Motivation 0000000		Refinement 000000000000	Event-B-style Refinement	ADT Transition Systems

Functional Correctness via Refinement

Deepak D'Souza

Department of Computer Science and Automation Indian Institute of Science, Bangalore.

08 February 2024

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Motivation	Overview	Abstract Data Types	Refinement	Event-B-style Refinement	ADT Transition Systems
0000000	0	000000	000000000000	000	
Outlin	е				

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- 3 Abstract Data Types
- 4 Refinement
- 5 Event-B-style Refinement
- 6 ADT Transition Systems

Motivation for Functional Correctness

- ER models and model-checking stop short of addressing full functional correctness
- Refinement is a standard way of reasoning about functional correctness.
- Technique used is "deductive" in nature, rather than exploring reachable states.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Motivating Example: C implementation of a queue

1:	<pre>int A[MAXLEN];</pre>	11:	<pre>void enq(int t) {</pre>
2:	unsigned beg,	12:	if (len == MAXLEN)
	end, len;	13:	assert(0);
3:			<pre>// exception</pre>
4:	<pre>void init() {</pre>	14:	A[end] = t;
5:	beg = $0;$	15:	if (end < MAXLEN-1)
6:	end = $0;$	16:	end++;
7:	len = 0;	17:	else
8:	}	18:	end = $0;$
9:		19:	len++;
10:	<pre>int deq() {}</pre>	20:	}

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Motivating example: Virtual Memory

- In modern computer systems each process is compiled assuming the whole memory is dedicated to it (even if another process shares the processor system).
- In reality the OS has to allocate memory blocks to each process and re-map memory access from the processes, to provide this virtual feel.
- Is the implementation of virtual memory system correct?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Event-B-style Refinement

ADT Transition Systems

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Motivating example: FreeRTOS

FreeRTOS Real-Time Operating System.

Extracts from code: TaskDelay()

```
void TaskDelay(portTickType xTicksToDelay){
    portTickType xTimeToWake;
    signed portBASE_TYPE xAlreadyYielded = pdFALSE;
    if( xTicksToDelay > (portTickType) 0){
        vTaskSuspendAll();
    /* Calculate the time to wake - this may overflow but this
       is not a problem. */
   xTimeToWake = xTickCount + xTicksToDelav:
    /* We must remove ourselves from the ready list before adding
       ourselves to the blocked list as the same list item is used
       for both lists. */
   vListRemove((xListItem *) &(pxCurrentTCB->xGenericListItem));
    /* The list item will be inserted in wake time order. */
    listSET_LIST_ITEM_VALUE(&(pxCurrentTCB->xGenericListItem),
                            xTimeToWake):
    . . . .
   portYIELD_WITHIN_API();
```

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

```
}
```

Abstract model of the scheduler in Z

```
Scheduler
maxPrio, maxNumVal, tickCount, topReadyPriority : \mathbb{N}
tasks : P TASK
priority : TASK \rightarrow \mathbb{N}
running_task, idle : TASK
ready : seq (iseq TASK)
delayed : seq TASK \times \mathbb{N}
blocked : seq TASK
. . .
idle \in tasks \land idle \in ran \land /(ran ready)
running\_task \in tasks \land topReadyPriority \in dom ready
\forall i, j : \text{dom } delayed \mid (i < j) \bullet delayed(i).2 < delayed(j).2
\forall tcn : ran delayed | tcn.2 > tickCount
running_task = head ready(topReadyPriority)
dom priority = tasks \land tickCount < maxNumVal
\forall i, j : \text{dom blocked} \mid (i < j) \implies \text{priority}(\text{blocked}(i)) > \text{priority}(\text{blocked}(j))
. . .
```

Motivation
0000000Overview
0Abstract Data Types
000000Refinement
000000000000Event-B-style Refinement
000ADT Transition Systems
00000

Z model of TaskDelay operation

```
TaskDelay.
\DeltaScheduler
delay?:\mathbb{N}
delayedPrefix, delayedSuffix : seg TASK \times \mathbb{N}
running! : TASK
delay > 0 \land delay < maxNumVal \land running_task \neq idle
tail ready(topReadyPriority) \neq \langle \rangle \wedge delayed = delayedPrefix \cap delayedSuffix
\forall tcn : ran delayedPrefix | tcn.2 \leq (tickCount + delay?)
delayedSuffix \neq \langle \rangle \implies (head \ delayedSuffix).2 > (tickCount + delay?)
running_task' = head tail ready(topReadyPriority)
ready' = ready \oplus \{ (topReadyPriority \mapsto tail ready(topReadyPriority)) \}
delayed' = delayedPrefix \land \langle (running_task, (tickCount + delay?)) \rangle \land delayedSuffix
. . .
```

