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0. Introduction

A data type is generally defined in & manner similar to an algebra as a triple (5,5..0P),
where 5 is the set of vaslues of the data, 5, is a set (ususlly a singleton) of initial
values of the data, and 0P is a set of named operations. The operations are ususlly
parametriesed by arguments and results drawn from certain other spsces of ohbservable
values. 0One data type [ is said to be a refinement of s data type A if under all
circumstances and {for all purposes, the data type C can be validly used in place of fi.
The practical benefit of this arises when A is a simple, "abstraci” dats type. such as a
partial mapping, wWhich can be specified, understood and used in an applications program
but cannot be directly implemented on a computer; whereas C is & complicated, "concrete”
data structure. involving a collection of arrays and bitmape and fileblocks. which can be
economically stored and updated on the equipment available. ke need to show, using
appropriate proof methods, that it is valid to use C in place of A:; this is known as
"data refinement”. "

The earliest suggestion for a method of data refinement was given in [Hoare, 19721. The
method was based upon

(1) an invariant predicate. which must be proved true after initialistation and, on the
assumption that it is true beforehand, true after every operation on the structure.

(2) an abstraction function which maps the current value of the concrete data type
onto the abstract value which it stands for. Each operstion must be proved to update
the concrete data type in @ manner corresponding to the desired operation on the
abstract structure. This obligation is sometimes expressed as a commuting diagram

aop

Y

cep

where A is the abstraction function
aop is the desired operation on the sbstract data
cop is the corresponding operation on the concrete data.

This method was adopted and developed in the YDM technique of dats refinement [Jones.
19801. In VDM, cerizin additional properties of a data type are considered desirable

(1) The abstract data type should be fully abstiract in the sense of Milner. This
means that any two distinct values of the sbstraect dsts type can be distinguished by
some sequence of operations on the data. In the VDM literature this is called "freedom
from implementation bias”.

(2) The concrete data type should be adequate to represent every value of the
abstract data type. :




In this paper we attempt simultanecusly to generalise and simplify the notion of data
refinement in the follewing ways

(1} Both the abstract and the concrete data types may be nondeterministic.
(2} There is no need for the concepis of full sbstraction or adequacy.

(3} The relationship between the concrete and abstract data does not have to be
functional.

(4) The invariant and the abstraction relation can be combined into a single relation
called & semisimulation.

The method of data refinement to be used in the specification and proof of carrectness of
nontrivial system programs is very significant: We hope that ithe simplifications described
above will make our method easier to tesch., to learn, and to apply in practice.

The first programming language to make explicit provision for the concrete representation
of abstract data structures was SIMULA 67. In that language, the concrete data is
declared as the local workspace of a class, and is initialised in the statements of the
class body. The data is updated by invocation of procedures aleo declared locally within
the class. .Each invocation uses a normal parameter mechanism to transmit vslues to the
updating procedure: and io obtain resulis from it. The same ideas have been incorporated
in the PASCAL PLUS envelope, which slso permits information about the details of the
concrete design to be hidden from the subsequent user of the envelope. Such hiding
ensures that the concrete data type may be validly substituied for the abstract one.
Similar effects can be achieved in FORTRAN 77 by subroutines with multiple entry points.
Subroutine calling (or macro substitution) is the preferred method of implementing data
types on cenventionsl sequential computers. .

fin slternative method of implementing a data type is as an independent process. evolving
concurrently wWith its using process and communicating with it by input and output rather
than by procedure call. Each operation performed by the data type is triggered by input
of the necessary parameters. and completed by output of its results; whenever
parameters are unnecessary., & null message (signal) is transmitted. The externslly
visible behaviour of the data type is fully described by a sequential trsce of values of
the parameters transmitted on the successive operations, and any mention of internal
states of the process is irrelevant. The total observable behaviour of a deterministic
process is characterised by the set of "all traces of its possible behaviour [Hoare.
1985]. If A and C are deterministic processes which have exactly the same sets of
possible traces. it is clearly valid to replsce B by C in sny context, because there is no
way ito detect (from the outside) that such = substitution has been made. For this
reason, We use sets of traces as the basis of the definition of refinement, even though
the data type may be implemented by subroutine calls.

Because of the rigid alternation of input and outpui. reasoning about traces slso applies
when A and C are nondeterministic processes. Furthermore: replacement of A by C is valid
when the traces of C are just 8 suvbsef of the traces of A, In this case the type C is
more deterministic {(and therefore more predictable and controllable) than A, and will thus
serve every purpose which A can relisbly and provably serve. The validity of this
extension to nondeterministic processes depends on absence of deadlock in A; this can be
dealt with as & seperate condition, .or more simply (and without loss of generality) by a
constructien which replaces deadlock in A by s "broken” process; that is. a process which
gives absoluiely arbitrary results and therefore has a irace set containing all possible
traces.

The description of refinement siven asbove in terms of processes and their traces is
equally applicable when the data itype is implemented as = cellection of subroutines
sharing a collection of declared data. We therefore need a method of specifying and
describing a data type shich is independent of ite method of implementation. The method
must allow nondeterminism, so the operations must be described as relations rather than
functions. We shall adopt the Z method due ariginally to Abrial (see [Margan and Sufrin.
18841) and use predicastes to describe both the values and the operations of each data
type. When the abstract and concrete data types are described in this way. we need s
simple method of proving that the concrete type is a refinement of the abstract one.
Reasoning in terms of traces. that is, in ierms of arbitrary segquences of operations.
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could be complicated; so we introduce s much simpler semisimulation condition about
states before and after each single operation, and show that this cendition is sufficient
for data refinement.

Our semisimulation condition is, as the name implies., slightly weaker than the simulation
condition of traditional automata theory. This is because we are content with an
asymmetric concept of refinement and with a restricted class of automaton. Nevertheless
the semisimulation condition is considerably stronger than is necessary to prove
refinement., and there are practical cases of refinement which do not satisfy it. It is
important to recognise such cases and take appropriate steps when they arise. Firstly,
we define s class of canonical data types in which internal nondeterministic choices are
delayed as long as possible. If the abstract data type is cenonical, semisimulation is
‘equivalent to refinement and so provides - a sufficiently strong proof methed. For
noncanonical dets types the sltiernatives are

(1) The semisimulation condition may in fact hold., in which case it should be used to
prove data refinement since it provides the simplest proof method.

(2) The criterion for refinement in terms of iraces may be used.

(3) The abstract data type may be replaced by a canonical data type having the same
traces (this can be achieved by the wuell-known powerset construction of automata
theory) . and the semisimulation condition applied. Equivalently, a power
semisimulation condition in which states are replaced by sets of states may be used
to prove refinement. It seems marginally preferable to use the power semisimulation
condition and avoid the tempiation io respecify the sbstract data type simply on the
grounds that the proof method involves subsets of abstract states.




1. Abstract Data Types

In this section we define the notion of sbstract data type, introduce the schems notation
which is used to specify abstract dstis types throughout this paper, and give some
examples both of echemas and of sbstract dests types. We end the section by shouing
that no loss of generality is incurred by our restricting attention to certain simplified
abstract data types.

1.1 Data type defined.

fs has been standard in Computing Science since the eerly work of Hoare on data
structuring (see [Hoare, 1972] and the article by Hoare in [Dahl, Dijkstra and Hoare,
19721), &n abstract data type can be viewed as a data structure on which certain
operations are defined. The choice of operations depends .on the use of the data type:
for example the data structure sfack misht typically be operated on by push, isempty and
pop (the first and last operations changing the stack and the other leaving it unchanged
and returning 8 boolean value): the data structuwre séring might be opsrated on by
insertion end deletion, whilst in another context the operations might include serting and
searching.

The common feature of these examples is that the data structure possesses seversl
states (or values), certain of which are initial stetes: and sach operation on the dsta
structure may take input. may chenge the state of the dats structure, and may yield
output. By considering: if necessary, =& vector of variables, we suppose wWithout loss of
generality that esch operation on a data structure tekes at most one input x7 and gives
at most one output y! (not necessarily of the same type). Thus we can represent an
shbetract operation aop which accepts input x? shen the data structure is in state a,
performs some calculations which are concesled from the environment of the data type.
vields output y!, and updates the dsta structure to siate &', as a predicate

aop{a.x?.yl.,a').
tle do not assume that for each combination of initial state 2 and input value x? there is
an unique combination of final state &' and output y!. Thst is, the predicate aop need
not be functional; we allow an operation to select the next state and output
nondeterministically. . - )
The data structure itself can be identified with its states, some of which are singled out
as initial states:; and then the abstract dats type can be identified with a data
structure together with certsin abstract operators: represented as predicates, on the
states of the data structure. This brings us to
Definition 1.1. An (abstract) data type consists of a triple

A = (AS, AS,, AOP)
where
the elements of ihe set AS are the (abstraci) states:

AS, is a nonempty subset of AS whose elements are the initial states:

AOP is a nonempty finite set of named predicates of the type defined above, called
the (abstract) operations.

Informally, the behaviour of a data type can be described in the following fashion.

(1) The data type starts in one of the states a_, of AS,. The choice of initial state is
nondeterministic and cannot be controlled by the user; it cannot even be known by the
user at the time of initialisation {though it can sometimes be deduced from the

subsequent behaviour of the data type).

