
Motivation Overview Abstract Data Types Refinement Event-B-style Refinement ADT Transition Systems

Functional Correctness via Refinement

Deepak D’Souza

Department of Computer Science and Automation
Indian Institute of Science, Bangalore.

08 February 2024

Motivation Overview Abstract Data Types Refinement Event-B-style Refinement ADT Transition Systems

Outline

1 Motivation

2 Overview

3 Abstract Data Types

4 Refinement

5 Event-B-style Refinement

6 ADT Transition Systems

Motivation Overview Abstract Data Types Refinement Event-B-style Refinement ADT Transition Systems

Motivation for Functional Correctness

ER models and model-checking stop short of addressing full
functional correctness

Refinement is a standard way of reasoning about functional
correctness.

Technique used is “deductive” in nature, rather than exploring
reachable states.

Motivation Overview Abstract Data Types Refinement Event-B-style Refinement ADT Transition Systems

Motivating Example: C implementation of a queue

1: int A[MAXLEN]; 11: void enq(int t) {

2: unsigned beg, 12: if (len == MAXLEN)

end, len; 13: assert(0);

3: // exception

4: void init() { 14: A[end] = t;

5: beg = 0; 15: if (end < MAXLEN-1)

6: end = 0; 16: end++;

7: len = 0; 17: else

8: } 18: end = 0;

9: 19: len++;

10: int deq() {...} 20: }

c ba

begbeg

a b c

end end

Motivation Overview Abstract Data Types Refinement Event-B-style Refinement ADT Transition Systems

Motivating example: Virtual Memory

In modern computer systems each process is compiled
assuming the whole memory is dedicated to it (even if another
process shares the processor system).

In reality the OS has to allocate memory blocks to each
process and re-map memory acceses from the processes, to
provide this virtual feel.

Is the implementation of virtual memory system correct?

Motivation Overview Abstract Data Types Refinement Event-B-style Refinement ADT Transition Systems

Motivating example: FreeRTOS

FreeRTOS Real-Time Operating System.

Motivation Overview Abstract Data Types Refinement Event-B-style Refinement ADT Transition Systems

Extracts from code: TaskDelay()

void TaskDelay(portTickType xTicksToDelay){

portTickType xTimeToWake;

signed portBASE_TYPE xAlreadyYielded = pdFALSE;

if(xTicksToDelay > (portTickType) 0){

vTaskSuspendAll();

/* Calculate the time to wake - this may overflow but this

is not a problem. */

xTimeToWake = xTickCount + xTicksToDelay;

/* We must remove ourselves from the ready list before adding

ourselves to the blocked list as the same list item is used

for both lists. */

vListRemove((xListItem *) &(pxCurrentTCB->xGenericListItem));

/* The list item will be inserted in wake time order. */

listSET_LIST_ITEM_VALUE(&(pxCurrentTCB->xGenericListItem),

xTimeToWake);

....

portYIELD_WITHIN_API();

}

Motivation Overview Abstract Data Types Refinement Event-B-style Refinement ADT Transition Systems

Abstract model of the scheduler in Z

Scheduler
maxPrio,maxNumVal , tickCount, topReadyPriority : N
tasks : PTASK
priority : TASK 7→ N
running task, idle : TASK
ready : seq (iseq TASK)
delayed : seq TASK × N
blocked : seq TASK
. . .

idle ∈ tasks ∧ idle ∈ rana/(ran ready)
running task ∈ tasks ∧ topReadyPriority ∈ dom ready
∀ i , j : dom delayed | (i < j) • delayed(i).2 ≤ delayed(j).2
∀ tcn : ran delayed | tcn.2 > tickCount
running task = head ready(topReadyPriority)
dom priority = tasks ∧ tickCount ≤ maxNumVal
∀ i , j : dom blocked | (i < j) =⇒ priority(blocked(i)) ≥ priority(blocked(j))
. . .

Motivation Overview Abstract Data Types Refinement Event-B-style Refinement ADT Transition Systems

Z model of TaskDelay operation

TaskDelay
∆Scheduler
delay? : N
delayedPrefix , delayedSuffix : seq TASK × N
running ! : TASK

delay > 0 ∧ delay ≤ maxNumVal ∧ running task 6= idle

tail ready(topReadyPriority) 6= 〈〉 ∧ delayed = delayedPrefix a delayedSuffix
∀ tcn : ran delayedPrefix | tcn.2 ≤ (tickCount + delay?)
delayedSuffix 6= 〈〉 =⇒ (head delayedSuffix).2 > (tickCount + delay?)
running task ′ = head tail ready(topReadyPriority)
ready ′ = ready ⊕ { (topReadyPriority 7→ tail ready(topReadyPriority)) }
delayed ′ = delayedPrefix a 〈(running task, (tickCount + delay?))〉 a delayedSuffix
. . .