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Refinement 000000000000 Event-B-style Refinement

ADT Transition Systems

Overview of plan for functional correctness

Theory

ADTs

Overview

- Z-style refinement
 - Equivalent Refinement Condition
- Transition system based ADTs
 - ADT transition system

Tools

- Rodin
 - Models
 - Assertions
 - Proof
- VCC
 - Floyd-Hoare style annotations and proofs
 - Ghost language constructs
 - Encoding Refinement Conditions in VCC

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

	Overview 0	Abstract Data Types •00000	Refinement 000000000000	Event-B-style Refinement 000	ADT Transition Systems
ADT	Туре				

An ADT type is a finite set N of operation names.

- Each operation name *n* in *N* has an associated *input type I_n* and an *output type O_n*, each of which is simply a set of values.
- We require that the set of operations *N* includes a designated *initialization operation* called *init*.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

	Overview O		Refinement 0000000000000	Event-B-style Refinement	ADT Transition Systems
ADT	definit	ion			

An ADT of type N is a structure of the form

$$\mathcal{A} = (Q, U, \{op_n\}_{n \in \mathbb{N}})$$

where

- Q is the set of states of the ADT,
- $U \in Q$ is an arbitrary state in Q used as an *uninitialized* state,
- Each op_n is a (possibly non-deterministic) realisation of the operation n given by op_n ⊆ (Q × I_n) × (Q × O_n)
- Further, we require that the *init* operation depends only on its argument and not on the originating state: thus *init*(*p*, *a*) = *init*(*q*, *a*) for each *p*, *q* ∈ *Q* and *a* ∈ *I_{init}*.

Event-B-style Refinement

ADT Transition Systems

ADT type example: Queue

QType

ADT type $QType = \{init, enq, deq\}$ with

$$\begin{array}{rcl} I_{init} &=& \{nil\},\\ O_{init} &=& \{ok\},\\ I_{enq} &=& \mathbb{B},\\ O_{enq} &=& \{ok, fail\},\\ I_{deq} &=& \{nil\},\\ O_{deq} &=& \mathbb{B} \cup \{fail\} \end{array}$$

Here \mathbb{B} is the set of bit values $\{0, 1\}$, and *nil* is a "dummy" argument for the operations *init* and *deq*.

Motivation 0000000 Abstract Data Types 000●00 Refinement 000000000000 Event-B-style Refinement

ADT Transition Systems

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

ADT example: Queue of length k of type QType

$QADT_k$

Overview

$QADT_k = (Q, U, \{op_n\}_{n \in QType})$ where

Motivation	Overview	Abstract Data Types	Refinement	Event-B-style Refinement	ADT Transition Systems
		000000			

Language of sequences of operation calls of an ADT

- An ADT A = (Q, U, {op_n}_{n∈N}) of type N induces a (deterministic) transition system S_A = (Q, Σ_N, U, Δ) where
 - Σ_N = {(n, a, b) | n ∈ N, a ∈ I_n, b ∈ O_n} is the set of operation call labels corresponding to the ADT type N. The action label (n, a, b) represents a call to operation n with input a that returns the value b.
 - $\bullet \ \Delta$ is given by

 $(p, (n, a, b), q) \in \Delta$ iff $op_n(p, a, q, b)$.

 We define the language of *initialised sequences of operation* calls of A, denoted L_{init}(A), to be L(S_A) ∩ ((init, -, -) · Σ_N^{*}).

Motivation 0000000 Abstract Data Types 00000●

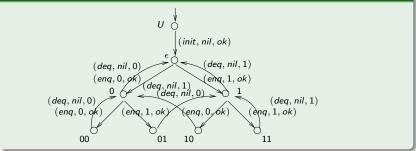
Refinement 000000000000 Event-B-style Refinement

ADT Transition Systems

Example: Transition system induced by $QADT_2$

TS induced by $QADT_2$

Overview

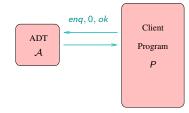


▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへ⊙

Idea behind refinement definition we will use

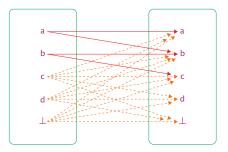
- A client program interacts with an ADT via a sequence of calls. If the ADT is called with an operation that is undefined in its current state, then it is assumed to "break" and return any possible value (including ⊥); thereafter any sequence of calls/ret vals is possible.
- $L_{init}(\mathcal{A}^+)$ is the possible sequences a client of \mathcal{A} can see.
- B ≤ A iff whatever the client can see with B, it could also have seen with A.