(2) The user selects some desired value x7 of input an.cl transmits it to the data type.




(3) If there is no combination of output v! ond next state a' possible for the given
combination of current initial state a and input x7. the system breaks in some way which
we are not interested in describing further. It is the obligstion of the user of the data
type to ensure that this does not happen.

(4) If there exist possible values for output y! and next state &': one of these possible
combinations is selected nondeterministically: the output y! is supplied to the user and
the data type moves to the next state a'. ready for the next operation (step (2)).

Before considering an example of a data type (see section 1.3) we need some notstion,

1.2 Schema notstion.

In this paper ue shall use schemas to represent both the states of a data type and the
operations upon them

Definition 1.2. A schema consists of a triple (N.S5,P) where
N is an identifier called the name of the schema;

S, the signature of the schema. consists of an alphabet of (identifiers of)
schema variables: each of which is assigned a type;

P is a predicate whose bound variables are all typed on quantlﬂcatlon and whose
free varisbles. the schema variables, lie in the signature 5.

We shall usually follow standard (sloppy) mathematical convention and refer to a schema
(N,S,P) as schema N instead of ’schema (N,S5.P)’ or ’the schema with name N'.

Note. This is a restriction of the usual definition of schema but is sufficient

for our needs. In the more general form. & schema may slso have freg variables
which do not appear in the signature of the schema; however they must either be
constants of the current theory or be typed by virtue of having appeared in the
signature of a previous schema (a workasble enough assumption when using a top
down methodology for specification). A1l schemas in the present paper are
transparent enough to enable us to aveid this more general notion by using
instead the convention, (4) below, on embedded schemas.

We will write a schema (N,5,P) in the form

N
s

In this box the name is written at the top. the signature appears sbove the middle
horizontal line and the predicate below it.

X1.1. For example if the states oF‘ o data type are to consist of nonempty intervals of
natural numbers we can specify this fact by the schema

— INTERVAL
i FaD

Ja:lN 3b:N (agb A i = a..b)




Where

INTERVAL is the name of the schema;

i is the only schema variable and is of type F(N) (throushout this paper N denotes
the natural numbers and., for any type T. F(T) denotes 2l1 finite subsets of T);

Ja:N 3Ib:M (agh A | = a..b) is the predicate and it describes the strongest (i.e
definitive) invariant property of the data type; in it a..b denotes the (closed}
interval {c:N | agegb} which is nonempty since aghb.

//

e have used here, and shall continue to use, a typed version of standard mathematical
notation, incorporating the a._lsual conventions (e.g. the predicate agc A c<b is contracted
to agcgb).

Before describing an operation by schema, we need some conventions.
(1) If N is (the name of} a schema then N' is (the name of) a schema which is like the

first schema except that all occurrences of every schema variable name are dashed. For
example INTERVAL' is (the name of) a schema which may be written in full as

_ INTERVAL'
i' o FOND

3a,b : N (agb A i" = a..b)

Although INTERVAL' specifies the same set of abstract states as INTERVAL. it has quite
a different predicate: INTERVAL' has schems varisble ' whilst INTERVAL has schema
variable i

(2} H schema name may appear in the signature of another schema. The effect is as if
all varisbles of the embedded schems had been declared within-the enclesing schema, and
its predicate conjoined to the predicate of the enclosing schema.

lle assume that a variable name which ends in a dash (e.g. ') stands for a value on
completion of the operstien, wheress the corresponding verisble without a dash stands for
an initial value. Now an operation on a dsta type which has no input or output, but
simply updates the value of the data, van be specified by schema. For instance an
operation on the data structure INTERVAL which shifts an interval one unit to the right
may be defined

___ shift 1
INTERVAL
INTERVAL®
minimum i’ = 1 + minimum i
maximum i’ = 1 + maximum i

where we have written minimum F and maximum F for the minimum and maximum respectively
of a nonempty finite set F of natural numbers. Thus the predicate here guerantees that
both endpoints of the interval, and hence all intermediate values, are shifted one place
to the right. The enclosing schema is shift and the embedded schemas are INTERVAL and
INTERVAL’.

Predicates on successive lines but on the same side of the middle horizontal line of =
schema are assumed to be conjoined by A.




Written out, the schema for shift becomes

. shift '
i: _EF(N)
it PO

3a:N 3b:N (agk A i = a..b)

A
Ja:lN 3b:N {(agb A 1' = a..b)
A

mininmum 4’ = 1 + minimum i
A

maximum i’ = 1 + maximum i

To specify a general operation on a data type by schema we need some further
conventions.

(3) Declarations of variables having the same type may be combined. For example

i FOND
it F(N)

may be shortened to

Tait s FIN)
and

Ja:l 3b:N
may be shortened to

Ja.b IN;
(4) Two schemas may be conjoined by the A operator. The signature of the result is
ohtained by taking the union of the alphabets of the tuwo schemas together with the type
declaration of each variable. If a variable appears in both the alphabets then its types
must, coincide; otherwise the conjunction is not defined. The predicate of the conjunction
is the conjunction of ihe predicates of the two components. So, for instesnce. e can
define a schema

AINTERVAL & INTERVAL A INTERVAL'

which could have been written out

_ AINTERVAL ]
i,i’ N
Ha!b t N {agb A 4L = a..b)
Ja,b : N {agb A i’ = a..b)

In general, if N is (the name of) a schema, we will write AN to denote (the name of) a
schema constructed in this way. Notice that the effect of conjoining two schemas is
similar to that of embedding one in the other (convention (2)), except that embedding
has the advantage that the wvarisbles of the embedded schema may asppear in the
predicate of the enclosing schema. For example the operation shift can also be specified
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— shift

}
AINTERVAL
minimum i* = 1 + minimum i
maximum i’ = 1 + maximunm i

Similarly the identity aperation over intervals can be defined

— =INTERVAL
AINTERVAL

In future we shall adopt the convention that =N stands for the identity operation on
states described by the schema {(named) N.

(5) If an operation has an input parameter. we observe the convention that its name ends
in ? {e.g. x?). Thus we can define an operation which expands an interval by an amount
depending on both the interval and on an input parameter x? not exceeding 17

__ expand
AINTERVAL
x? + N

x? ¢ 17
minimum i' = {(minimum i) - x?
maximum i' = (maximum 1) + x?

The first line of the predicate stipulates that the parameter x? must not exceed 17. If
x? is larger than 17, the operation fails in a manner which we do not care to enquire
shout: it is the responsibility of the =gent supplying the value of the parameter x? to
avoid such failure. The observant reader will also notice that if the wvalue of x7 is
larger than (minimum i) then {minimum i)} -~ x? is no longer of type N. Such implicit
consequences are a pawerful feature of schema notation. They are also dangerous; and
the danger must be eliminated by meeting proof obligations such as those described in
this paper.

(6) If an operation has an output argument, we observe the convention thai ites name ends

in ! (e.g. y!). Thus we define an operation which., uwitheut changing an interval, yields
its length :
— length i
=INTERVAL
v N
y! = maximum i - minimunm i




(7) Operations which teke input and give output as well as changing state can be defined
by a combination of all these conventions. For example

— Whim )
AINTERVAL
x?,y! + N
maximum i' = x? + maximum i °
x?7 £ y! € maximum i’
y! £ minimum i°

This whimsical operation is highly nondeterministic: ite ocutput y! cannot be less than its
input x? and cannot exceed x7? by more than the value of the right-hand endpeint of the
initial interval. The effect of the operation on the interval is also potentially
nondeterministic: the final value of the left-hand endpoint may equal the output, or it
may be the same as the final value of the right-hand endpoint, or it may lie anywhere
betwean these values. The fact that the left-hand endpoint of the final interval cannot
exceed its right-hand endpoint is stated in the predicate of the embedded schema

AINTERVAL .

(8) If N is (the name of) a schema with schema varisble a then N may be transformed by
quantification of a in N, 3a N. This stands for a schema similar to N, except that a is
removed from its alphabet and the quantifier

Ja : T where T is the type of a

is inserted in front of the predicate of N. Similarly for ¥a N. This convention enables us
to write succinctly a schema specifying the precendition, or domain:, of =an operation.
Suppose that aop is an operation on states a of type RS (a previously defined schemal,
specified by

— aop .
AAS
2? + X
vl Y

Pla,x?,y!,a")

where X and Y are the types of x? and v! respectively.

Then the r:;recondition of aop is defined to be the schema obtained from =op by assuming
the existence of some a’ and y! '

pre aop & 3Ja' 3y! aop

or, in full,

— Ppre-aop l
AS
x? + X

(3a® : AS) (3y! : ¥) Pla,x?,y!,a")
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fin importani but possibly unfamiliar aspect of the schema calculus is the use of
decorated nemes to denote observable stiributes of the system being described. Such
conventions are characteristic of spplied mathematice. If x.y and z denote the position
of a particle in a physical system, x' conventially denotes the x-component of its
velocity, v denotes the y-component of its acceleration, and dt denotes an increment of
time. The behaviour of the whole physical system is described by predicates (usually
equations) which contain these verisbles. Pure mathematicians traditionally prefer to deal
with closed abstract objects such as sets, relations and functions, rather than
predicates with free variables. Of course o predicate can be identifed with the class of
all its models:, and this identification is important in foundational studies. But in
examples of realistic complexity. the predicates seem much more convenient for practical
use in specifications, calculations and proofs.

