d > 0 && q != r
void div(unsigned x, unsigned d,

A = int \result, lq, lr;
unsigned *q, unsigned *r)

_(requires d > 0 & q != 1) lq = 0; 1r = x;
-(urites q, 1) assert x == 1q * d + rq
_(ensures x == d * (xq) + *r && *r < d) {

unsigned fresh_lq, fresh_ lr;

unSIgned lq’ 1r; lq = fresh_lq; lr = fresh_lr;

1q = 0;
1r = x; assume x == 1q * d + 1r
Wh}le(l%‘ >= d) if ! (lr >= d) goto loopexit
_(invariant x == d * 1q + 1r) {
lg++; 1qg++;
1lr = 1r - d;
} lr = 1r - d;
*q = lq; assert x == 1q * d + rq
*r = 1r;
return; assume \false

loopexit: *q = 1lq; *r = 1lr;

assert x == (*q) * d + *r && *r < d

How VCC generates VC's

Rules for Weakest Preconditions

o Let WP(L, Q), where L is a statement label in program P and
Q is a post-condition on the state of P, denote the set of
states s such that if we execute P starting at label L in state
s, the execution never goes wrong, and if it terminates it does
so in a state satisfying Q.

@ Let M be the label of the statement following L. Below “goto
N, 0" means non-deterministically branch to label N or label
0. Then

o WP(L: assume A,Q)=A = WP, Q).

WP(L: assert A, Q)= AA WP(M, Q).

WP(L: x := e, Q) = WP, Q)[e/x].

WP(L: goto N, 0,Q) = WP(N, Q) A WP(0, Q).

® 6 ©

How VCC generates VC's

Generating VC'’s from an acyclic P’

@ Label each program statement “L: ...” in P’ by
WP(L, true):
o Begin from leaf nodes and proceed upwards to label a node if
its control successors have been labelled.
@ Output A = (g as the verification condition for P/, where
©o is the WP at the start node of P'.

@ Clearly, P’ has no execution that goes wrong iff ps is valid
(in other words it negation is unsatisfiable).

How VCC generates VC's

Generating VC's from an acyclic P’: min example

int min(int a, int b)
[ac=b==>(a<= a&&a< b)]

assume \true &[a>b==>(b<=a&&b<=b)]
[a<=b==>(a<=a&& a<=D)]

int \result; && [a>b==>(b<=a&&b<=b)]
[a<=b==>(a<=a&& a<=D)]

goto iftrue, iffalse; &&[a>b==>(b<=a&&b<=b)]

<=b==>(a<=a&&a<=b)
iftrue: assume a <= b
a<=a&&a<=b
\result = a;
\result <= a && \result <=b
goto endif;
a>b==>(b<=a&&b<=b)
iffalse: assume a > b;
b<=a&&b<=b
\result = b;
\result <= a && \result <=b
goto endif;
\result <= a && \result <=b
endif: assert \result <= a && \result <= b

How VCC generates VC's

Generating VC's from an acyclic P’: min example

int min(int a, int b)
[ac=b==>(a<= a&&a< b)]

assume \true &[a>b==>(b<=a&&b<=b)]
[a<=b==>(a<= a&&a< b)]

int \result; &la>b==>(b<=a&&b<=b)]
[a<=b==>(a<=a && a<=b)]

goto iftrue, iffalse; &&[a>b==>(b<=a&&b<=b)]

<=b==>(a<=a&&a<=b)
iftrue: assume a <= b
a<=a&&a<=b
\result = a;
\result <= a && \result <=b
goto endif;
a>b==>(b<=a&&b<=b)
iffalse: assume a > b;
b<=a&&b<=b
\result = b;
\result <= a && \result <=b
goto endif;
\result <= a && \result <=b
endif: assert \result <= a && \result <= b

Final formula ¢ni, generated (A is axioms known, like int a):

A= [a<b = (a<ana<b)Ala>b = (b<aAb<b)

	Overview of Verification
	Hoare logic
	How VCC generates VC's