This notion of refinement is from Hoare, He, Sanders et al, *Data Refinement Refined*, Oxford Univ Report, 1985.



・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ つ へ の

Totalized version of a relation



$$\begin{array}{lll} R & = & \{(a,a),(a,b),(b,b),(b,c)\}.\\ R^+ & = & \{(a,a),(a,b),(b,b),(b,c)\} \cup \{(c,a),(c,b),(c,c),(c,d),(c,\bot),\\ & & (d,a),(d,b),(d,c),(d,d),(d,\bot),(\bot,a),(\bot,b),(\bot,c),(\bot,d),(\bot,\bot)\} \end{array}$$

 R^+ adds a new element \perp to domain and co-domain, and makes R total on all elements outside the domain of R.

Relation S refines relation R iff $S^+ \subseteq R^+$. Thus S is "more defined" than R, and may resolve some non-determinism in R.

 Motivation
 Overview
 Abstract Data Types
 Refinement
 Event-B-style Refinement
 ADT Transition Systems

 0000000
 0
 000000
 000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000

Totalized version of an ADT \mathcal{A}

Given an ADT $\mathcal{A} = (Q, U, \{op_n\}_{n \in N})$ over a data type N, define the totalized version of \mathcal{A} , to be an ADT \mathcal{A}^+ of type N^+ :

$$\mathcal{A}^+ = (\mathcal{Q} \cup \{\mathcal{E}\}, \mathcal{U}, \{op_n^+\}_{n \in \mathbb{N}}), \text{ where }$$

- N^+ has input type I_n and output type $O_n^+ = O_n \cup \{\bot\}$, where \bot is a new output value.
- *E* is a new "error" state
- op_n^+ is the completed version of operation op_n , obtained as follows:
 - If $(q, a) \notin pre(op_n)$, then add (q, a, E, b') to op_n^+ for each $b' \in O_n^+$.
 - Add $(E, a, E, b') \in op_n^+$ for each $a \in I_n$ and $b' \in O_n^+$.

Here $pre(op_n)$ is the set of state-input pairs on which op_n is defined. Thus $(p, a) \in pre(op_n)$ iff $\exists q, b$ such that $op_n(p, a, q, b)$.

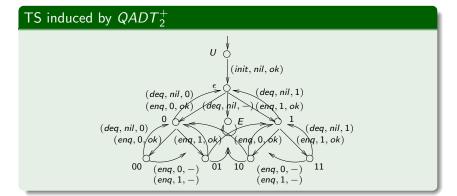
If op_n is invoked outside this precondition, the data-structure is assumed to "break" and allow any possible interaction sequence after that.

 \mathcal{A}^+ represents the interaction sequences that a client of \mathcal{A} may encounter while using \mathcal{A} as a data-structure. Motivation 0000000 Overview

Abstract Data Types 000000 Refinement 00000000000 Event-B-style Refinement

ADT Transition Systems

Example: Transition system induced by $QADT_2^+$



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Motivation 0000000	Abstract Data Types 000000	Refinement 0000●0000000	Event-B-style Refinement 000	ADT Transition Systems

Refinement between ADTs

Let \mathcal{A} and \mathcal{B} be ADTs of type N. We say \mathcal{B} refines \mathcal{A} , written

 $\mathcal{B} \preceq \mathcal{A},$

iff

 $L_{init}(\mathcal{B}^+) \subseteq L_{init}(\mathcal{A}^+).$

Examples of refinement:

- QADT₃ refines QADT₂.
- Let QADT'₂ be the version of QADT₂ where we check for emptiness/fullness of queue and return *fail* instead of being undefined. Then QADT'₂ refines QADT₂.

- ロ ト - 4 回 ト - 4 □

	Overview 0	Abstract Data Types 000000	Refinement 00000●000000	Event-B-style Refinement	ADT Transition Systems
Exerci	se				

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Exercise

Is it true that

- QADT₂ refines QADT₃?
- QADT₂ refines QADT₂?