In summary, the schema notation is particularly suited to operations involving input,
output and change of state. Since a schema might appear to be little more than a
predicate. the reader may wonder why we do not simply deal with predicates and avoid
schemas entirely. The reason is one of scale. In the specification of a practical
system, huge numbers of variables are needed and the relationships between them have to
be defined systematicslly. not only so that the specification is readable. but so that it
may be refined in a structured. top-down manner. This requires the nesting of predicates
on a scele uncalled for in standard mathemstics and so there has been no prior need for
a notation which facilitates it. However the embedding of echemas, introduced in
convention (%), provides this kind of nesting of predicates; it appears to work well in
praectice and (together with typing) it distinguishes the cslculus of schemas from the
calculus of predicates.

1.3 Specification of a data type using schemas.

We have now covered most of the schema notation used in this paper. though a little
more wWill be defined as it is needed. It is time to use it to specify a data type. The
aporoach used in the following example demonstrates how any finite state machine can be
viewed as a data type [as defined in DBefinition 1.1).

X1.2. A finite state machine. FS, having four states, 0,1,2.3 and whose initial states.
FS,» are either 2 or 3, is specified

_ - FS
a: N

ag3 .

— FS0
FS

ax2

The only operstion is rather strange

— fop s
AFS
x?, y! + N
x?€2 B
ag0 = x?#0 A yl=a’'=(a+x?)mod3
a=0 = a'g<l A ylgl A x?=1

1




For such a small and irreguler operation., @ picture is clearer than a schema. Using a
finite labelled directed graph., as for finite state machines, we can label each node by a
state and demark each initial state with a flag. An arrow from a3 node labelled a3 to a
node labelled a' stands for an operation which transforms state a into state a', and it is
also marked with the values of Input snd output which accompany that transition. The
operation is nondeterministic if and only if there is a2 node from which more than one arrow
emerges; for convenience we permit such arrows to share the same tail. Thus the
operation fop may be drawn as shown in Figure 1
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1.4 Simplifying the schemas used to specify data types.

In the examples later in this paper we shall take full advantage of the generality
offered by Definition 1.1 of a data type. However in reasoning sbout data types it is
sometimes convenient to make simplifications; we now demonstrate why certain
simplifications incur no loss of genersality., The last one. (6)., for example, greatly
simplifies the treatment of a sufficient condition for data refinement in the next sectian.

{1) It can be assumed that the schema which specifies the states AS of a data iype
has exsctly one variable a in its alphabet. Where more variables are required the iype of
a can be given as a cartesian product (e.g. a5 a record in PASCAL).

(2) It can be assumed that esch operation in AOP has at most one input parameter which
we name x?. In operations which do not require an input this parameter is just not
mentioned in the predicate of the schema., so its value is arbitrary and is ignored. Where
more than one parameter is required the cortesian product technique’ can be employed
again.

{3) In exactly the ssme way it can be asssumed that every operation has exactly one
output parameter, y!.

(4) It canm be assumed that AOP has only one operation in it, which we name aop. Where
more than one operation is required., the desired operation cen be sélected by passing a
tag along with the input. The type of the input parameter may have to be specified as s
cartesian product whose compaonents consist of the original type of the input and the type
of an appropriate tag. .

(5} It can be assumed that AS, contasins only one initial state, which we name a,. Since
the choice of initial state is otherwise nondeterministic (see point (1) after Definition
1.1), in the case where more than one initial state is required: we can introduce s new
nondeterministic operation, init, defined by

N

init(a,x?,2",yl) & 2'€As.
{(For an example in which this construction arises naturslly, see X3.3.)

(8) It can be assumed that all operations are total in the sense that, in every state.
every value of the correct type is permitied as input parameter. The construction which
achieves this simplification replaces type A by 2 new one, A+, which behaves exactly like
i until breskage of A (i.e. until A has been supplied with input outside the domain of
ite operation aop) when its subsequent behaviour is arbitrary. After A breaks, f+ may
output any value (ef the correct type): it may even sppesr to behave correctly for a
long time or even forever. The states of A+ have an extra companent to record whether
type & has broken., so that its operation. aop+, knows whether to behave chaotically

AS+ .
AS
ok : boolean

Type A+ starts in an initial state for type A and with type A not broken

—. AS+0
ASO+

ok = true

13




If aop has the standard form

then

X1.3.

. aop
AAS
x? + X
y! o ¥

P{a,x?,y!,a")

__. aop+’
AAS+
x? + X
yb « ¥

{ ok A pre aop A ok'sok A aop )
v

{ ok A qpre aop A ok’=false )

v

{ <ok A ok’'=ok )

For example if

A & (A5,R5,,AROP), where
RS 2 {0,1.,2,3>

A5, & {02

AOP ¢ {aop}: and sop is defined

— BOp
AAS
x? + {07,111}
yi o+ {0!,11}

(a=0 A (x?,y1)=(07,1!) A a'=1)
v
(a=1 A (x?,y!1=(07,0!) A §'=2)
v .

(a=1 A (x?,y!)=(07,1!) A a’'=3)

then A and A+ can be depicted

i4
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Z2. Refinement

In this section we define what it means for one data type to refine another in terms of a
user interacting with the two types. Because of the impracticaelity of checking the
definition of refinement, we introduce a simple simulation condition which., presented as a
checklist, is readily decided in practice and which is sufficient for data refinement. The
data types for which the simulation condition is both necessary and sufficient for data
refinement are identified and called canonical.

2.1 Refinement Defined.

Suppose that the states of a data type A (for abstract) are simple and that its
operations are essy to understand; but that data type C {for concrete) has complicated
states and operations which are hard to understand. though designed to be efficient. If
C can be proved to refine A then the user can use the efficient implementiation C and rely
on the specification A as a clear user manual, in the certainty that in all respects
(other than efficiency) C will behave like A. That is the objective of data refinement
and the resson why it is so useful. :

We now wish to define refinement of data types in terms of their interaction with the
user. From the description given in section 1, it is clear that the user of a data type
communicates with it by providing input and sccepting subsequent output; he cannot
direcily observe the current state of the data type, and when several states are
possible, he cannot control or observe the result of choice between them. We stipulate
that the user can only observe :

the name of each operation which has been performed on the data type and the
values O‘F the input and output on each occasion

whether the data type breaks (in the sesnse explalned in sections 1.1 and 1. ‘HE)J

e suppose: by convention (B) of the previous section: that the operations on each data
type ore total. Then the user would deem C to be a correct 'refinement’ of A if C's
behaviour were specified by that of A, in the sense that

the user cannot distinguish by name an operation in A from the corresponding
operation in C. For this reason we shall suppose that there is a bijection from AGP
to COP, but for clarity we shall use distinct names for corresponding operations:

usually aop <> cop;

if a trace of alternating input and output can be communicated between the user and
L then it can be communicated between the user and A writing traces(A) for the
set of all traces of alternating input and output communicable by data type A, this
becomes

traces(C) & traces(A).
This brings us to the definition we seek.

Definition 2.1. Suppose that A and C are data types, that there is a bijection aop *
cop between AOP snd COP and that each operation is total. We say that C refines A (or
that A is refined by C) iff, with the definition of traces(f) given sbove.

traces{(C) ¢ traces(A).-

Unfortunately direct use of the definition of refinement is quite difficult becsuse it is-
phrased in terms of traces and this necessitates ressoning about sequences of operations
of arbitrary .length. What we need is some simpler proof method which permits the
designer to consider the application of only one operation at 2 time. Such a method was
adspted from sutomata theory many years ago by Milner (see [Milner, 13711) for the
simulation of processes. and reemployed recently for the same purpose by Park, [Park,
18801, and Milner, {Milner, 1984]. A similar technique wss also introduced by Hoare,
[Hoare. 19721, snd used in VDM (see [Jones. 19801) +to verify an implementstion of a
data type.
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In short, the method consists of replacing Definition 2.1, stated in terms of sequences
of operations, by a simulation condition involving only @ single occurrence of an operation.
The price paid in guaranteeing thati the simulation condition is sufficient to imply
refinement, is that we must define in advance a simulation relation R between the
ahstract states and the concrete states. This relation will of course remain as invisible
io the user as the states themselves, but it can be regarded as the implementer's
documentation that his implementation conforms to the sbstract specification.

To motivate the simulation condition. we suppose that data type A does not exhibit wanten
nondeterminism before breaking., in the following sense:

Definition 2.2. A data type i is canonical iff
A has an unique initial state

. for each operation aop. for each pair of state a and input x7 in the domain. pre
aop, of aop and for each output y!: there is at most one final state &’ .

(pre aop){a.x?) A aopla.x?.,y!.8') & aopla.x?.y!,a") = 2" = a".

In other words. before breskage esch operation of the data type is functional in its
fourth argument. This definition is to be contrasted with that of a nondeterministic
data type: for each state a an input x? may elicit several outputs y! and states &’
satisfying ’ :

aopla,x?,yl.a').