Motivation Overview Abstract Data Types Refinement Event-B-style Refinement ADT Transition Systems

Overview of plan for functional correctness

Theory

ADTs

Z-style refinement

Equivalent Refinement
Condition

Transition system based ADTs

ADT transition system

Tools

Rodin

Models
Assertions
Proof

VCC

Floyd-Hoare style
annotations and proofs
Ghost language
constructs
Encoding Refinement
Conditions in VCC

Motivation Overview Abstract Data Types Refinement Event-B-style Refinement ADT Transition Systems

ADT Type

An ADT type is a finite set N of operation names.

Each operation name n in N has an associated input type In
and an output type On, each of which is simply a set of values.

We require that the set of operations N includes a designated
initialization operation called init.

Motivation Overview Abstract Data Types Refinement Event-B-style Refinement ADT Transition Systems

ADT definition

An ADT of type N is a structure of the form

A = (Q,U, {opn}n∈N)

where

Q is the set of states of the ADT,

U ∈ Q is an arbitrary state in Q used as an uninitialized state,

Each opn is a (possibly non-deterministic) realisation of the
operation n given by opn ⊆ (Q × In)× (Q × On)

Further, we require that the init operation depends only on its
argument and not on the originating state: thus
init(p, a) = init(q, a) for each p, q ∈ Q and a ∈ Iinit .

Motivation Overview Abstract Data Types Refinement Event-B-style Refinement ADT Transition Systems

ADT type example: Queue

QType

ADT type QType = {init, enq, deq} with

Iinit = {nil},
Oinit = {ok},
Ienq = B,
Oenq = {ok, fail},
Ideq = {nil},
Odeq = B ∪ {fail}.

Here B is the set of bit values {0, 1}, and nil is a “dummy”
argument for the operations init and deq.

Motivation Overview Abstract Data Types Refinement Event-B-style Refinement ADT Transition Systems

ADT example: Queue of length k of type QType

QADT k

QADT k = (Q,U, {opn}n∈QType) where

Q = {ε} ∪
⋃k

i=1 Bi

opinit is given by opinit(q, nil , ε, ok), ∀ q ∈ Q
openq is given by openq(q, a, q · a, ok), ∀ q ∈ Q, a ∈ B, |q |< k
opdeq is given by opdeq(b · q, nil , q, b), ∀ b ∈ B, b · q ∈ Q

Motivation Overview Abstract Data Types Refinement Event-B-style Refinement ADT Transition Systems

Language of sequences of operation calls of an ADT

An ADT A = (Q,U, {opn}n∈N) of type N induces a
(deterministic) transition system SA = (Q,ΣN ,U,∆) where

ΣN = {(n, a, b) | n ∈ N, a ∈ In, b ∈ On} is the set of
operation call labels corresponding to the ADT type N. The
action label (n, a, b) represents a call to operation n with input
a that returns the value b.
∆ is given by

(p, (n, a, b), q) ∈ ∆ iff opn(p, a, q, b).

We define the language of initialised sequences of operation
calls of A, denoted Linit(A), to be L(SA) ∩ ((init,−,−) ·Σ∗N).

Motivation Overview Abstract Data Types Refinement Event-B-style Refinement ADT Transition Systems

Example: Transition system induced by QADT 2

TS induced by QADT 2

U

(enq, 0, ok)

(init, nil, ok)

(enq, 1, ok)

(enq, 0, ok)

00

(enq, 1, ok)

11

(enq, 1, ok)

(deq, nil, 1)(deq, nil, 0)

0 1
(deq, nil, 0) (deq, nil, 1)

ε

01 10

(enq, 0, ok)

(deq, nil, 0)
(deq, nil, 1)

Motivation Overview Abstract Data Types Refinement Event-B-style Refinement ADT Transition Systems

Idea behind refinement definition we will use

A client program interacts with an
ADT via a sequence of calls. If the
ADT is called with an operation that
is undefined in its current state, then
it is assumed to “break” and return
any possible value (including ⊥);
thereafter any sequence of calls/ret
vals is possible.

Linit(A+) is the possible sequences a
client of A can see.

B � A iff whatever the client can see
with B, it could also have seen with A.

Client

Program
ADT

P

A

enq, 0, ok

This notion of refinement is from Hoare, He, Sanders et al, Data
Refinement Refined, Oxford Univ Report, 1985.