Motivation 0000000	Abstract Data Types 000000	Refinement 000000●00000	Event-B-style Refinement	ADT Transition Systems

Transitivity of refinement

It follows immediately from its definition that refinement is transitive:

Proposition

Let \mathcal{A} , \mathcal{B} , and \mathcal{C} be ADT's of type N, such that $\mathcal{C} \preceq \mathcal{B}$, and $\mathcal{B} \preceq \mathcal{A}$. Then $\mathcal{C} \preceq \mathcal{A}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

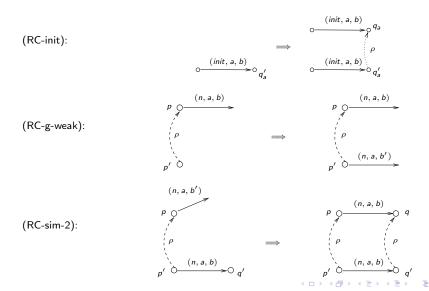
Refinement Condition (RC)

Let $\mathcal{A} = (Q, U, \{op_n\}_{n \in N})$ and $\mathcal{A}' = (Q', U', \{op_n\}_{n \in N})$ be ADTs of type N. We give a *sufficient* condition for \mathcal{A}' to refine \mathcal{A} , based on an "abstraction relation" that relates states of \mathcal{A}' and \mathcal{A} . We say \mathcal{A} and \mathcal{A}' satisfy condition (RC) if there exists a relation $\rho \subseteq Q' \times Q$ such that:

- (init) Let $a \in I_{init}$ and let (q'_a, b) be a resultant state and output after an init(a) operation in \mathcal{A}' . Then either $a \notin pre(init_{\mathcal{A}})$, or there exists q_a such that $(q_a, b) \in init_{\mathcal{A}'}(a)$, with $\rho(q'_a, q_a)$.
- (g-weak) For each $n \in N$, $a \in I_n$, $b \in O_n$, $p \in Q$ and $p' \in Q'$, with $(p', p) \in \rho$, if $(p, a) \in pre(op_n)$ in \mathcal{A} , then $(p', a) \in pre(op_n)$ in \mathcal{A}' . (guard weakening).

(sim) For each $n \in N$, $a \in I_n$, $b \in O_n$, $p \in Q$ and $p' \in Q'$, with $(p', p) \in \rho$; whenever $p' \xrightarrow{(n,a,b)} q'$ and $(p, a) \in pre(op_n)$ in \mathcal{A} , then there exists $q \in Q$ such that $p \xrightarrow{(n,a,b)} q$ with $(q',q) \in \rho$.

Illustrating condition (RC)



Motivation	Overview	Abstract Data Types	Refinement	Event-B-style Refinement	ADT Transition Systems
0000000	0	000000	000000000●00	000	
Exerci	se				

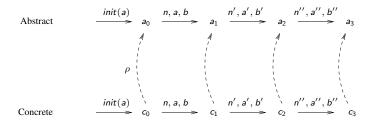
Exercise

Find an abstraction relation ρ for which $QADT_2$ and $QADT_3$ satisfy condition (RC).

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

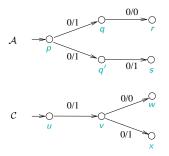
Condition (RC) is sufficient for refinement

If \mathcal{A} and \mathcal{C} are ADTs of the same type, and ρ is an abstraction relation from \mathcal{C} to \mathcal{A} satisfying condition (RC), then \mathcal{C} refines \mathcal{A} .



・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Example showing that RC conditions are not necessary for refinement



- C refines A. In fact both A and C refine eachother, since $L_{init}(A^+) = L_{init}(C^+)$.
- However, there is no abstraction relation ρ from C to A that satisfies the conditions (RC).

	Abstract Data Types 000000	Event-B-style Refinement ●00	ADT Transition Systems
_			

Event-B style refinement

Let \mathcal{A} and \mathcal{B} be ADTs of type N. We say \mathcal{B} refines \mathcal{A} iff

 $L_{init}(\mathcal{B}) \subseteq L_{init}(\mathcal{A}).$

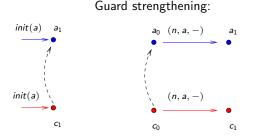
Examples of refinement:

- QADT₂ refines QADT₃.
- Let $QADT'_2$ be the version of $QADT_2$ where we check for emptiness/fullness of queue and return *fail* instead of being undefined. Then $QADT_2$ refines $QADT'_2$.