The word ‘canonical’ is used in this definition because. when expressed as a Communicating
Sequential Process. such a data type is in cenonical form., i.e. nondeterministic choices.
are made as late as puossible (syntactically. the choice operator is pushed as. far -as
possible into the expression for the process). Thoush we have only defined a data type
by its specificetion, there is a sense in which a data type's being cenonical is a property
of the particular specification of type A rather than a property of A itself, and the word
‘canohical’ seems to reflect this. However we have shied away from using the word 'normel’
(although it is more common than ’canonical’ in the context of CSP) because it seemed too
pejorative; althoush most specifications we have seen are canonical, we do not wWish it to
be thought that data types which are not canonicel sre in any sense strange (see, for
example, section 5). .

The notion of canonical data type is introduced here because +”o.r such types We are able
to give a very simple motivation of a simulation conditien which is sufficient for data
refinement. Also for such types the simulation condition is actually equivalent to
refinement. However before justifying these claims we consider some simple examples.
XZ.1. Of the following two data types A is canonical and C is not. To apply Definition
2.1 in order to decide whether one is a refinement of the other we need to mske the
operations total) in fact traces{A+) = traces(C+} so each type refines the othar.
A is defined as in X1.3.
C 2 (CS.C5,.C0P), where
CS 2 {0.1.2.9.4>
Cs, & {02

COP ¢ {cop}, and cop is definad
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cop

ACS
x?
y!

{07,172}
{0,113

(e=0 A (x?,y!J:(O?,l!)
(o=0 A (x?,y1)=(07,11)
(c=1 A (x’?.y!):(O?.O!)

(c=2 A (x?,y1)=(07,11)

Xe2.z2. of the following  two
comunicating trace (07.0!y,

types C
A can break on

A e (AS,AS,,ADP) , where
S & {0,1,2,3)
AS, & {0>
ADR = {aop}, and aop is defined

aop

refines A but

//
nat conversely, since after

input 0? whilst € cannot.

AAS
X?
y!

{07}
for,11)

(@a=0 A (x?,y1)=(02,01) A a’=1)
v

(a=0 A (x?,y1)=(0%,01) A ar=2)
v

(a=i A (x?,y!)=(0?,1!) A a'=3)

a8

C (CS.CS,.COP), where
€S 2 {0.1,2,3:
CS, 2 (0>
COP 2 {cop2, and cop is defined

cop

ACs
X?
y!

{07}
(01,11

(c=0 A (x?,y!):(O?,O!) A g’=l)
v .

(c=1 A {(x7,
v

y! )z(O’_?, 11) A g2 =2)

(_c=1 A (x?

1 Y1)=002,11) A '3

4
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2.2 Semisimulation.

Now let us suppose that A is a canonical data type and that C refines A. In order to
explain the role of the simulation relstion R we give a scenario in which paire (a,c) of
abstract and concrete states belonging to R are built up during the parallel evolution of
the user with esch of the two 'processes’ A and C.

We imagine a scribe (a Maxwell daemon in the computer age?) whose task it is to prove
that C refines A by 'matching’ any communication between the user and C with the same
communicatien between the user and A: He does this by moving from his present state
along some arrow in the diagram of data type A, to a subseguent state in such a way
that the input and output along that arrow sccount for the communication between the user
and C. In this way ihe scribe will have demonstrated how ['s behaviour is specified by
that of A, in spite of the fact that A and € may have different sets AS and S of
states and different operations. :

We start at the very beginning. If C has been initialised by virtue of being in an initial .
state ¢, then A ico must be capable of being initialised. Thus the scribe, in order to
match the empty irace of communications beiween the user and C (which resulis in C

being in state ¢ } need only tske an initial position at the initial stete. a,, of A. He
records this fact

cels, = aRc.

Now suppose that C is in state c having communicated trace t with the user and that this
has been matched by the scribe who has most recently recorded., for some a € AS,

aRc.

SUppose that the user now selects x? as input, that C outputs value y! and moves to
state ¢’. Since C refines A and A is normal, either there is an unique state &’ such that-

aopla.x?.,y!.a'),
or else sop behaves cheotically (i.e. bresks or is already broken) in which case. this
relationship holds for each state a'. In the former case the scribe can match the user's
~ latest communication with T by moving from state a to state &' and recording

a'Re’,
and in the second case he simply records this relastionship for each state a'.
[fhen the scribe's task of covering is complete and each trace of communications between
the user and C has been considered, he will have determined a relation R betueen the
states of A and the states of C. satisfying an initialisation condition and an inductive
condition

ceC5, = aRc

aRe A cople,x?.y!,a’) = 38" { aopla,x?.y!,&8') A &'Re’ ).
The inductive condition is most succi‘nctly expressed using composition of relations, so it
is in that notation that we record the next definition (essentially from [Park.19801). For
simplicity we persist with the assumption that the types each have an unique operation
and that A has an unique initial state. thoush we do not assume that the operations are

total.

Definition 2.3. Suppose that A and C are data types with operations =op and cop
respectively. A relation B ¢ ASxCS is called a simulation {(between A and C} iff

ceCS, = affc

R;cop & aop;R, . for each (x7?7,v!).
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The inclusion caen be depicted by & sub-commuting disgram (that is, a disgram Involving
composition of relations rather than functions and in which, rather than equality. inclusion
holds in the direction-of the symbol) !

AS o~ AS

, "

cS —_—_— . CS

“r

However the notion of simulation is not quite general enough for our needs. Recall that it
has arisen in the context of a pair of data types each having an unique operation which
has been made totsl by the construction of 1.4(6). and that A was canonical. A1l these
restrictions have been imposed to simplify the exposition and, as explained in section
1.4, they entail no loss of generality. In order to make the simulation condition
roadworthy, for use on examples (in particular those in section 3), we need to remove
these restrictions. The result we need in order to undo the + construction is
Lemma 2.1. If A and C are data types with cperstions aop+ and copt, respectively.
which have been made total by the construction in 1.4(B), and if R is a simulation from A
to C then

( aRc A (pre aop)la,x?) } = {(pre copl{c,x?)

( aRc A (pre aop)(an_(?] A cople.x7,y!,c') ) = 3a' ( aop(a{x?,y!,a‘) A 2'Re’ ).

Proof. Suppose that aRc, that C is in state c with input x? and that cop breaks or is
broken. Then for each y! and each ¢,

coptlc:,x7,y!.c').
So by hypothesis, for each y!.
( aRé A a(pre cop)(c,x?) ) = V¢’ 3a' ( sop+la,x7.y!.a') A aRc’ ).
But type A is normal so by the construction of R
( aRe A ~(pre copllc,x?) ) = =(pre aop)la,x?)
whence |
{ aRec A (pre anp](a;x?) ) = (pre copl(c.x?).
Secondly if aRe and neither aop nor cop bresks. the hypothesis shows
( aRc A (pre'aupJ(a,x?J A cople,x?:yl,c') ) = 3a' ( aop+la,x?,y!.a') A a'Re' )

in which aop+ cen be replaced by aop on the right-hend side since the antescedent
containg the conjunct pre aop. This completes the result. //
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Having removed the restriction that the operations in the simulation condition be total, it
remaine to relax the other two restrictions. The assumption that A have an unique initial
state engendered the initial condition

ceC5, = aRc
which, undoing construction 1.4(5), becomes

ceCS, = 3a€AS, aRc.

Finally the assumption that esch type have an unique operation can be relaxed, as in
Definition 2.1, by supposing that there is a bijection aop ¢ cop from AOF to COP and
that the simulation condition works for each pair of corresponding operations.

We are now ready to define the weak simulation condition sufficient for data refinement.

Definition 2.4. Llet A and C be data types with a bijection aop ¢ cop from AOP te COP.
fi relation R € ASxCS is called a semisimulation iff, for each aop€AOP.

(R1) ceCS, = 3a€AS, aRc
(R2) { aRc A (pre aop)(a:x?) )} = (pre copl(c,x7?)
(R3) ( aRc A (pre aop)(a,x?) A coplc,x?.y!.c’) ) = 3a' ( aopla,x?,y!,a') A &Rc’ }.

In this case we say L[ semisimulates A, and write either A © C or, if we wish to
emphasise the relation R, A & C.

The conditions for a semisimulétion Ean be re—expressed using schema notation:

(R1") C§, == 3A5, R

(RZ’'} ( R A pre aop ) = pre cop

(R3') ( R A pre aop A cop ) = 3RS ( aop A R’ ).
The suppression of freg varisbles in these Fm"mulee and the decoration R' of R might
appear strange at first, but they turn out to be very convenient in praciice (the

examples in section 3 bear this out).

after relaxing the restrictions previously imposed on R and L, the conditions for a
simulation become :

(51) = (R1M)

(52) (R2")

1

(S3)

( RAcop )= 3A5 ( aop A R ).

The reason for the difference between =& simulation and a semisimulation is
straightforward. Simulation is designed for use with concurrent processes where a data
type in a given state can ’'refuse’ a transaction outside the domain of an operation
attempted by one process - or rather delay the operation until a transaction invoked by
another concurrent process has brought the data type into & state where the operation is
possible. In this case it is vital that the domain of a refinement of an operation
coincide with the domain of the operation itself, i.e.