Motivation Overview Abstract Data Types Refinement Event-B-style Refinement ADT Transition Systems

Totalized version of a relation16.2 / Relations and nondeterminism 237

a

b

c

d

a

b

c

d

Figure 16.1 Totalisation

The expression
•
ρ can be pronounced ‘ρ-dot’.

Example 16.4 If we define a free type L by

L ::= a | b | c | d

and a relation ρ by

ρ == {a � a, a � b,b � b,b � c}

then the totalised version of ρ is given by

•
ρ == {a � a, a � b,b � b,b � c,

c � ⊥, c � a, c � b, c � c, c � d,
d � ⊥,d � a,d � b,d � c,d � d,
⊥� ⊥,⊥� a,⊥� b,⊥� c,⊥� d}

This extension is shown in Figure 16.1. �

Totalising relations in this way captures the view of operations that we have
described in this book: an operation ρ behaves as specified when used within
its precondition—its domain; outside its precondition, anything may happen.
The role of ⊥ is to ensure that undefinedness is propagated through relational
composition. To see this, suppose that κ0 denotes the constant function that
maps every number to 0:

κ0 == { z : Z • z � 0 }

R = {(a, a), (a, b), (b, b), (b, c)}.
R+ = {(a, a), (a, b), (b, b), (b, c)} ∪ {(c, a), (c, b), (c, c), (c, d), (c,⊥),

(d , a), (d , b), (d , c), (d , d), (d ,⊥), (⊥, a), (⊥, b), (⊥, c), (⊥, d), (⊥,⊥)}

R+ adds a new element ⊥ to domain and co-domain, and makes R total on all
elements outside the domain of R.

Relation S refines relation R iff S+ ⊆ R+. Thus S is “more defined” than R, and may

resolve some non-determinism in R.

Motivation Overview Abstract Data Types Refinement Event-B-style Refinement ADT Transition Systems

Totalized version of an ADT A
Given an ADT A = (Q,U, {opn}n∈N) over a data type N, define the
totalized version of A, to be an ADT A+ of type N+:

A+ = (Q ∪ {E},U, {op+
n }n∈N), where

N+ has input type In and output type O+
n = On ∪ {⊥}, where ⊥ is

a new output value.

E is a new “error” state

op+
n is the completed version of operation opn, obtained as follows:

If (q, a) 6∈ pre(opn), then add (q, a,E , b′) to op+
n for each

b′ ∈ O+
n .

Add (E , a,E , b′) ∈ op+
n for each a ∈ In and b′ ∈ O+

n .

Here pre(opn) is the set of state-input pairs on which opn is defined. Thus
(p, a) ∈ pre(opn) iff ∃ q, b such that opn(p, a, q, b).
If opn is invoked outside this precondition, the data-structure is assumed to “break”
and allow any possible interaction sequence after that.

A+ represents the interaction sequences that a client of A may encounter while using

A as a data-structure.

Motivation Overview Abstract Data Types Refinement Event-B-style Refinement ADT Transition Systems

Example: Transition system induced by QADT+
2

TS induced by QADT +
2

U

(enq, 0, ok)

(init, nil, ok)

(enq, 1, ok)(deq, nil,−)
E

00 01 1110(enq, 0,−) (enq, 0,−)

(enq, 0, ok)(enq, 1, ok)

(deq, nil, 1)(deq, nil, 0)

0 1

(enq, 1,−) (enq, 1,−)

(deq, nil, 0)

ε

(enq, 1, ok)(enq, 0, ok)
(deq, nil, 1)

Motivation Overview Abstract Data Types Refinement Event-B-style Refinement ADT Transition Systems

Refinement between ADTs

Let A and B be ADTs of type N. We say B refines A, written

B � A,

iff

Linit(B+) ⊆ Linit(A+).

Examples of refinement:

QADT 3 refines QADT 2.

Let QADT ′2 be the version of QADT 2 where we check for
emptiness/fullness of queue and return fail instead of being
undefined. Then QADT ′2 refines QADT 2.

Motivation Overview Abstract Data Types Refinement Event-B-style Refinement ADT Transition Systems

Exercise

Exercise

Is it true that

QADT 2 refines QADT 3?

QADT 2 refines QADT ′2?

Motivation Overview Abstract Data Types Refinement Event-B-style Refinement ADT Transition Systems

Transitivity of refinement

It follows immediately from its definition that refinement is
transitive:

Proposition

Let A, B, and C be ADT’s of type N, such that C � B, and
B � A. Then C � A.