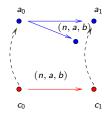
 Motivation
 Overview
 Abstract Data Types
 Refinement
 Event-B-style Refinement
 ADT Transition Systems

 000000
 0
 000000
 0
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 000000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 000000
 00000
 00000

Refinement conditions for Event-B refinement



Simulation:

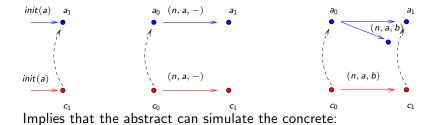


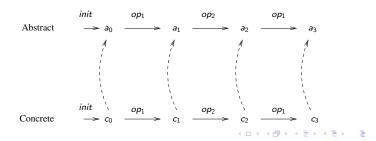
Init: Initial states must be related.

If a concrete event is enabled in a concrete state then the corresponding abstract event is also enabled in the abstract representation of the state. If a concrete event e' takes us from c_0 to c_1 , then there should be a transition from the abstract representation of c_0 to the abstract representation of c_1 , on the corresponding abstract event.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

Refinement conditions imply simulation property





Motivation 0000000	Abstract Data Types 000000	Refinement 000000000000	Event-B-style Refinement 000	ADT Transition Systems

ADT Transition System

An ADT transition system of type N is of the form

 $\mathcal{S} = (Q_c, Q_I, \Sigma_I, U, \{\delta_n\}_{n \in \mathbb{N}})$

where

• Q_c is the set of "complete" states of the ADT (where an ADT operation is complete) and Q_l is the set of "incomplete" or "local" states of the ADT. The set of states Q of the ADT TS is the disjoint union of Q_c and Q_l .

• Σ_I is a finite set of *internal* or *local* action labels.

- Let $\Gamma_N^i = \{in(a) \mid n \in N \text{ and } a \in I_n\}$ be the set of *input* labels corresponding to the ADT of type N. The action in(a) represents reading an argument with value a.
- Let $\Gamma_N^o = \{ret(b) \mid n \in N \text{ and } b \in O_n\}$ be the set of *return* labels corresponding to the ADT of type *N*. The action ret(b) represents a return of the value *b*.
- Let Σ be the disjoint union of Σ_I , Γ_N^i and Γ_N^o .

ADT Transition System, contd.

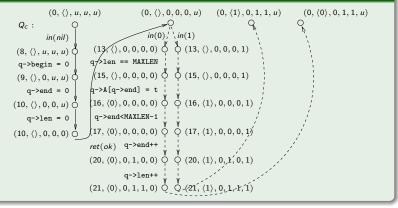
- For each n ∈ N, δ_n is a transition relation of the form:
 δ_n ⊆ Q × Σ × Q, that implements the operation n. It must satisfy the following constraints:
 - it is complete for the input actions in Γ_N^i .
 - Each transition labelled by an input action in Γ_N^i begins from a Q_c state and each transition labelled by a return action in Γ_N^o ends in a Q_c state. All other transitions begin and end in a Q_l state.

Event-B-style Refinement

ADT Transition Systems

Example: ADT Transition System induced by queue.c

Part of the ADT TS induced by queue.c, showing init and enq opns



▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

ADT induced by an ADT TS

An ADT transition system like S above induces an ADT A_S of type N given by $A_S = (Q_c, U, \{op_n\}_{n \in N})$ where for each $n \in N$, $p \in Q_c$, and $a \in I_n$, we have $op_n(p, a, q, b)$ iff there exists a path of the form $p \xrightarrow{in(a)} r_1 \xrightarrow{l_1} \cdots \xrightarrow{l_{k-1}} r_k \xrightarrow{ret(b)} q$ in S.

We say that an ADT TS \mathcal{S}' refines another ADT TS \mathcal{S} iff $\mathcal{A}_{\mathcal{S}'}$ refines $\mathcal{A}_{\mathcal{S}}.$

 Motivation
 Overview
 Abstract Data Types
 Refinement
 Event-B-style Refinement
 ADT Transition Systems

 0000000
 0
 000000
 000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000

Phrasing refinement conditions in VCC

```
typedef struct AC {
  abstract state
  invariants on abs state
  concrete state
  invariants on conc state
  gluing invariant on joint abs-conc state
} AC:
operation n(AC *p, arg a)
_(requires \wrapped(p)) // glued joint state
_(requires G) // precondition G of abs op
_(ensures \wrapped(p)) // restores glued state
_(decreases 0) // conc op terminates whenever G is true
Ł
  _(unwrap p)
  // abs op body
  // conc op body
  _(wrap p)
}
init(*p)
_(ensures \wrapped(p)) {...}
                                                      <□ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ < つ < ○</p>
```