(D) R = ( pre aocp & pre cop J.

This is & consequence of conditions {52) and (53) for = simulation.
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On the other hand semisimulation, as it has been defined here, is for use with sequential
processes where a data iype simply bresks on a transaction with input outside its domain.
Clearly such az type can be safely replaced by one which is not as fragile. So it is
sufficient that the domain of the concrete type merely includes that of the abstract
type, f.e. (RZ2) holds.

We now consider two vital results about the definition of semisimulation. The first is a
congistency result and states that semisimulation implies data refinement.
Theorem Z.1 If C semisimulates A then C refines A:
A EC = traces(C) ¢ traces(A).
Proof. Suppose‘ that A E-R.C and that t € traces(C) with
b=ttt ... Mt

where t; = <t ?,t;!> for Igjen. Then there is a sequence <g,.c,r....c> of states in C
satisfying

cop(cJ_i,tJ?.tJ! ;CJ) for 1gjgn.

Since A &, C, there must also be a sequence <{aysa,,...,s> of states in A for which the

following squares sll sub—commute

P\S ﬂ..f ;-)gs G°P - ks o __“°_?_‘_ P{S
R voog noooR | R
t, . - ' tw
cg ———» €S ——>—= CS3 —"xCS
cop “f? p

hence t € traces(A) as desired. //

The second result is a completeness one: if A is & canonical data type and C is a
refinement of B then the proof obligations embodied in the definition of semisimulation are
strong enough for us to be sble to prove refinement by meeting these obligations. The
- reader will be relieved to learn that the proof of this fact has already been covered in
our motivation of semisimulation.

Thecrem -2.2. If A is a. cenonical data type and L is a refinement of A ihen C
semisimulates A, i.e.

( A canonical A traces(C) € traces(A) ) = A £ C.

Proof. This follows from the scribe censtruction above. //
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Z.3 Bisimulation.

The equivalence relation induced by the pre-order relation of refinement between data
types is evident:

Definition 2.5. Data Types A and C are said to be inter refinable iff

traces{A) = traces(C).
The purpose of this section is to consider the equivalence relation induced by the
pre-order relation of samisimulation between canonical iypes. Firstly. semisimulation is
indeed a pre-order:
Theorem Z2.3. For any data types A B and C.

AL A

(AEBABEC)=8aCECL.

If T c ASxCS enjoys the property that both T and T! are semisimulations then, far.each
aopER0P, ’

(E1) (a) C5,= 3R5, T
(c) AS, = ACS, T
{(E2) (a) ( T A pre aop ) == pre cop

(c) ( T A pre cop } = pre aop

>

(F3) (a) ( T A pre aop Acop } = 3RS ( aop A T' )

>

(c) ( TAprecop Agop ) = 3ACS (cop AT ),
Since (EZ2} implies
T =» ( pre @op < pre cop ).

the conditions above become those of a bisimulation: -

Definition 2.6. If A and C are data types, a bisimulation is a relation T ¢ ARSxCS
satisfying, for each aopEHUP,

(B1} (@) £S5, =+ 3AS5, T
(c) AS, = 3C5, T

(B2) (8) ( T Acop ) = 3R (aop A T )
(c) ¢ TAgop )} = 3C5 Ccopar T

In this case wWe wite A =, C or just 8 = C and say that A and C bisimulate each other ar
are bisimilar.

It seems naturel to expect = to be the equivalence induced by &. The corresponding
result for simulation would be that if there is a simulation from A to C and & simulation
from C to A then there is a bisimulation from A to € - & result which needs qualification
(see [Milner, 1984, Lecture 41}. Our interest at present is only in canonical iypes, in
which case we have
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Theorem Z2.4. If A and C are canonical data types then bisimulation is equivalent to
mutual semisimulation

Aele (AECACEA).
Proof. If A = [ C then it is routine to check that A &, C and C €, A.
Conversely if A E C, C B A and both A and C ere canonical, then for any trace (including
<>) of communications between the user and the data type., there is at most one seguence
of states in each data type which produces that trace. 5o the scribe construction.
extended to include a scribe in each dats type, produces a relation T which is a

bisimulation. //

A simple consequence of this result is that, for cznonical data iypes, = is complete in
the following sense )

forollary. If 8 and C are canonical data types then bisimulation is equivalent to inter
refinability

traces(A) = traces(C) ¢ A = C.

24




3. Examples

This section is devoted to examples: section 3.1 contains four small examples and
section 3.2 a simplified version of a larger example which arose in practice and motivated
the research which led to the semisimulation condition for refinement proposed in this
paper.

In ¥X3.1 we consider the femiliar example of implementing a bag by a sequence. We
observe that, although the two deta types are bisimilar in the sense of Definition 2.6,
the concrete dsta type is considered to be an implementstion of the sbstract one not
because it is more deterministic (it is not) but simply because it is closer to that which
may be directly implemented on a conventional computer. In X3.2 we modify X3.1 so that
the concrete data type refines the sbstract one but is not hisimilar to it.

In X3.3 a supermarket wishes to record the smallest number of items bought by any-

customer. The specification records the number of items purchased by “successive
customers and outputs the progressive minimum, whilst the refinement recards and outputs
only the successive minima. Both the specification and its refinement are deterministic
but the specification conteins extra information not needed by the implementation.

In X3.4 we consider an example in which the implementation is deterministic though the
epecification is not: yet the two are bisimilar. Again it shows how nondeterminism can
arise in practice by the inclusion of extra information at the specification stage.

We see from X3.1 that the relation T in Definition 2.6 (hence also the relation R in
Definition 2.5) may be one in many (since each bag is relsted to =ll the sequences
obtained from it by permuting elements); and from X3.3 we see that T (and hence also R)
may be many to one (since many sets have the same minimum vslue}. In general neither T
nor T°* (nor R nor R™*) need be functional. We also note that in X3.1, X3.3 and X3.4, A
and C are bisimilar types so, by Theorem Z.4, each example actually provides two
examples of refinement for the price of one. In practice the designer would only need to
prove refinement in one direction by exhibiting a semisimulation from the specification to
the implemenistion.

3.1 Examples Four.
¥3.1. Bag and Sequence

In this example we show that the data type 'bags with put and take’ can be implemented

by a bisimilar data type ’seguences with insert and delete’. For simplicity we omit

operations which interrogate the types: so we can ignore output. The abstract data type
is represented, as usual,

A & (AS.AS,.ACOP)

and its states consist of =11 (finite} bags of natural numbers with initial state the
empty bag 1§ . and its operations are put and take

AS 2 BAG(N)
5, & U
ACP 2 {put,iakel,

where

— put |
AAS .
x? : N
a’ = al WS
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___ take
AAS
x? : N

= als Tx?§

Herein W) and 1 denote bag union and difference respectively, and3x?8 denotes the bag
containing only a single occurrence of x7. Note that both operations are total: if an
element x does not belong to a bag b then the bag difference b @S equals b.
We implemént a bag by a sequence which records the members of the bag in some order.
The initial sequence is the empty sequence. -Dur idea is thus that a bag b will be
represented by 8 sequence s satisfying

b = bagrange s

where the right~hand side denotes the range of s treated as a bag, that is, including
repetitions. In other words we tske

C & (CS,CS,.COP)

whose states consist of finite N-valued sequences: with initisal state the empty
sequence, and With operations insert and delete :

CS & SEQ(N)
C5, & {0,
COP 2 {insert. delete}.

where

___ insert \
ACS
x? ¢+ N
¢’ = ctex?>

_ delete )
ACS
x? : M
(Fg, 6} ( c=s"<x?>"t A ¢'=g"t )}

Again the operations insert and delete are totsl.
In order to demonstrate that A and C are bisimilar we define T by
ale ¢ { a2 = bagrange ¢ ).

(This definition, suggested above, ﬁaturally coincides with that of the scribe
construction. )
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It remaine to verify (B1) and (BZ) of Definition 2.6, Since
VT,
(B1) is obvious. The proofs of (B2) for the cases

(put,insert) and

{aop.cop)

(op.cop) (take.delete)
are similar: so we shall leave the latter cese for the reader.
Firstly (B2)(a) : if

( a=bagrange c ) A ( & = atBlx?8)
then setting

¢’ & o™ <x?>
yields

(e =cx?> ) Al a = bagrangé ¢ ).
_Finally (B2)(e) : if

{ a = bagrange c ) A (g’ = °(x?> }
then setting

a' & aWx?S
yields

( & = a W) A ( & = bagrenge &' ).
. /f

X3.2. Bég and Sequence Revisited.