Motivation Overview Abstract Data Types Refinement Event-B-style Refinement ADT Transition Systems

Refinement Condition (RC)

Let A = (Q,U, {opn}n∈N) and A′ = (Q ′,U ′, {opn}n∈N) be ADTs
of type N. We give a sufficient condition for A′ to refine A, based
on an “abstraction relation” that relates states of A′ and A.
We say A and A′ satisfy condition (RC) if there exists a relation
ρ ⊆ Q ′ × Q such that:

(init) Let a ∈ Iinit and let (q′a, b) be a resultant state and output
after an init(a) operation in A′. Then either a 6∈ pre(initA),
or there exists qa such that (qa, b) ∈ initA′(a), with ρ(q′a, qa).

(g-weak) For each n ∈ N, a ∈ In, b ∈ On, p ∈ Q and p′ ∈ Q ′, with
(p′, p) ∈ ρ, if (p, a) ∈ pre(opn) in A, then (p′, a) ∈ pre(opn)
in A′. (guard weakening).

(sim) For each n ∈ N, a ∈ In, b ∈ On, p ∈ Q and p′ ∈ Q ′, with

(p′, p) ∈ ρ; whenever p′
(n,a,b)−−−−→ q′ and (p, a) ∈ pre(opn) in A,

then there exists q ∈ Q such that p
(n,a,b)−−−−→ q with (q′, q) ∈ ρ.

Motivation Overview Abstract Data Types Refinement Event-B-style Refinement ADT Transition Systems

Illustrating condition (RC)

(RC-init):
=⇒

(init, a, b)

(init, a, b)

ρ

(init, a, b)

q′
a

q′
a

qa

(RC-g-weak):
=⇒

p

p′

(n, a, b)
p

p′

(n, a, b)

ρ ρ

(n, a, b′)

(RC-sim-2):

=⇒

p

p′

p

p′

q
(n, a, b)

q′

ρ ρ ρ

(n, a, b)(n, a, b)

q′

(n, a, b′)

Motivation Overview Abstract Data Types Refinement Event-B-style Refinement ADT Transition Systems

Exercise

Exercise

Find an abstraction relation ρ for which QADT 2 and QADT 3

satisfy condition (RC).

Motivation Overview Abstract Data Types Refinement Event-B-style Refinement ADT Transition Systems

Condition (RC) is sufficient for refinement

If A and C are ADTs of the same type, and ρ is an abstraction
relation from C to A satisfying condition (RC), then C refines A.

Abstract

Concrete

a0 a1 a2 a3

c0 c1 c2 c3

n, a, b n′, a′, b′ n′′, a′′, b′′

ρ

init(a)

init(a) n, a, b n′, a′, b′ n′′, a′′, b′′

Motivation Overview Abstract Data Types Refinement Event-B-style Refinement ADT Transition Systems

Example showing that RC conditions are not necessary for
refinement

0/0

0/1

0/1

0/1

0/0

0/1

0/1

x

w

vu
C

A
p

q′

q r

s

C refines A. In fact both A and C refine eachother, since
Linit(A+) = Linit(C+).

However, there is no abstraction relation ρ from C to A that
satisfies the conditions (RC).

Motivation Overview Abstract Data Types Refinement Event-B-style Refinement ADT Transition Systems

Event-B style refinement

Let A and B be ADTs of type N. We say B refines A iff

Linit(B) ⊆ Linit(A).

Examples of refinement:

QADT 2 refines QADT 3.

Let QADT ′2 be the version of QADT 2 where we check for
emptiness/fullness of queue and return fail instead of being
undefined. Then QADT 2 refines QADT ′2.

Motivation Overview Abstract Data Types Refinement Event-B-style Refinement ADT Transition Systems

Refinement conditions for Event-B refinement

c1

a1init(a)

init(a)

Init: Initial
states must
be related.

Guard strengthening:

(n, a,−)

(n, a,−)

c0 c1

a0 a1

If a concrete event is enabled in a
concrete state then the
corresponding abstract event is
also enabled in the abstract
representation of the state.

Simulation:

(n, a, b)

c0 c1

a0 a1

(n, a, b)

If a concrete event e′ takes
us from c0 to c1, then
there should be a transition
from the abstract
representation of c0 to the
abstract representation of
c1, on the corresponding
abstract event.

