Rodin and Refinement

Deepak D'Souza

Department of Computer Science and Automation
Indian Institute of Science, Bangalore.

20 February 2024

Specifying ADTs logically
®000

Specifying ADTs logically or declaratively

@ States

o Variables: Eg. {x}, {y},
{len, beg, end}.

o Invariants:
Eg. xe N, x <3.
Eg. 0 < beg < len.

@ Operations (Eg. inc, dec, enq)

o Parameters: Eg. newval

o Guards: Eg. x <2, y <2,
newval € N

o Update (or Action): Eg.
X' =x+1y =y-1

X =3

inc inc inc
X)—)MD—} X HM
dec dec dec

ADT 3counter

ADT 2counter

Specifying ADTs logically
ce00

Specifying abstraction relations

inc inc inc
[J
X HM»—) X HMH 3
@ Abstraction relation (or gluing dec dec dec

relation) ADT 3counter

e Constraint on joint state of

abstract and concrete ADTs. inc inc
Eg. x=y ﬁ@‘
y ’—)Ml—} V2
dec dec

ADT 2counter

Specifying ADTs logically

[eJe] le]

Proof obligations

Operations are well-defined

@ Actions restore invariants.
Eg. The following formulas should be logically valid:

For init:
/ / !
(X=0= (X" e NAX <3).
— —
action invariant
For inc:

(x ENAXx<3Ax<3AX =x+1)= (X e NAX <3).
—————

invariant guard action invariant

Specifying ADTs logically

[eJele])

Proof obligations

Refinement conditions:

@ Init (gluing relation should hold initially): Eg. The following formula
should be valid:
(X'=0Ay'=0)=x"=y".
—_— ~—
abs and conc actions gluing inv
@ Guard strengthening (conc guard stronger than abs guard): Eg.
Following formula should be valid:
(xeNAXx<3AYyeNAy<2A x=y A y<2)= x<3.

abs invariant conc invariant gluing inv conc guard abs guard

@ Sim (gluing inv is restored): Eg. Following formula should be valid:

XENAX<S3AYENAY<2AX=yA y<2AX =x+1Ay =y +1
(y y YAy y' =y

abs invariant conc invariant gluing conc guard abs action conc action
' /
= x =y .
——

gluing inv

Rodin tool

@ Provides an environment for developing a system design by
succcessive refinement.

@ Uses Event-B modelling language.

@ Provides Features
o Checking consistency of models.

o Are expressions well-defined. For example if x := y/z then is
z non-zero? As another example, if x < y then are both x
and y of type integer?
o Does the initialization event always result in a state satisfying
the state invariants?
@ Does an event always restore the state invariants?
o Checking refinement between models.

o B refines A iff there exists a gluing relation by which A can
simulate B.

o Generates proof obligations to check if one machine B refines
another A.

Rodin Demo
©0000

Demo in Rodin

e Counter model (counter.zip) demonstrating

o Proof obligations generated by consistency checks
e Proof obligations generated by refinement conditions
e Using the Prover perspective to check proof obligations

e Byte counter (TwoByteCounter.zip)

e Queue (queue.zip)

Rodin Demo
0®000

Proof obligations generated by Rodin

MACHINE counter2

REFINES counter
CONTEXT ctx1l

SEES ctx1
CONSTANTS VARIABLES count2
red

INVARIANTS ...J...
green

EVENTS
SETS

INITIALIZATION ...T_init...
COLOURS -
AXTOMS Event inc2

any param
when H_inc2

type: partition(COLOURS, {red}, {green}) then ...T. inc2...

A

Event inc2
any param’
when H_inc2 then ...T_inc2...

Rodin Demo
00®00

Main proof obligations generated by Rodin

Here concrete invariant J includes gluing
invariant p.

@ Initialization

(A/\ T,',,,'t) = J.

@ Events (guard strengthening)

(ANIAJAH) = G.

@ Events (invariant preservation)

(ANIANIJANHAU) = JIV /v, w'/w].

Abstract Machine
Variables: V
Invariants: /

Event Op:

Guard: G
Action: T

Concrete Machine

Variables: W

Invariants: J

Event Op:
Guard: H
Action: U

Rodin Demo
000®0

Proof obligations generated by Rodin for theorems

@ In Axioms (A¢pm), where Ap is axioms appearing before Agpp:
Ab — Athm~

@ In event guards (Hixm), where Hp, is guards appearing before
chm:
(ANTANJANHR) = Him.

o In invariants (Jim), where Jp, is invariants appearing before
Jthm:
(A AN Jb) = Jihm-

Rodin Demo
ooo0e

Proof obligations for Z refinement

@ Initialization
(A/\ Tinit) = J.

e Events (guard weakening)
(ANIAJAG) = H.
e Events (invariant preservation)
(ANIAJIAGAU) = J[V/v,w'/w].

Assert these as theorems.

Queue example for refinement

[o]

A C implementation of a queue

1: typedef struct queue { 12: void task enq(task t){ 1:
2: task A[MAXLEN]; 13: if (gq->len == MAXLEN)
3: int begin, end, len; 14: assert(0); /*exception*/
4: } queue; 15: q->A[g->end] = t;
5: 16: if (q->end < MAXLEN-1)
6: queue q; 17: q->end++;
18: else
7: void init() { 19: q->end = 0;
8: q->begin = 0; 20: q->lent++;
9 g->end = 0; 21: }
10: g->len = 0; 22:
11:3 23: task deq() { ... }
(a)
C a

! !

beg end end beg

g WwN

task resched(

task cur){
task t;
eng(cur) ;
t = deq();
return t;
}
(b)

Queue example for refinement
oce

A high-level specification of the queue functionality

QADT

QADT = (Q,U,E, {op!,}neQType) where
Q = {JUUL, B U{E}

e,ok) ifg#E
E,e) otherwise.
q-a,ok) ifg#Eand|d <k

Opinit(qa a) E
(
(E,e) otherwise.
(
(

OPeng(q,a) = {
Opdeq(qaa) = {

Il
—

q,b) ifg#Eandg=0b-¢
E,e) otherwise.

Would like to argue that C implementation provides the same
functionality as abstract queue specification.

	Specifying ADTs logically
	Rodin
	Rodin Demo
	Queue example for refinement