In certain circumstances it is sppropriate to weaken the specification of the operation
take’ in X3.1 by including the precondition 'x? € & as follous :

___ take
AAS
x? : N

x? € a

a’ = ald w?s

Mow the argument of X3.1 shows that A &; C, although it is no longer true that A =, C
because (£2)(c) fails.
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X3.3. The Supermarket.
A supermarket wishes to record, for each day. the smallest number of items bought by
any customer. The supermarket has one checkout and is closed on holidays. One
specification is obtained by. starting from the empty set, adding to the set the number
of items purchased by successive customers and ecutputting progressive minima. Thus

A & (AS,AS,.AOP)
where

AS 2 PR

AS, & {}

AOP & {insert},
with

__ insert

AAS
%?, y! ¢+ N

a' = au{x?}
yi

minimum a’

This specification reflects considerations of how the minimum is to be calculstied. In
general, such operational specifications are not to be encouraged in 2, however one reason
for using them might be that & is one module from & whole system dealing with customers
and their purchases, and that the rest of the system uses information about the states a
and the non terminzl outpute y!. We imagine that the system developer. reslising that
such non terminal information is unnecessary for the module he is to implement., defines s
state io consist of minimum value so far:

C e (C5,C5,-COP)
With

S & Nu{undefined)

€S, & {undefined}

COP 2 {minl,

where

x?, yl + N

y! = ¢ = minimum {c,x?}
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In other wWords. no more information is kept than is necessary to determine the successive
minima. The element ‘undefined’ is used +to initialise this progressive minimom (in
particular it is the final value obtained on holidays). We show that A =, C where

aTle 2 { a # {3 A c = minimum a ) v { & = {} A ¢ = undefined ).
Since {¥T(undefined), (B1) is obvious. For (BZ)(a), if
aTe A ( y! = ¢' = minimum {c,x?? )
then taking
a' & gu{x7?»
it follows that
insert(a,x?,y!,a') A aTc.
Finally, for (B2)(c)., if
aTc A (&' = au{x?> A yl = minirﬁum a )
then taking |
7 c’ & minimum {c,x?}
it follows that

yl = ¢ = minimum {c.x7?>.

/7
X3.4. The Garage
- A parage, starting with no cars, buys end sells cars without bound on the number stocked
at any time. For each model of car, neither the garage nor the buyer ceres to distinguish
between the cers of that model. Also, the employees of the garage are permitted to use
the cars at lunchtime and at night time, without necessarily returning them to their
original parking places. In specifying the garage, states are partizl functions from the

set LOC of all possible losations of cars to the set CAR of models of car, and the
initial state is the empty function

A & (AS,AS,,AOP)
with | 7

AS & LOC -» CAR

AS, 2 {0

where § ® T denotes the set of partial functions from S5 to T and where O is the
function identically equal to zero. Next

ADP 2 {abuy, asell}

(neamed from the point of view of the garage) with, sgain writing 1 and 3 for bag union
and difference respectively.
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__ abuy \
AAS
x? @ CAR

bagrange a' = (bagrange a) 1§ {x?f

—. asell |
AAS ’
x? + CAR
y! : {trans, notrans}
( %? € bagrange a A bagrange a’ = (bagrange afélx?s A y! = trans )
v ;
( x? ¢ bagrange a A a' = a A y! = notrans )

This specification, because it is couched in terms of the locations of the cars. is forced
to be highly nondeterministic in order to model the system requirements. Firstly a new car
may be stored at sy empty location. Secondly the condition that the cars may be
moved, prohibite the predicate of schema asell from tying cars to locations as in the
following (mildly more deterministic) predicate .

{ 3locelLOCN\dom a ) ( &=au{{loc,x?)} A y!=trans ).

Thirdly during s sale any car of a certain model may be deleted from the garage. However
this nondeterminism is wholly unapparent to the garage’s customers.

The refinement is deterministic. GStates are functions from CAR to N which keep count of
the number of each make of car on sale and the initial state is the zero function. Again
there are two operations., buy and sell

C & (CS,CS,,COP)

with
. CSecCAR - N

| Cs, & <03

COP 2 {chbuy, csell},
where

— cbuy
4CS
x? 1+ CAR

¢t = o @ {(x?,c(x?)+1)}
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__ csell

ACS
x? :+ CAR
y! t {trane, notrans}

(ely!) >0 Ac =c@® {({x?,c(x?)-1)} A y!l = trans )
v

(ely!y =0 Ac¢ ¢ A y! = notrang )

where @ denotes overriding of functions. defined by

f(n) if n € dom f - dom g
(f® g)(n) =

g(n) if n € dom g

Now to see that A = C, we define
aTc 2 ( VzeCAR ) ( #{loc : (loc.z)ea) = clz) )

where, if § is a finite set, #(5) equals the number of eiements of S.

Clearly {3T0 so condition (Bl) holds. Next, (B2)(a) for the pair of operations
(abuy.cbuyl): if : :

aTc A chbuyl(c.x7.y!.c’)

then, since there is aluays some AeLOC-(range s). it suffices, for such 2 A, to tske
a & aU{()\;x?J}V

in'o-rder to ensure that
abuy(a,x?,y!.a’) & 2’Tc'.

Next., (BZ)(e) Forr the same pair of operations: if
aTc A abuy(a.x?.y!.,a')

then it suffices to take
¢ 2 ¢ @ {(x?,c(x?)+1)}

in .order to deduce -
cbuy(c:x?,y!.c') A a'Tc’.

e leave as an exercise the proof of (B2) for the pair of operations (asell,csell).

3.7 Example Five.

This example is a simplified version of one being developed by Paul Mundy from IBM
Hursley, and for which the extant refinement rules were found to be insufficient. 1In
presenting an abstract data type for storsse management and a particular design which
refines it, we follow our standard practice for examples of this size and intersperse the
description of the design with proofs that it satisfies the specification.
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Specification
The sbstract dats type manages allocation of contiguous blocks of storage. It has one
operation., AGet, to get a block of storage of a sgiven size snd one operation. AFree,
to free a previously sllocated block. e write n..m for the interval
{ielN + n g i g m}
and represent sddresses as natural numbers up to some given maximum
maxaddr : B,
s0 that addresses lie in the set
ADDR & 0..maxaddr.
B block of storage consists of a contiguous range of addresses. i.e. is an element of

Block & { base..top : base,top € ADDR A base ¢ top }

and the length of a block of storage. the number of its consecutive addresses, is s
non-zero natural number in the interval

LEN ¢ 1..maxaddr+1.

The (abstract) state of allocated storage is & set of sllocated blocks: no tuwo of
which overlap

__Allccated
alloec : P(Block)

disgjoint allocc

where, for future use, we find it convenient to have a name for the predicate of this
schema so we define '

disjoint alloc & ¥b,,b, & alloc ( b, # b, = bbb, = {} )
Initially no storage blocks have been sllocated

—Allocated,
Allocated

alloc = {}

Each operation transforms a state before (alloc) into a state after (alloe’)
AAllocated 2 Allocated A Allocated'.

Operation AGet accepis as input the size s? of storage requested. If this is available

it adds a newly allocated block to the set of existing blocks. which the new block

must not overlap. and it outputs an acknowledgement rep! = O0K; otherwise it outputs
rep! = NOSPACE
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__AGet

AAllocated
8? : LEN
b! : Block

rep! : {OK,NOSPACE}

( #bl!=g? A
¥bealloe ( bnb!={} ) A
alloc’ = allocU{b!} A
rep! = 0K }

v

( alloc® = alloc A
rep! = NOSPACE )

Operation AFree deletes a block b? from the set of allocated blocks

AFree
Asllocated
b? : Block

b? € alloc
alloc’ = alleec - {b?}

Design

e now give a simple design (it is ef too high a level to be called an implementation)

of the storage management system that allocates storage sequentially without ever.

reusing blocks that are freed. In spite of its imefficient use of space the design is
nontheless a valid refinement of the specification and has the advantage of being time
efficient. .

We assume that the desian has aveilable max units of storaglja with addresses
0..max~1, where

max : ADDR.
i concrete state is represented by the address, or level. at and above which

addresses are free for allocation and below which no such assurance can be given; of
course level cannot exceed max

vailable |
level : 0..max

Initially the whole of storage is available

—Available,
Available

level = 0
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The semisimulation, R. between an abstract state

(level) is given by

alloc R level & (U alloc) c 0..level-1

where

(U alloc) 2 { a€ADDR :

To verify (Ri) of Definition 2.4 we must show

Available, =+ 3HAllocated, R.

That is we must show, given
level : 0..max,

that

level = 0
muaty

dalloc € P(Block) ( disjoint alloc A
alloc = {} A
(U alloc) £ 0..level-1
).

The consequent is obviously satisfied by, and only by,

alloc = {}

" and so the implication holds.

Ib € alloc { a € b )},

(alloc)

and a concrete state

The design. or concrete type., also has two operations: CGet and CFree. MWe first

consider CGet.
level upwards and 0K reported,

case the level remains unaltered and NOSPACE is reported

— CGet I

AAvailable

87 : LEN

b! : Block

rep! {0OK, NOSPACE}

( level+s? £ max A
level’ = level+s? A
b! = level,.level+s?-1 A
rep! = 0K } .

v -

( level+s? > max A
level’® = level &
rep! = NOSPACE )
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To show that CGet refines AGet we prove
R A pre AGet = pre CGet
R A pre AGet A (CGet — 3JAllocated’ ( AGet A R' ).

fis both AGet and CGet are total operstions it suffices to shou
R A CGet = 3Allocated’ ( AGet A R' ).