Motivation Overview Abstract Data Types Refinement Event-B-style Refinement ADT Transition Systems

Refinement conditions imply simulation property

c1

a1init(a)

init(a) (n, a,−)

(n, a,−)

c0 c1

a0 a1

(n, a, b)

c0 c1

a0 a1

(n, a, b)

Implies that the abstract can simulate the concrete:

Concrete

Abstract a0 a1 a2 a3

c0 c1 c2 c3

op1 op2 op1

op1 op2 op1

init

init

Motivation Overview Abstract Data Types Refinement Event-B-style Refinement ADT Transition Systems

ADT Transition System

An ADT transition system of type N is of the form

S = (Qc ,Ql ,Σl ,U, {δn}n∈N)

where

Qc is the set of “complete” states of the ADT (where an ADT
operation is complete) and Ql is the set of “incomplete” or “local”
states of the ADT. The set of states Q of the ADT TS is the
disjoint union of Qc and Ql .

Σl is a finite set of internal or local action labels.

Let Γi
N = {in(a) | n ∈ N and a ∈ In} be the set of input

labels corresponding to the ADT of type N. The action in(a)
represents reading an argument with value a.
Let Γo

N = {ret(b) | n ∈ N and b ∈ On} be the set of return
labels corresponding to the ADT of type N. The action ret(b)
represents a return of the value b.
Let Σ be the disjoint union of Σl , Γi

N and Γo
N .

Motivation Overview Abstract Data Types Refinement Event-B-style Refinement ADT Transition Systems

ADT Transition System, contd.

For each n ∈ N, δn is a transition relation of the form:
δn ⊆ Q × Σ× Q, that implements the operation n. It must satisfy
the following constraints:

it is complete for the input actions in Γi
N .

Each transition labelled by an input action in Γi
N begins from a

Qc state and each transition labelled by a return action in Γo
N

ends in a Qc state. All other transitions begin and end in a Ql

state.

Motivation Overview Abstract Data Types Refinement Event-B-style Refinement ADT Transition Systems

Example: ADT Transition System induced by queue.c

Part of the ADT TS induced by queue.c, showing init and enq

opns

in(0) in(1)

(0, 〈〉, 0, 0, 0, u)

(8, 〈〉, u, u, u)

(9, 〈〉, 0, u, u)

(10, 〈〉, 0, 0, u)

in(nil)

q->begin = 0

q->end = 0

(13, 〈〉, 0, 0, 0, 0)

q->len == MAXLEN

q->A[q->end] = t

q->end<MAXLEN-1

(0, 〈〉, u, u, u)

ret(ok)

q->len = 0

(10, 〈〉, 0, 0, 0)

(15, 〈〉, 0, 0, 0, 0)

(16, 〈0〉, 0, 0, 0, 0)

(17, 〈0〉, 0, 0, 0, 0)

(20, 〈0〉, 0, 1, 0, 0)

q->end++

(13, 〈〉, 0, 0, 0, 1)

(15, 〈〉, 0, 0, 0, 1)

(16, 〈1〉, 0, 0, 0, 1)

(17, 〈1〉, 0, 0, 0, 1)

(20, 〈1〉, 0, 1, 0, 1)

(0, 〈1〉, 0, 1, 1, u) (0, 〈0〉, 0, 1, 1, u)

q->len++

(21, 〈0〉, 0, 1, 1, 0) (21, 〈1〉, 0, 1, 1, 1)

Qc :

Motivation Overview Abstract Data Types Refinement Event-B-style Refinement ADT Transition Systems

ADT induced by an ADT TS

An ADT transition system like S above induces an ADT AS of
type N given by AS = (Qc ,U, {opn}n∈N) where for each n ∈ N,
p ∈ Qc , and a ∈ In, we have opn(p, a, q, b) iff there exists a path of

the form p
in(a)−−−→ r1

l1−→ · · · lk−1−−→ rk
ret(b)−−−→ q in S.

We say that an ADT TS S ′ refines another ADT TS S iff AS′
refines AS .

Motivation Overview Abstract Data Types Refinement Event-B-style Refinement ADT Transition Systems

Phrasing refinement conditions in VCC

typedef struct AC {

abstract state

invariants on abs state

concrete state

invariants on conc state

gluing invariant on joint abs-conc state

} AC;

operation n(AC *p, arg a)

_(requires \wrapped(p)) // glued joint state

_(requires G) // precondition G of abs op

_(ensures \wrapped(p)) // restores glued state

_(decreases 0) // conc op terminates whenever G is true

{

_(unwrap p)

// abs op body

// conc op body

_(wrap p)

}

init(*p)

_(ensures \wrapped(p)) {...}

	Motivation
	Overview
	Abstract Data Types
	Refinement
	Event-B-style Refinement
	ADT Transition Systems

