
Specifying ADTs logically Rodin Rodin Demo Queue example for refinement

Rodin and Refinement

Deepak D’Souza

Department of Computer Science and Automation
Indian Institute of Science, Bangalore.

20 February 2024

Specifying ADTs logically Rodin Rodin Demo Queue example for refinement

Specifying ADTs logically or declaratively

States

Variables: Eg. {x}, {y},
{len, beg , end}.
Invariants:
Eg. x ∈ N, x ≤ 3.
Eg. 0 ≤ beg ≤ len.

Operations (Eg. inc, dec , enq)

Parameters: Eg. newval
Guards: Eg. x < 2, y < 2,
newval ∈ N
Update (or Action): Eg.
x ′ = x + 1, y ′ = y − 1 ADT 2counter

ADT 3counter

y 7→ 0 y 7→ 2y 7→ 1

inc inc

dec dec

init

x 7→ 3x 7→ 0 x 7→ 2x 7→ 1

inc inc inc

dec dec dec

Specifying ADTs logically Rodin Rodin Demo Queue example for refinement

Specifying abstraction relations

Abstraction relation (or gluing
relation)

Constraint on joint state of
abstract and concrete ADTs.
Eg. x = y

ADT 2counter

ADT 3counter

y 7→ 0 y 7→ 2y 7→ 1

inc inc

dec dec

init

x 7→ 3x 7→ 0 x 7→ 2x 7→ 1

inc inc inc

dec dec dec

Specifying ADTs logically Rodin Rodin Demo Queue example for refinement

Proof obligations

Operations are well-defined

Actions restore invariants.
Eg. The following formulas should be logically valid:
For init:

(x ′ = 0︸ ︷︷ ︸
action

⇒ (x ′ ∈ N ∧ x ′ ≤ 3︸ ︷︷ ︸
invariant

).

For inc:

(x ∈ N ∧ x ≤ 3︸ ︷︷ ︸
invariant

∧ x < 3︸ ︷︷ ︸
guard

∧ x ′ = x + 1︸ ︷︷ ︸
action

)⇒ (x ′ ∈ N ∧ x ′ ≤ 3︸ ︷︷ ︸
invariant

).

Specifying ADTs logically Rodin Rodin Demo Queue example for refinement

Proof obligations

Refinement conditions:

Init (gluing relation should hold initially): Eg. The following formula
should be valid:

(x ′ = 0 ∧ y ′ = 0︸ ︷︷ ︸
abs and conc actions

)⇒ x ′ = y ′︸ ︷︷ ︸
gluing inv

.

Guard strengthening (conc guard stronger than abs guard): Eg.
Following formula should be valid:

(x ∈ N ∧ x ≤ 3︸ ︷︷ ︸
abs invariant

∧ y ∈ N ∧ y ≤ 2︸ ︷︷ ︸
conc invariant

∧ x = y︸ ︷︷ ︸
gluing inv

∧ y < 2︸ ︷︷ ︸
conc guard

)⇒ x < 3︸ ︷︷ ︸
abs guard

.

Sim (gluing inv is restored): Eg. Following formula should be valid:

(x ∈ N ∧ x ≤ 3︸ ︷︷ ︸
abs invariant

∧ y ∈ N ∧ y ≤ 2︸ ︷︷ ︸
conc invariant

∧ x = y︸ ︷︷ ︸
gluing

∧ y < 2︸ ︷︷ ︸
conc guard

∧ x ′ = x + 1︸ ︷︷ ︸
abs action

∧ y ′ = y + 1︸ ︷︷ ︸
conc action

)

⇒ x ′ = y ′︸ ︷︷ ︸
gluing inv

.

Specifying ADTs logically Rodin Rodin Demo Queue example for refinement

Rodin tool

Provides an environment for developing a system design by
succcessive refinement.

Uses Event-B modelling language.

Provides Features
Checking consistency of models.

Are expressions well-defined. For example if x := y/z then is
z non-zero? As another example, if x < y then are both x

and y of type integer?
Does the initialization event always result in a state satisfying
the state invariants?
Does an event always restore the state invariants?

Checking refinement between models.