Given

allec : P(Block)

level : 0..max
level® : 0..max

87 : LEN

b! : Block

rep! : {0OK,NOSPACE}

we must show

disjoint alloc A
(U alloc) c 0,.level-1 &
( ( level+s? < max

level’ = level + =7 A
b! = level..level+s?-1 A
- rep! = 0K )
v ( level+s? > max A
level’ = level A
rep! = NOSPACE )
==>)
Jalloc’ € P(Block) { ( disjoint alloc’ A
: (U alloe') € 0..1level’'~1 A
#b! = 8? A
¥b € alloc ( bnb! = {} } A
alloc’ = alloc U {b!} A
rep! = QK )
v { alloc’ = alloc A
rep! = NOSPACE )
.o
Fortunately we can split this into iwo cases: succesful (rep! = 0K) and unsuccessful
(rep! # CKJ.
(a) rep! = OK.
digjoint alloc A
{U alloc) ¢ 0..level-1 A
level + 87 € max LA
level’ = level + &? A
b! = level..level+s?-1
=
dalloc’ € IP(Block) ( disjoint alloc’ A
‘ (U alloc’) € 0..level'-1 A .
#b! = 8% A
¥b € alloc (bNb! = {}) A

alloc® = allec U {b!}
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This can be satisfied by choosing
alloc' = alloe U {bl}.

We must then show

disjoint alloc

(J alloc) € 0..1level-1
level + 87 € max
level' = level + g7

bl = level..level+s?-1

> > > >

digjoint ( alloc U {b!} ) A
Ulalloc VU {b!}) c 0..level'-1 A
#b! = 87 A i
¥b € alloc ( bnb! = {} ).

From

(U alloc) ¢ 0..lével—1 and b! = level..level+s?-1
we cuncludé

¥b € alloc ( bnb! = {} ).
From this and disjoint alloc we can deduce

disjoint (alloc U {bl!}).
As

(U alloc) € 0..level-1 ¢ 0..level’-1
and ‘

level..level+s?-1 € 0,.level’'-1

_ we can thus deduce

U{alloc Vv {b!}} = (U alloc) U {b!} ¢ 0,.level’'-1,

(b) rep! # 0OK.

disjoint alloc A

(U alloc) € 0..1level-1 A

level + 8?7 > max A

level' = level A

rep! = NOSPACE

=> . .

dalloe® € P{Block) ( disjoint alloc’ A
(U alloc’) € 0..level'-1 A
alle¢’ = alloc A

rep! = NOSPACE
).

Taking alloe' = alloc, (b) follows from the fact that lewvel®’ = level.
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The second concrete operation, CFree, frees a block by doing nothing;
advantage is taken of being able to reallocate freed storage

__CFree

AAvailable
b? : Block

level' = level

To shou CFree is a refinement of AFree we prove

R A pre AFree - = pre CFree

R A pre AFree A CFree = 3Allocated’ ( AFree A R').

fAs CFree ijs total the first implication is trivisl. To prove the second we

assume

alloc @ P(Block}

level : 0..max
level® : 0..max
b? : Block

" and must show

disjoint alloc A
(U alloe) ¢ 0,.1level-1 A7
b? € alloc A
level’ = level

=

Jallee’ € P(Block) ( disjoint alloc’
(U alloc’) € 0..level’-1
b? € alloc

allec’ = alloc - {b?}
)

Taking alloc' = alloc - {E?} it remains to shou
digijeint alloe A
(U allec) < 0,.level-1 A
level' = level
=

disgjoint (alloe - {b?}) A
Ul(alloc - {b?}) c 0..level’-~1.

no

But from disjoint alloc we cen deduce disjeint (alloe - {b?}) and finally

Ulalloc - {b?}) £ (U alloec) ¢ 0..level-1
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4. Comparison

In this section we compare the semisimulation condition, given in Definition 2.4, with the
sufficient condition for data refinement used in VDM and with the "more deterministic than”
ordering of Dijkstra and Smyth. e observe that semisimulation is more general than the
VDM rule: it always spplies when the VDM rule does. and may apply in situations where it
fails. We also note that in examples where both rules hold, & semisimulation R is
ususlly simpler than a relation satisfying the VOM rule but that when R satisfies some of
the further properties required by the VDM rule, the two coincide.

4.1 The VDM Rule.
In our notation the VDM rule for data refinement (from [Jones, 19851; this supersedes the
version in [Jones., 1980, Chapter 11, Figure 4391, by the inclusion of the precondition term

in the antecedent of (ral} is

Definition 41 Suppose that A and L are data types with a bijection aop < bop from
AOP to COP. The VDM rule for refinement of A by C comprises a relation R ¢ ASxCS
satisfying, for each =op € AOP,

(zz) R is injective : aRc A aRc = a, = g,
(2a) R is surjective : YceCS 3aeAS aRe
(ab) R is totsl : Ya€AS 3ceCS aRc
(da) condition (RZ) in Definition 2.4 holds :
( aRc A (pre aogp)(a,x?) } = (pre cop)lc,x?)

(ra) ( aRe A (pre aopl(a,x?) A cople,x7.:yl:c’) A &Rc’ ) = aopla.x?iyl.a').

Condition (ra) contrasts with cendition (R3) in Definition 2.4, as the following diagram
shows

AS - > AS

R \V K'f

Y
O
n

CS
ey

Nhere is no mention of initial states here: the spproach taken in VDM is that each data
ype has an initislisatiph operation having precondition #rve and having postecondition

xpressing membership%the set of desired initial states.

Jones also-includes—a~condition in (aa) guaranteeing that the invariant of data type A is

maintained. His condition is, in our notation.

(sa)' VYceCS ( invy(c) = 3a€AS ( aRc A inv,(a) }-)
where inv, denotes the invariant of type A. However since our semisimulation condition only

involves states reachable from the initial states, and since these are included in those
states which satisfy the invariant, we have replaced (aa)’ by (aal.
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How do the two rules compare? Firstly the semisimulation rule applies whenever the VDM
one does.

Theorem 4.1. If a relstion R satisfies the VOM rule then it is a semisimulation.
Proof. Suppose that R satisfies the VDM rule. #fpplying (ra) to the initialisation

operations wWe deduce the initislisation condition (R1) af Definition 2.4. It remains to
establish (R3). If

aRe A (pre aopl(a,x?) A coplec.x?.y!,c']
then since R is surjective

Ja'ens a'Rc’.
So from {ra)

aopla:x?.,yl,a")
holds as well ss a'Rc’, as required. //
Secondly the semisimulation rule is strictly more general. Indeed it is evident by now
that the VDM rule for refinement is more restrictive than it need be. Condition (R3) in
Definition 2.4 is weaker than condition (ra) and moreover a. semisimulstion is not assumed
to be total, injective or surjective. In particular in both X3.3 and the storage
menagement example of section 3.2, we have already met examples which cannot be
verified using the VDM rule. This is the case whenever distinct abstract states
correspond to the same concrete state, i.e., in VDM ierms., whenever A is biased. The
failure of the rules is then regarded as an indication that the bias is & fault in the
specification, and should be eliminated by modifying the specification.
Dur view is slightly different. For reasons to be explained in X5.1 (but which have
already become spparent in the two examples referred io above) we consider biased
specifications to be sometimes useful, so it is essential to have a refinement rule strong

enough to verify them.

Here is an example which makes this point. fhoush not the simplest possible (it will be
reused in section 5) it is simpler than those mentioned above. -

X4.1 . A 2 (AS5,A5,,A0P), uhere
AS 2 {0,1,2,3,4,5.6,7%
" Ag, & {0)

A0P 2 {aop}, and =op is defined
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—_ aop
AAS
x? ¢+ {07,111}

y! « {0!,2',31}

(a=0 A (x?,y1)=(07,0!) A a’=1)

v

{a=0 A {x?,y1)=(0?,0!) A a'=2)
v

{a=0 A (x?7,y!)=(02,00) A a’=3)
v ,

(a=1 A (x?,y!)=(12,2}) A a’=4)
v .

{a=2 A (x7,y!)=(17,2}) A a'=5)
v

(a=2 A~ (x?,y!)=(1?7,3!) A a'=6)
v

(a=3 A (x?,y!)=(17,3!) A a'=7)

C & (CS.CS,.COP), where
S & {0,1,2.3.4.,5%
C.SO & {0>
COP 2 {cop}, and cop is cjef'ined

. cop
ACS
x? : {07,110}

vyt : {01,2!,31}

>
Q
It
[y

(c=0 A (x?,y!3=(07,0!)
v .
(c=0 A (x?,y!3=(07,01)

b=
Q
1t
2]

v .
(c=1 A (x?,y!3=(172,2!) A ¢'=3)
v

(c=2 A (x?,y!2=0(17,3!) A ¢'=4)

Since traces(A+) = traces(C+), R and C are inter refinable. A semisimulation from A to C
is given by the relation R ¢ ASxCS

0RO, 1RL, 4R3, 3RZ, 7R4.

However the VDM rele obviously does not apply to this example. (Observe that =a
semisimulation from A to C exists even though type A is not canonicel. None exists from
€ to A but the reader who perseveres to section 5 will be rewarded with a rule more
general than semisimulation which enables refinement io be demonstrated in this direction
too.) // -
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b doesn't JH

It is interesting_te observe that when both rules hold, the smallest semisimulation is
smaller, and\ hence more stmple to construct and reason shout, than the smallest VDM
relation which has =snd surjective. It also seems to be easier. in generzl, to
find a semisimulation relatlon R than to satisfy sll the VDM conditions. But when =
semisimulation R is a total bijection (that is, total., injective and surjective) the two
rules coincide. By Theprem 4.1 it suffices to prove

Theorem 4.2. A total. bijective semisimulation satisfies the VDM rule.
Proof. It remsins to establish (ral. AI'F

aRc A {pre aop){a,x?) A coplc,x7.yl.c') A a'Rc’
then by (R3)

da" ( aapfa,x?,y!,a”J A 8"Rc’ )

so that by injectivity of R

hence
aopla,x7,y!,a")
as desired. //

We omit the simple examples which demonstrate the necessity of each of the hypotheses
in Theorem 4.2.

Tobias Nipkow at The University of Manchester has also extended the VDM rule for
refinement to obtain a2 rule which is different from semisimulation but which no longer
assumes that R need be injective or surjective. Nipkow's motivation (see {Nipkow, 15851)
lies more in the application to concurrency/ thus his rule satisfies, as does simulation.
condition (D} in section Z2.2. .

4.2 The "more deterministic than” Urderins.‘

The special case of a semisimuylation coincident with the identity relation is responsible
for much of our intuition about more general semisimulations.

Definition 4.2. If V.l are sets and P.0 ¢ Vxl then Q is a relational refinement of P
iff 0 has domain at least as large as that of P and. when restricted to the domain of P.
is more deterministic than P

dom(P) ¢ dom(Q@)

Qfdom{F) ¢ P.

e can now compare semisimulation with the "more deterministic than” ordering of [Dijkstra,
18761 and [Smyth,1977). The proof is trivial.

Theorem 4.3. A & C iff cop is a relational refinement of aop.
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5. Cempleting the Rule

In this section we stretch the semisimulation condition to cover types which are not
cancnical. The only impediment to the scribe construction of section 2.2 (which led to
semisimulation) is that when sop is not functional in &' the scribe has a choice of with
which state to match a communication between the user and C. This peoint is made by
X2.2. In matching the communication (07,0!) the scribe has a choice betueen states a=l
and a=2, which subsequently lead to quite different behaviour: the former permits the
scribe to match the communication (07,1!) but the latter deadlocks. Until the second
communication the scribe has no reasson to favour one choice over another. The
construction in the present section thus allows him to relate a2 nonempty set of abstract

stoates to a concrete state. We find it convenient te write P(X) for the set of 2all
nonempty subsets of set X.
5.1 Pouwer Semisimulation.
We rework the scribe construction of section 2.2. If C has besn initialised 1o state ceC5)
then the scribe can match communication of the empty trace between the user and C by

starting in any of A's initial states. Thus the scribe relates ¢ to some subset., yet to
be fully determined. of AS;:

celS, = {J0€P'(AS,)) «Rc.

Suppose now that C is in state ¢, having communicated trace t with the user and that
the scribe has most recently related

aRe.
By this we mean that « is a nonempty set of abstract states which the scribe uses to

match the user's communication of trace t with C. Suppose that the user selects x? as
input, and that C outputs y! and moves to state c¢’. Since C refines A, there is a

nonempty set o' of abstract states which the scribe could use to match the user's
communication of t°<x7?.y!> with £. Moreover each state in « must be able to be reached
by moving along an arrox (in the diagram of type R) starting at a state in «

( va'eq' )( Jdaca ) aopla,x?,y!,a’)
or, more succinctly,

aop"z[(x’B -Q «
whe_re

z = {x?,y!> and

aop™ o’} = { aca : (I2'ea’) sopla,x?,yl,a") ).
The scribe records

o’Re’s

where o' is yet to be fully deter_mined.
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Hhen all ways of communicating all possible traces between the user and C héve been
matched, the scribe will have determined a relation

R ¢ P{AS)x=CS
satisfying an initial condition and an inductive one
ceCS, = ( JaelP (AS)) ) oRc
( aRc A coplo.x?,yl,c') ) == ( H;x’ElP'(FISJ ) { aop"zﬂa’B € o A R ).

The scribe's choice has been left partly open so any choice of « and o« which satisfies
these conditions will do.

fs in section 2, by removing the assumption that types A and C have = single, total
operation, the construction sbove leads us to a sufficient condition for refinement: this
time without the assumption that A be canonical. However it may not be as evident as it
was in the case A canonical that these conditions do indeed imply refinement; this is
proved in Theorem 5.1.

Definition 5.1. If A and C sre data types and there is a bijection aop¢rcop from AOP to
COP., a relation

R € P-(AS)I=CS

te called a power semisimulation (or we say C power semisimulates A) iff, for each
aop&A0P, '

cel5, = ( JuelP (AS,) } «Re

{ aRc A (Ja€w) (pre aop)la.x?) ) — (pre cop){c.,x?)

( aRe A (3aea) (pre aopﬁ(a,x?) A cople:x?,y!.c') )

= [ 3u«’€P(AS) ) ( aop"-zﬂoc'] € ax A oRe ).

Evidently when 8 is canonical each set « can only be a singleton and hence these
conditions reduce to those for a semisimulation. However, in general, any attempt to
recast power semisimulation in terms of a relation from AS to CS involves the introduction
of backtiracking. This defeats the purpose of having & simulation-like condition for

refinement and explains our preference for the version defined above.

At first sight power semisimulation might appear ioo general, so the following consistency
result is reassuring.

Theorem 5.1. If C power semisimulates A then C refines ﬂ.r
~ Proof. We proceed as in Theorem 2.1. Suppose t € traces(C) and
= Lty

where tJ = <tJ?,tJ!> for 1gjgn. Then there is a sequence (co,ci,...,c,) of states in C
satisfying

cnp(c:d_l;tJ?;‘tJ!;CJ) for 1gjgn.
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Since C power semisimulates R, there must alse be a sequence
<C(°:O<1: LU )qn>

in P(AS), for which

%, € A5,
anp"uﬁa.l] € a,, for 1<jn
chRcJ
(J) = =)
aspy,
of
o, h

o “Te, <, “Ty, 7 “Pe,, Cw

Since «_ # {} we deduce that t € traces(R) as desired. //

The proof obligation embodied in the definition of power semisimulstion is complete, due to
Theorem 5.2. If A is a data type and C refines A then C power semisimulates A.

Proof. It has to be proved that the scribe construction described above. with its
undetermined choice of sets of abstract states, is possible. For this it suffices to let

oy & A5,

and henceforth insist that the scribe choose the largest possible set of abstract states
at each move '

« = aop (o}
e { g@’eAS : (3a€nS) aopla,x?,y!.,a") .

Since C refines A, o« is nonempty. Thus the resulting relation R is a power
semisimulation. // )
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5.2 Examples.

0f the following examples, X5.1 shows how power semisimulation wWorks between the
simplest data types for which semisimulation fsils, .and includes an explanation of why
such cases arise in practice. X5.2 illustrates the fact +that severasl pouer
semisimulatione may exist between two types; here the smallest one is actuslly g
semisimulation.-

X5.1. Let types A and C be defined as in X2.1

Evidently traces(A+) = traces(C+) so A and C are inter refinable. Indeed the relation Q

~ - from AS to CS given by

0@0, 101, 102, 203, 304

is a semisimulation from A to C, which proves that A E C. It is easy to see that there
fs no semisimulation from C to A. However the relation R from P-(C5) to AS given by

(03RO, {1,2)R1, <3¥RZ, <4)IR3

is & power semisimulation from C to R, which completes the proof that A and C are inter
refinable. - :

It is worth pointing out that this example is far from pathological. Let type C describe
a cer-rental firm which accepts requests

“a Rolls Royce next Tuesday”,
then replies
"yes, you've been allocated one” (or "sorry. none left”).
On Tuesdsy it accepts the request
"my Rolle Royce please”
and replies
"HFC924Y, over there”.
After being =allocated & car, the customer may confidently procesd aboutﬁhis other

- business, contented in the knowledge that he has been agsigned a particular Rolls Royce
(thoush this has never been said explicitly) -
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But in fact, on Tuesday, the customer .is given the Rolls Royce closest to the garage
door

and of course he can't tell the diffen;ence-

Type € is easier to explain and remember snd thus forms 8 convenient specification: type
A is easier to implement. Similar examples can be found in file systems which
"choose-shead” the locations of the next availasble tree blocks: again it is not possible
for the user to tell how many blecks have been chosen ahead.

X5.2. Let types A and C be deFi.ned &8s in X4.1, and recsll that they are inter
refinable. The largest power semisimulation from A to C is the relation R from P-(AS) to
CS siven by -

{03RO, {1,2,3¥R1, {1,2,33R2, {4,5)R3, {6,7IR4.
The smallest power semisimulation from A to C is the relation S given by
{0350, {1>S1, {4353, {353, {754
which is & semisimulation. The moral of this example is that it may not be necessary to

use the power semisimulation rule just because the abstract type under comsideration fails
to be csanonical. :
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