B refines A iff there exists a gluing relation by which A can
simulate B.
Generates proof obligations to check if one machine B refines
another A.

Specifying ADTs logically Rodin Rodin Demo Queue example for refinement

Demo in Rodin

Counter model (counter.zip) demonstrating

Proof obligations generated by consistency checks
Proof obligations generated by refinement conditions
Using the Prover perspective to check proof obligations

Byte counter (TwoByteCounter.zip)

Queue (queue.zip)

Specifying ADTs logically Rodin Rodin Demo Queue example for refinement

Proof obligations generated by Rodin

CONTEXT ctx1

CONSTANTS

red

green

SETS

COLOURS

AXIOMS

type: partition(COLOURS, {red}, {green})

... A ...

MACHINE counter2

REFINES counter

SEES ctx1

VARIABLES count2

INVARIANTS ...J...

EVENTS

INITIALIZATION ...T_init...

Event inc2

any param

when H_inc2

then ...T_inc2...

Event inc2

any param’

when H_inc2 then ...T_inc2...

Specifying ADTs logically Rodin Rodin Demo Queue example for refinement

Main proof obligations generated by Rodin

Here concrete invariant J includes gluing
invariant ρ.

Initialization

(A ∧ Tinit) =⇒ J.

Events (guard strengthening)

(A ∧ I ∧ J ∧ H) =⇒ G .

Events (invariant preservation)

(A ∧ I ∧ J ∧ H ∧ U) =⇒ J[v ′/v ,w ′/w].

Variables:

Invariants:

Event Op:

Guard:

Action:

Abstract Machine

Variables:

Invariants:

Event Op:

Guard:

Action:

Concrete Machine

G

T

V

I

H

U

W

J

Specifying ADTs logically Rodin Rodin Demo Queue example for refinement

Proof obligations generated by Rodin for theorems

In Axioms (Athm), where Ab is axioms appearing before Athm:

Ab =⇒ Athm.

In event guards (Hthm), where Hb is guards appearing before
Hthm:

(A ∧ I ∧ J ∧ Hb) =⇒ Hthm.

In invariants (Jthm), where Jb is invariants appearing before
Jthm:

(A ∧ I ∧ Jb) =⇒ Jthm.

Specifying ADTs logically Rodin Rodin Demo Queue example for refinement

Proof obligations for Z refinement

Initialization
(A ∧ Tinit) =⇒ J.

Events (guard weakening)

(A ∧ I ∧ J ∧ G) =⇒ H.

Events (invariant preservation)

(A ∧ I ∧ J ∧ G ∧ U) =⇒ J[v ′/v ,w ′/w].

Assert these as theorems.

Specifying ADTs logically Rodin Rodin Demo Queue example for refinement

A C implementation of a queue

1: typedef struct queue { 12: void task enq(task t){ 1: task resched(

2: task A[MAXLEN]; 13: if (q->len == MAXLEN) task cur){

3: int begin, end, len; 14: assert(0); /*exception*/ 2: task t;

4: } queue; 15: q->A[q->end] = t; 3: enq(cur);

5: 16: if (q->end < MAXLEN-1) 4: t = deq();

6: queue q; 17: q->end++; 5: return t;

18: else 6: }

7: void init() { 19: q->end = 0;

8: q->begin = 0; 20: q->len++;

9: q->end = 0; 21: }

10: q->len = 0; 22:

11:} 23: task deq() { ... }

(a) (b)

c ba

begbeg

a b c

end end

Specifying ADTs logically Rodin Rodin Demo Queue example for refinement

A high-level specification of the queue functionality

QADT k

QADT k = (Q,U,E , {opn}n∈QType) where

Q = {ε} ∪
⋃k

i=1 Bi ∪ {E}

opinit(q, a) =

{
(ε, ok) if q 6= E
(E , e) otherwise.

openq(q, a) =

{
(q · a, ok) if q 6= E and |q| < k
(E , e) otherwise.

opdeq(q, a) =

{
(q′, b) if q 6= E and q = b · q′
(E , e) otherwise.

Would like to argue that C implementation provides the same
functionality as abstract queue specification.

	Specifying ADTs logically
	Rodin
	Rodin Demo
	Queue example for refinement

